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Lattice distortion of quantum cryocrystals under pressure
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The hcp lattice distortion parameter 3, the deviation of ¢/a ratio from the ideal hcp value
\/8/3, have been calculated for solid He under pressure taking into account two- and three-body in-
teratomic forces. The resulting lattice distortion parameter is small and negative, that is the lattice
is slightly flattened compared with the ideal hcp lattice. It monotonically increases in absolute
value with pressure and reaches 1073 for molar volume of ~ 2.5 cms/mol. Such small distrotions
are most likely outside of possibilities of x-ray or neutron experiments but can be detected by opti-
cal methods based on measurements of the birefringence. The data on & can be used as a probe of

the many-body forces.
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1. Introduction

As known, the structure of molecular crystals is
governed by the close packing principle [1]. In the
case of cryocrystals, the shape of the constituent enti-
ties — atoms in the case of rare gas solids (He, Ne, Ar,
Kr, Xe) or diatomics in the case of the simplest molec-
ular solids (N, CO) is spherical or nearly spherical.
The most close packing of hard spheres are either fcc
or hep. Among cryocrystals, only quantum atomic crys-
tal — solid helium — and quantum molecular crystals
— J-even solid hydrogens (p-Hy, 0-Dy and HD) —
crystallize in hcp lattice whereas the heavier or classi-
cal cryocrystals both atomic (Ne, Ar, Kr, Xe) and some
diatomics (Ny, CO) crystallize into cubic lattice.

Compared with the fcc lattice, the hep lattice has
an additional «degree of freedom» and is characterized
by a certain ¢/a ratio. In the case of close packing of
hard spheres c¢/a = \/% (the «ideal» ¢/a ratio or
«ideal» hcp lattice). In the case of crystals with ¢/a
different from /8,3, the lattice have exactly the
same symmetry as the ideal hcp lattice, i.e., the space
groups of these crystals are identical for all values of
¢/a. The quantity

S=c/a-+8/3, €D
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the deviation of ¢/a from the ideal hcp value, deter-
mines the second-order contribution to the crystal
field [2]. Inspite of small amplitude, the presence of
this harmonic is an important characteristic of hcp
solids which distinguishes it from the ideal hep solids.
As shown below, data on the deviation of ¢/a from
the ideal hep value can be used to extract information
about many-body interaction. The aim of this paper is
to find theoretically the pressure dependence of the
parameter & and estimate the many-body contribution
to the intermolecular potential for solid He. Some of
the problems rised in this paper were discussed in
short in Ref. 3.

Experimentally, no conclusive data exist about the
value of the parameter & at different pressures and
temperatures. Vos et al. [4] using an optical method
based on the presence of birefrigence in the hcp phase
found that the deviation of ¢/a from the ideal value is
about —0.001 at the lowest density (20.6 em® /mol)
and decreases in magnitude at higher densities
(=610 at 1 kbar (20.6 cm® /mol)). Neutron diffrac-
tion gave the value ¢/a = 1.63 + 0.03 for a molar vol-
ume of 18.51 cms/mol [5], but a recalculation of
Henshaw’s data by Donohue [6] resulted in the value
c/a = 1.612 = 0.004. X-ray diffraction gave c¢/a =
=1.628 = 0.009 at a molar volume 20.66 cmg/mol [7]
and c/a =1.627 cma/mol at 17.4 cmS/mol [8]. X-ray
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studies of helium crystals at high pressures gave the
value 1.630 = 0.005 [9—11]. These studies did not re-
veal a systematic changing in ¢/a with pressure
though it should be noted, that the uncertainty in de-
termination of ¢/« is too high and leave a room for
manifesting the effect.

In the case of solid hydrogens, at zero pressure & is
of the same order of magnitude as in solid helium
[2,12]. The effect increases with pressure and at pres-
sures about 100 GPa the observed deviation of ¢/a ra-
tio from ideal value is as high as —0.05 [13,14]. Using
the same approach for H, that was developed for solid
He we calculated the contribution of the isotropic part
of the intermolecular potential to & and found that it
is negligible compared with the observed value. This
points to the significance of the rotational degrees of
freedom of hydrogen molecules. The theory that takes
into account the rotational part of the Hamiltonian
will be given elsewhere.

In view of the fact that the term CRYOCRYSTALS
has been put in into circulation by Antonina Fedorovna
Prikhot’ko, this paper may perhaps be an appropriative
contribution to an issue of Fizika Nizkikh Temperatur
(Low Temperature Physics) dedicated to her centenary.

2. Solid helium

At small pressures the interparticle interaction in
helium is described by Aziz potential [15]

U,(R) =exp(-o =BR) — f.(R) D C,R™. (2
n=6,810
Here R is the interparticle distance, o =2.925, =
= 2.381405 a.u., coefficients C, are equal to (in
atomic units) C6 = 1.45995, C8 = 14.2195, C10 =
= 187.1926.
The damping fuction

F(R) = exp[-(R*/R -1)?], R<R*
¢ 1, R>R*

where R* =1.28 R, , R, = 5.4379 a.u. is the position
of the potential minimum.

However, the pair potential does not describe prop-
erly the properties of the system under very high pres-
sure, and many-body effects should be taken into ac-
count. Here we restrict ourselves to the three-particle
interaction, which consists of three-body dispertion
forces (Axilrod—Teller forces) and tree-body exchange
forces.

Let three paticles form a triangular with sides 7,
9, r3 and angles ¢, @9, 3. Then the total three-body
potential Uy, is given by

1410

C
Uy = {—A expl-o(ry + 7 +13)] + _Ztr } X
3.3.3
nnrnr

x(1+ 3cosqq cospy cosps), 3

where the coefficients (in a.u.) are A = 30.644, o =
= 1.0245, C,, = 1.4807 [16].

Due to the quantum nature of solid helium, the ef-
fect of zero-point oscillations is rather noticable when
the pressure dependence of the crystal structure is in-
vestigated, although it will be shown below that the
role of zero-point oscillations reduces considerably as
pressure increases. At the same time, the thermal
phonon contribution can be neglected. Even at room
temperatures (typical temperatures of the most of
high-pressure experiments) the thermal phonon con-
tribution is small compared with that of zero-point os-
cillations. The ratio of these contributions to the equa-
tion of state can be easily estimated in the Debye
approximation to give

Py /P, ~(T/0 )% (4)
The Debye temperature ®p, increases very rapidly
with pressure [11] and the condition (T/@D)4 << 1is
fulfilled for the whole considered range of pressures.

As a result, the Hamiltonian of the system takes the
form [3]

H=U,+Uy +U,,, (5)

where U, _ is the energy of zero-point oscillations.

In the following, the pressure region where
zero-point effects play a decisive role will be excluded
from consideration, so in calculations of the zero-point
contribution standart methods of lattice dynamics
have been used, in particular, the Einstein approxima-
tion. In this approximation the zero-point energy can
be found in the following way:

h
Uz.p. :Ezma’ (6)
a

where o, (o = x, y, z) are frequences of the harmonic
oscillations of helium atoms near their equilibrium
positions.

Let us use the fact that the parameter 3 is small
(3 << 1) and expand the free energy of the system in
powers of & restricting ourselves to the terms of the
second order in 3:

F(8) = Fy + byd + byd?, (7)

where F, is the free energy of the ideal hep lattice, b,
(i =1, 2) are the coefficients depending on the pa-
rameters of the system.
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Minimizing F(8) over 8, we obtain

b
2by

(8)

Due to the short-range character of the interpar-
ticle interaction in helium [17] it may seem that con-
sideration only a few nearest shells of neighbors
spheres is quite enough for calculations. It is really the
case for by, the coefficient at the quadratic term in 3.
For this term the first coordination sphere alone make
a main positive contribution, and contributions from
more distant spheres tend rapidly to zero. However,
the linear in & contributions to the free energy from
the first two shells of neighbors exactly equal to zero
(by = 0). Tt should be noted that the exact vanishing
of the contributions from the first two shells in the
hep lattice is not due to the symmetry. Moreover, the
contributions to by from nearest and next nearest
neighbors vanish owing to different reasons. In the
case of the first shell, the contribution from the near-
est neighbors (nn) in the basic plane cancels the con-
tribution from the nearest neighbors below and above
the basic plane. Such cancellation takes place due to
the accidental equality of all the nn intermolecular
separations when c¢/a = \/% . For the next nearest
neighbors the contributions to b; vanish individually
from each of the six molecules. The contributions from
more distant shells of neighbors decrease rather slowly
and tend to alternate in signs, so to find the pressure
dependence of 3(P) we have to consider a large num-
ber of shells.

The contribution to by from the third coordination
sphere containing only two molecules at the distance
R = /8 /3 from the central molecule leads to by > 0
resulting in & < 0. Thus, in this approximation as the
pressure increases the flattened hep structure with the
ratio ¢/a <./8 /3 is more favorable. However, the in-
teraction with each neighbor from the fourth coordi-
nation sphere makes a positive contribution to b;. Since
the fourth sphere contains 18 neighbors its total contri-
bution to by substantially exceeds the contribution
from the third coordination sphere. As a result, the con-
tribution from these two spheres leads to positive 3.

Theoretically obtained dependences of the parame-
ter d on the specific volume for solid "He are shown in
Fig. 1. Solid curves were obtained for both pair and
three-body interactions and dashed curves were calcu-
lated for the pair interaction only. These curves were
calculated with allowance for zero-point oscillations.
The curves are numbered in accodance with quantities
of the coordination spheres that have been taken into
account. The Figure reflects the above-mentioned
strong dependence of the calculated results on the
number of the coordination spheres. As it is seen, the
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Fig. 1. Lattice distortion parameter & for solid He as a
function of molar volume calculated: with the pair plus
three-body potential (solid curves); with the pair Aziz po-
tential (dashed curve). The numbers at curves show how
many shells of neighbors was taken into account in the cal-
culations. The dotted curve (corresponding to 50 shells)
was calculated without regard for zero-point oscillations.

convergence of & to its limiting value is slow. To ob-
tain unumbiguous quntitative results it is necessary to
take into account rather distant shells. This situation
is not unusual for the systems with long-range interac-
tion, such as ionic crystals and the systems in which
the dipole-dipole interaction plays the main role. But
such situation for the rare gas solids with short-range
interaction as far as we know is met for the first time.

When the number of the shells increases, the quan-
tity & tends to its limiting value, which depends on the
specific volume. Increase in the number of shells over
~ 20 ceases to influence the calculated results up-
preciably as is demonstrated by a small difference
between the curves for 20 and 50 shells. As can be
seen, resulting & is negative and increases in magni-
tude with decreasing specific volume monotonically.
At the molar volume 2.5 cm3/mol (approximately
ten-fold compression, P ~ 60 GPa) & ~ —0.001.

The role of the many-body forces can be seen from
the comparison of solid curves which were obtained
with allowance for pair and three-body interactions
and dashed curves which were calculated for the pair
interaction only. It is important that the effect not only
increases with pressure but it leads to a qualitative dif-
ference in the behavior of 8(V). Namely, the action of
the pair forces results in positive 8 (the elongation of
the hexagonal lattice) whereas the potential that in-
cludes the three-body forces tends to flatten the lattice.
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Fig. 2. The calculated T = 0 K equation of state for solid He.
Solid symbols are experimental data from Refs. 9, 10 and 18.
Solid, dashed and dotted curves refer to the same condi-
tions as in Fig. 1 corrected to T'= 0 K.

The dotted curve (corresponding to 50 shells) was
calculated without regard for zero-point oscillations.
It is seen, first, that zero-point oscillations is a factor
favoring the ideal hep structure, and second, that the
contribution of zero-point oscillations decreases mark-
edly with rising pressure.

Let us now turn to the equation of state P(V) for
“He. The deviation from the ideal structure very
slightly affects the behavior of P(V) so that for its
calculation it is enough to retain only first term in
Eq. (7). The calculated dependences of P(V) are
shown in Fig. 2 along with the experimental results
[9]. It is seen that the pair potential is too stiff and
overestimates the pressure values calculated with
its help considerably. The contribution from the
three-body interaction increases rapidly with pressure
and at P > 10 GPa the pair interaction approximation
becomes inadequate. The contribution from zero-point
oscillations to the pressure is noticible in the whole re-
gion where the measurement of P(V) were made al-
though its role is more pronounced at low P.

3. Solid hydrogen

Similar calculations were performed for the isotro-
pic part of the intermolecular potential for solid hy-
drogen. No account has been taken in these calcula-
tions of the rotational part of the Hamiltonian. It has
been shown that the contribution from the isotropic
part of the intermolecular potential to the distortion
parameter 8 is a small part of the total effect implying
that the main effect is due to the rotational degrees of
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Fig. 3. The contribution to the lattice distortion parameter
8 from the isotropic part of the intermolecular potential for
solid p-Hy as a function of molar volume. Solid, dashed
and dotted curves refer to the same conditions as in Fig. 1.

freedom of hydrogen molecules. Results of these cal-
culations are given in Fig. 3. As in Fig. 1, the curves
are numbered in accordance with the quantities of
shells which were taken into account; the solid curves
are referred to the total Hamiltonian (5), dashed
curves are results when the many-body interaction was
disregarded, and the dotted curve was obtained when
zero-point oscillations were omitted (for 50 shells).
Qualitatively, these results are similar to that ob-
tained for solid He: when summing up the contribu-
tions from progressively distant shells of neighbors the
convergency is rather slow and the partial contribu-
tions tend to alternate in signes; the lattice distortion
parameter & resulting from the pair potential and that
from many-body forces have different signs and near
compensate each other.

4. Conclusions

Comparing two close-packed lattices, fcc and hep,
the latter has an additional structure characteristics:
the lattice distortion parameter 3 — the deviation of
¢/a ratio from the ideal hep value /8 /3. In this paper
the pressure dependence of this parameter have been
calculated for solid He. We used the intermolecular
potential which was represented by a sum of the pair
Aziz potential and three-body potential consisting
of the Axilrod—Teller dispersive forces and the
three-body exchange interaction. Calculations of the
pressure-volume relation revealed that the Aziz pair po-
tential is too stiff and give rise to overastimated values
of pressure. This drawback of the pair Aziz potential is
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compensated by the negative contribution from the
three-body potential. The lattice distortion parameter
3 resulting from the pair potential and that from
many-body forces have different signs and tend to
cancell each other. The resulting lattice distortion pa-
rameter is small and negative, that is the lattice is
slightly flattened compared with the ideal hep lattice.
It monotonicallg increases in magnitude with pressure
and reaches 10 ° for molar volume of ~ 2.5 cmB/mol.
Such small distortions are most likely outside of possi-
bilities of x-ray or neutron experiments but can be de-
tected by optical methods based on measurements of
the birefringence. The data on & can be used as a probe
of the many-body forces.
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