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The configuration space of many complex physical systems presents a rough energy landscape consist-

ing of tremendous number of local minima separated by high energy barriers. One way to overcome these

barriers is to perform the simulation in a generalized-ensemble where each state is weighted by a

non-Boltzmann probability weight factor. Multicanonical Ensemble Approach overcomes this difficulty by

performing a random walk in one-dimensional energy space. Our attempts to design hybrid generalized en-

semble algorithms will be reported. The folding of a protein into its native structure involves one or more

transitions between distinct phases. The representation of the energy landscape would be useful for the de-

termination of the conformational transition temperatures. Such a study would lead to clear indications of

the equilibrium conformations of proteins and provide a detailed picture of the folding pathway. The topo-

graphic structure of energy landscape of short peptides will be presented.

PACS: 02.70.Uu Applications of Monte Carlo methods;
82.20.Wt Computational modeling; simulation.

Keywords: Generalized ensembles, protein folding.

The problem of protein folding entails the study of a

non-trivial dynamics along pathways embedded in a rug-

ged energy landscape. The conventional simulation meth-

ods are not effective because the system becomes trapped

for long simulation time in a potential well. The trapping

problem of the Monte Carlo and Molecular Dynamics

methods can be alleviated to a large extent by the

Multicanonical MC method (MUCA) [1,2], which was

applied initially to lattice spin models and its relevance

for complex systems was first noticed in [1]. Applications

of the multicanonical approach to peptides was pioneered

by Hansmann and Okamoto [3] and followed by others

[4]; simulations of protein folding with MUCA and re-

lated generalized ensemble methods are reviewed in

Ref. 5.

The multicanonical ensemble based on a probability

function in which the different energies are equally prob-

able.

P E n E w EMU ( ) ( ) ( )� � const .

However, implementation of MUCA is not straightfor-

ward because the density of states n(E) is unknown. The

weights w(E) � 1/n(E) are calculated in the first stage of

simulation process. First, energy range is divided into

L – 2 equal segments i defined by [Ei–1, Ei] where;

E E Ei i i� � ��1 0� for i = 2, ...., L–1 with

E0 � �� and EL � �� .

The definition of the parametrization of the Muca weights

read:

w x b E ai i x i( ) exp ( )� � � for E E Ei x i� � 	1

where ai and bi are multicanonical parameters which are

calculated by an iterative procedure. The iterative proce-

dure is followed by a long production run based on the

fixed w’s where equilibrium configurations are sampled.

Re-weighting techniques (see Ferrenberg and Swendsen

and literature given in their second reference) enable one

to obtain Boltzmann averages of various thermodynamic

properties over a large range of temperatures [6].

By setting up a one-dimensional random walk in energy

space, the multicanonical simulation provides sampling

of all available energies and enables one to study the

thermodynamical aspects of the system at a wide range of

temperature from a single production run. In Fig. 1, time

series of the multicanonical algorithm was shown for a
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small peptide. Whole energy range of the system is freely

sampled as a characteristic property of this technique.

Energy Landscape Paving (ELP) algorithm combines

ideas from tabu search and energy landscape deformation

approaches and configurations are searched with the

time-dependent weights [7]

w E q t E f H q T k TB( , , ) exp [ ( ( ( , ))) / ]� � � .

The low temperature T leads to drive towards low ener-

gies. The function f enables to drive simulation out of lo-

cal minima. Function f(H(q,T)) is chosen generally as:

f H q t H q t( ( , )) ( , )�

and simulation produces a histogram distribution shown

in Fig. 2.

We proposed a hybrid algorithm, which combines the

features of energy landscape paving and the Monte Carlo

Minimization methods [8]. Namely, we have implanted a

Monte Carlo minimization (MCM) step in between the

two updates of dihedral angles in the ELP algorithm. This

algorithm has a fast convergence property to global mini-

mum state of the system and samples freely the low en-

ergy states. Time series of this algorithm was shown in

Fig. 3.

Proteins are polymers of amino acid molecules. The

complexity of the conformation space of proteins and

peptides makes the protein folding problem so difficult.

The main goal of the protein folding studies is to deter-

mine the 3D global minimum energy stable conformation.

In calculation procedure of the energy of a peptide

chain, a chosen force field is used. One of the most com-

monly used all atom force field is called Empirical

Conformational Energies of Proteins and Polypeptides

(ECEPP) which is composed of following energy terms:
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Here rij is the distance between the atoms i and j, � is the

torsion angle for the chemical bond l. The parameters are

adopted from ECEPP/2 provided by Brookhaven PDB

databank. The backbone torsion angles �, � and � and

the side chain angles � are the degrees of freedoms of our

simulations.

In Fig. 4, 3D conformation of elastin pentapeptide

VPGVG sequence obtained from x-ray experimental data

and the global minimum obtained by our hybrid algorithm

was shown [8].

Effective conformational search methods for biological macromolecules

Fizika Nizkikh Temperatur, 2007, v. 33, No. 9 1053

Fig. 1. Monte Carlo time series of the multicanonical simula-

tion for a 12-residue peptide chain.

–45

–40

–35

–30

–25

–20

–15

–10

–5

100000 200000 300000 400000

E
n
er

g
y,

k
ca

l/
m

o
l

MC Sweeps

Fig. 2. Monte Carlo time series of a typical energy landscape

paving simulation.
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Fig. 3. Monte Carlo time series of the hybrid algorithm.



In polypeptide systems, an order parameter can be de-

fined as [9];
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where � i
RS( )

is the dihedral angles of the reference con-

formation (usually GEM) and � i
RS( )

is the dihedral angles

of the conformation under consideration. This parameter

measures how any sampled conformation is close to GEM

state. In Fig. 5, energy landscape of elastin sequnce vs or-

der parameter and energy was shown. This figure shows

the number of sampled conformations in the entire energy

range of the molecule as a function of the suitable defined

order parameter. The representation of energy landscape

entails one to study critical behavior of the complex sys-

tem.

To summarize, the multicanonical ensemble enables

one to display the distribution of all conformations in

configuration space at all temperatures from a single sim-

ulation.
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Fig. 4. 3D conformation of elastin sequnce VPGVG obtained from experimental data (left) and the global minimum (right) of our

hybrid algorithm.
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Fig. 5. 3D energy landscape of elastin sequnce vs energy and

overlap parameter.


