
Fizika Nizkikh Temperatur, 2007, v. 33, No. 8, p. 902–906

Rabi oscillations and quantum beats in a qubit

in distorted magnetic field

E.A. Ivanchenko and A.P. Tolstoluzhsky

National Science Center «Kharkov Institute of Physics and Technology», 1 Akademicheskaya Str., Kharkov 61108, Ukraine

E-mail: yevgeny@kipt.kharkov.ua

Received December 4, 2006

In a two-level system the time-periodic modulation of the magnetic field stabilizing the magnetic reso-

nance position has been investigated. It was shown that the fundamental resonance is stable with respect to

consistent variation of the longitudinal and transverse magnetic fields. The time-dependency of the Rabi os-

cillations and quantum beats of the spin flip probability was numerically researched in different parameter

regimes taking into account dissipation and decoherence in the Lindblad form. The present study may be

useful in the analysis of interference experiments and for manipulation of quantum bits.

PACS: 33.35.+r Electron resonance and relaxation;
02.30.Hq Ordinary differential equations;
85.35.Gv Single electron devices;
03.65.Vf Phases: geometric; dynamic or topological.
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1. Introduction

Now world science centers dealt with a problem of a

construction of quantum computers in which the algo-

rithms of calculations based on the coherent mechanism

of quantum processes are used. The idea of a quantum

computer will consist in the construction of computer on

the basis of quantum bits, instead of classical elementary

cells.

The laws of quantum mechanics determining the be-

havior of quantum bits, provide huge advantages in the

speed of calculations of a quantum computer in the com-

parison with a classical computer. In an NMR computer

the manipulation of quantum bits (nuclear spins) is

extremely important.

In the standard implementation of the magnetic re-

sonance a constant magnetic field is perpendicular to

linearly polarized, variable in time t monochromatic

magnetic field. The shift of resonance frequency (the

Bloch–Ziegert shift) appears [1]. The goal of the paper

consists in the proposal and research of such magnetic

field configuration, at which one the position of a main

resonance is determined only by the Larmor frequency at

arbitrary parameters of a system. This can be reached by

generalizing the Rabi model [2]. Rabi studied the tempo-

ral dynamics of the particle with dipole magnetic moment

and spin 1 2/ in a constant magnetic field H 0, directed

along the z axis, and an alternating magnetic field perpen-

dicular to it, rotating uniformly with a frequency � �/ 2 :

H h tx � 0 cos � , H h ty � 0 sin � , h0 is the transverse field

amplitude.

There are several methods for modulating magnetic

fields while studying the phenomenon of magnetic reso-

nance, depending on the goal of research (see [3] and ref-

erences therein). In Refs. 4–6, without taking dissipation

into account, it is investigated the temporal evolution of

particle with dipole magnetic moment and spin 1 2/ in a

distorted magnetic field

H( ) ( ( , ), ( , ), ( , ))t h t k h t k H t k� 0 0 0cn sn dn� � � , (1)

where one cn, sn, dn are the Jacobi elliptic functions [7].

Such a modulation of the field upon variation of

the modulus k of elliptic functions from zero to unity

describes a class of field shapes from trigonometric

[ ( , ) cos , ( , ) sin , ( , ) ]cn sn dn� � � � �t t t t t0 0 0 1� � � [2] to

[ ( , ) / , ( , ) , ( , ) / ]cn ch sn th dn ch� � � � � �t t t t t t1 1 1 1 1� � �
pulsed exponential [7]. The elliptic functions cn ( , )�t k ,

sn ( , )�t k have a real period of 4K / �, while dn ( , )�t k has

a real period half as long. Here K is the complete elliptic

integral of the first kind [7]. In other words, though the

field is periodic with total real period of 4K / �, it is seen
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that the frequency of amplitude modulation of the longi-

tudinal field is twice that of the amplitude modulation of

the transverse field. Such a field is called harmonized. In

the paper [5] it was predicted that the position of the mag-

netic resonance would be stabilized in the field (1). In the

work [6] the influence of a dissipation and decoherence

on a stabilization has been studied. In the present work we

study the transition of the Rabi oscillations into beats de-

pending on the initial conditions and parameters describ-

ing the variable magnetic field (1).

2. Model

The dynamics of a spin 1 2/ particle (qubit) with mag-

netic moment in an ac magnetic field H( )t will be de-

scribed in the formalism of the density matrix � with a

dissipative environment taken into account with the help

of the Liouville–von Neumann–Lindblad (LvNL) equa-

tion [8] (we set � �1)
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in which dimensionless independent variable 	 �� t,

� �0 0 0� g H is the Larmor frequency, � �1 0 0� g h is the

amplitude of transverse field in terms of angular fre-

quency, g is the factor Lande, � 0 is the Bohr magneton.

The operators Li are chosen in the form Li i i� � � 2

[9], where the �i are phenomenological constants, which

take into account the decoherence and dissipation in the

system, and the � are the Pauli matrixes.

We make the substitution � � �� �1r with the matrix

� �



�
�
�



�
�
�

f

f

0

0 *
, where the function f is equal to

f i� �cn sn	 	. (4)

The equation for the transformed matrix r takes the

form
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in which detuning � r is equal to

� � �r � �0 . (6)

As it is seen from Eq. (5) the detuning appears explicitly,

i.e., the position of the principal resonance does not suffer

a shift when the parameters of model are changed. In the

case of a sharp resonance, when � �0 � , in neglect of

damping, the transition probability

P r1
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2 10
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� �( , ) sin	 �
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�
	 (7)

does not contain modulus k, i.e., it is does not depend of

the harmonized field deformation [4,5].

3. Decomplexification of LvNL equation

In the general case for an arbitrary detuning � r (6) we

write the matrix r in the form of a decomposition in the

complete set of Pauli matrices:

r � �
1

2
1( )�R , r r� � , Sp r �1, (8)

for all 	. We substitute the expression for r (8) in Eq. (5).

As a result, we obtain the system of three first-order dif-

ferential equations with periodic coefficients, with re-

spect to unknown real functions R R Rx y z, , :
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Now in terms R R Rx y z, , the density matrix � becomes
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The transition probability with spin flip is equal to the

matrix element �22 that is

P k Rr z1

2

1

2

1

2
1

� �
� �( , , ) ( )	 � . (13)
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Using expression (13) and set of Eqs. (9)–(11), it is

easy to obtain a differential equation of the third order

for the transition probability, which one we do not

make out here. By the selection of decay constants

� � � �x y z� � � the system (9)–(11) becomes

� � � �	
�

�
	 �R R Rx

r
y xdn , (14)

� � � �	
�

�
	

�

�
�R R R Ry

r
x z ydn 1 , (15)

� � �	
�

�
�R R Rz y z

1 , (16)

where � �� 2� / .

In some special cases exact solutions of set (14)–(16)

are presented in the work [6].

4. Numerical results

Let us consider behavior of transition probability de-

pending on the pure initial conditions

R Rx y( ) ( )0 0 0� � , R z ( )0 1� , (17)

Rx ( )0 1� , R y ( )0 0� , R z ( )0 0� , (18)

R R Rx y z( ) ( ) ( ) /0 0 0 1 3� � � , (19)

and the mixed initial condition

R R Rx y z( ) ( ) ( ) . /0 0 0 0 25 3� � � . (20)

The probability of a spin-flip transition is determined by

the expression (13).

To perform the numerical simulation, we have chosen

the parameters in units of 2�100 MHz: �0=1 corresponds

to the longitudinal field 2.3487 T for the proton resonance

of a qubit. Without taking into account dissipative de-

coherence and at a resonance the formula (13) accepts an

obvious form (7). When the detuning increases and k � 0,

the frequency of oscillations increases, and the amplitude

decreases, i.e., in the Rabi–Lindblad model damping os-

cillations are observed [6].

The spin-flip probabilities are presented at the initial

condition (17) in Figs. 1 and 2. As it is seen from Fig. 1

the decoherence and dissipation reduce the amplitude of

beats and their appreciable number. The period of beating

and «the small period of oscillations» depend on initial

conditions and the modulus k (Fig. 2). At frequency of an

ac magnetic field � much greater of the Larmor frequency

�0 and the initial condition (17) the transition probability

is closely to zero and equal 1/2 for the condition (18)

(Fig. 3).

At all parameters and any initial conditions at the Rabi

frequency � R r� � �� � �2
1
2 only damping oscillations

are observed. The evolution of initial condition (18) is

more sensitive to the field deformation. Already for small

k the beats arise (Fig. 4).

In Fig. 5 we present the dynamics of imaginary part

of density matrix �12 ( y component of the polarization

vector) reduced by the factor 0.5 [6]. The real part �12
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Fig. 1. Transition probabilities versus 	 at � = 0.005 (top) and

at � = 0.001 (bottom).
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Fig. 2. Beats for different modulus k.



(x component of the polarization vector) has the similar

behavior.

In Fig. 6 we record the time evolution of transition

probabilities for pure (19) (dot line) and mixed (20) (solid

line) initial conditions. We see that the amplitude of oscil-

lations for mixed conditions less then for pure conditions,

but the period of beats do not changes.

We also record the time evolution of the entropy

S � � � � �Sp ( ln ) ln ln� � � � � �1 1 2 2, where � �1 2, are

the eigenvalues of the density matrix �. The entropy in-

creases monotonically from 0 to its asymptotic limit of

ln 2. At resonance (solid line) the entropy keeps the mix-

ing longer (Fig. 7).

The deformation of a field can be considered as the in-

fluence of an environment on the qubit dynamics [10].

It is necessary to note that at � � �x y z� � the beats

are kept and the beat amplitudes change only insignifi-

cantly.
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Fig. 3. Rabi oscillations at big detuning. The top plot corre-

sponds to initial condition (18), bottom (17).
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Fig. 4. Transition probability at the initial condition (18).
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Fig. 5. Imaginary part of density matrix �12 versus 	 at the ini-

tial condition (18).
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Fig. 6. Transition probabilities versus 	 at the initial condi-

tions: (19) (dot line), (20) (solid line).

0 100 200 300

0 2.

0 4.

0.6

� = 0.5

� = 1

S

�0 =1
�1 = 0.8
k = 0.143

� = 0.001

	

Fig. 7. Entropy versus 	 at the initial condition (18).



Conclusion

Eventually the presence of dissipative decoherence

levels the population of top and bottom levels. Depending

on the field frequency, own frequency and a kind of initial

conditions there are extremely a plenty of oscillations.

It would be desirable to do an experiment to check the

theoretical predictions as to the stability of the magnetic

resonance positions for different model parameters. Such

an experiment would be an extension of the experimental

situation in the circular polarized field. Since the para-

metric resonances in a harmonized magnetic field have a

appreciable widths, it may be preferable to investigate

magnetic resonance at parametric frequencies. This re-

search reported here may find application in the analysis

of interference experiments and for manipulation of

qubits [11,12].
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