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We study the bath dynamics in the dephasing model of a two-state quantum system (qubit) coupled to an
environment of harmonic oscillators. This model was shown [Morozov et al., Phys. Rev. A, 2012 85, 022101] to
admit the analytic solution for the qubit and environment dynamics. Using this solution, we derive the exact
expression for the bath reduced density matrix in the presence of initial qubit-environment correlations. We
obtain the non-equilibrium phonon distribution function and discuss in detail the time behavior of the bath
energy. It is shown that only the inclusion of dynamic correlations between the qubit and the bath ensures the
proper time behavior of the quantity which may be interpreted as the “environment energy”.
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1. Introduction

The dynamics of open quantum systems has attracted a great deal of interest over the last few decades.
Its importance is dictated by the prospects of applications in quantum optics, quantum computing, quan-
tum measurements and control [1, 2], as well as by the necessity of a deeper understanding of the theory
itself [3-8]. The dynamics of open quantum systems was studied in several aspects: (i) the effect of ini-
tial correlations between an open system and its environment has been investigated in [9,[10]; (ii) a new
viewpoint concerning the nature and the measure of non-Markovianity has been presented in [11, [12];
(iii) the effect of non-equilibrium environment on quantum coherence and the level populations has been
considered in [13,[14].

The latter problem is of a particular interest. Usually, when constructing a master equation for the
reduced density matrix of an open system, one considers the bath to be at thermal equilibrium [1], even
though there is a build-up of dynamical correlations [4,/9] caused by the entanglement of quantum states.
Moreover, even if the effect of non-equilibrium environment on the system behavior is not neglected
[13], the intrinsic bath dynamics is beyond consideration, since the corresponding bath variables are
always integrated out from the equations of motion. Although this approach seems to be quite natural
as long as one studies solely the open system dynamics, the investigation of the bath evolution itself
can undoubtedly be an interesting problem, yielding some useful hints about how to deal with more
realistic systems, especially with those which possess slow relaxation to equilibrium and do not admit
exact solutions.

In this brief report, we show the relevance of proper (or intrinsic) bath dynamics. The paper is struc-
tured as follows. In section 2 we derive an exact expression for the bath reduced density matrix in the
so-called dephasing model, describing a two-state system (qubit) coupled to a bosonic bath [5-7]. In sec-
tion 3 the non-equilibrium distribution function for the bath modes (phonons) is calculated. Special at-
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tention is paid to the description of time evolution of the phonon energy and the correlation energy in
the “qubit-bath” system. In the last section we discuss the results and draw final conclusions.

2. Bath density matrix in the dephasing model

We consider a simple version of the spin-boson model describing a two-state system (qubit) (S) cou-
pled to the bath (B) of harmonic oscillators [5-8]. In the “spin” representation for the qubit, the total
Hamiltonian of the model is written as follows (in our units 77 =1)

w *
H = Hs+ Hg + Hipt = 7003 +Zwkb;bk + 0’32 (gkbi + gkbk), 2.1)
k k

where wy is the energy difference between the excited |1) and the ground |0) states of the qubit, and o3
is one of the Pauli matrices 01, 0, 3. Note that the operator o3 can also be written in the basis of the
ground |0) and the excited |1) states of the two-level system as o3 = [1){(1| —|0)(0|. Bosonic creation and
annihilation operators bz and by correspond to the kth bath mode with frequency wy, and gi are the
coupling constants.

The distinctive feature of the dephasing model is that the average populations of the qubit states
do not depend on time, and hence there is no relaxation to the complete equilibrium between the qubit
and the environment. In other words, the model is non—ergodi. Note, however, that the Heisenberg
picture operators o+ (f) = [01(f) £io2(£)]/2 evolve in time, leading to a non-trivial decay of the coherences
(0+(1)). Thus, we have a unique situation, where the system relaxation may be interpreted physically as
“pure” decoherence and the entropy exchange [8] rather than the energy dissipation.

It was shown in [7] that equations of motion for the Heisenberg picture operators o (1), bz(t), and
by (t) can be solved exactly with the results

o+ (t) =expi{zxiwgtFR()}0+, 2.2)
—i g3 i g3 *
be(H) =e lwkf[bk+7ak(t)], bl(r) = elxt b;+7ak(n , 2.3)
where
1- it
R(t):Z[ak(t)h};—a,t(t)bk], () = 2gp ———. 2.4)
k Wk

We shall use the exact expressions 2.2)-(2.3) to evaluate the reduced density matrix of the bath. We
start with the obvious relation

p(n=e Hip(r=0)ell! (2.5)

for the non-equilibrium density matrix of the composite system (S+ B) and assume that the initial density
matrix has the form [7]

p(t=0) =Py ®ppy) = [y) Y| pp(y), (2.6)
where the projector Py = |[y){y/| can be expressed in terms of the Bloch vector v = {(g) [7,/8]:
1 oo
Pw=5(1+v-a), 2.7

where (0 3) = (yl|o,4ly), (0.) = (ylo,|y), and I denotes the 2 x 2 identity matrix. In equation lw) =
apl0) + a; |1) with Iaol2 +|aq |2 =1 is the state vector of the qubit. The constrained initial density matrix of
the bath, pg (1), is given by

(ylexp(-BHEDlY) _ laglePur/2e PHs’ 1 |q; [2ePuo2e= Pl
Trp(y|exp(—-BH)y) |ag|2ePe0’2Z() + |y [2e~Pwol2 Z1F)

pp(w) = , (2.8)

1Another special feature of the model is that the qubit Hamiltonian Hg and the sum Hp + Hjy¢ are integrals of motion.
2 The equation (2.8) can be derived by using obvious relations o3|1) = |1), 3]0} = —|0) and the following properties |7] of the

_gHY) _gp™
Hamiltonian Z1): e FH|0) = efwo/2¢ BHyg ®10), e~ PH|1)y = e=Pw0/2¢ BHyg ®|1).
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where = 1/kgT. The bath Hamiltonians H](f) and the corresponding partition functions Z][;—r) are de-
fined as

Hy? = Yo Y (skbl+gibi),  Z$ =Trgexp|-pHY). (2.9)

Physically, the density matrix corresponds to a situation where at times t < 0 the open system S is in
thermal equilibrium with its environment B, and at time zero one makes a perfect (selective) measure-
ment on the system S only. As a result [1], the system S is prepared in some pure state |y).

Making use of equations (Z.6)-(2.7) and noting that o3 is an integral of motion, we can recast equa-
tion into the form

1
o(f) = YA {I+(o_ Yo, (—0)+(o)o_(—1) +(035)05}
B

y {laolzeﬁwo/ze—ﬁHg’(—t) +lay |2e—ﬁw0/2e—ﬁH§)(—t)}, (2.10)
where we have introduced the notation
Zp =lagleP™'? 27 +ayPe P2 2P (2.11)
The bath density matrix is obtained from by taking the trace over the qubit states,
pB (1) =Trgp (1) = 0lp(N)10) + (1lp(H)[1). (2.12)

Since Hl[;—’) (—1) does not contain the spin operators o ., the terms with o+ (— ) do not contribute to (2.12).
Expressing the probabilities |a;|? in terms of (o3) in a usual way, |a; 1> = (1 +{03))/2, |ag|*> = (1 - (03))/2,
it is straightforward to manipulate the time-dependent bath density matrix (2.12) to

pp(l) = L{(1—<as>)eﬁ‘"°’2 (1= (20 e P + 1+ (@ge !

478

H]g+J—2[H1(t)—A€ph(t)]}]

HY +2[Hy(0)+Aepn ()]

+ (1+(og)) e Pl [(1 _(ospe b (14 (g e P ] } @.13)

where

H; (1) =Z{gke—"wkfh;+g,je"wkfbk} 2.14)
k

denotes a phonon part of Hj, in the interaction picture (with the replacement r — —t, see equation @.5)),
whereas the quantity

2
Agph (1) =2Z@(1—coswkt) (2.15)
k Wk

is the non-equilibrium correction to the phonons energy (see also the next section for discussion).
The expression for the bath density matrix becomes much simpler if one neglects the initial correla-
tions in the system by taking a direct product

p(t=0)=P,&py, pP=ePt/z0 7O = Trpe M, (2.16)

instead of (2.6). Proceeding in a similar way, after some algebra one obtains

op(t) = % {(1 _ <03>)e—ﬁ[HB+AH1(t)+Aeph(t)] +(1+ <0_3>)e—ﬁ[HB—AHI(f)+AEPh(f)] }’ 2.17)
27
B

where AHj(t) = Hj(t) — H(0) denotes the non-equilibrium contribution to the correlation energy in the
interaction picture. It is seen from equation that even in this case there is a dynamical build-up of
correlations in the system. We touch upon this point in the next section, when analyzing the relevance of
non-equilibrium correlations.
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3. Phonon non-equilibrium distribution function and energy

To gain some insight into the time behavior of the bath modes (phonons), let us first calculate the
phonon distribution function n,(2). This can be done in two equivalent ways: either using the exact
expression for the bath density matrix, or averaging the bosonic Heisenberg picture operators
over the initial state of the composite system. Here, we shall follow the latter procedure which is simpler.
Taking the initial density matrix in the form and then applying the unitary transformation technique
[7] (or the method of the displaced harmonic oscillator modes [15]), after some straightforward algebra
one obtains

ne(6)=Trs s {p(t = 0bL(ObK(D)} = ni(0) +

2
'jk' (A()(o3) +1)(1 - coswp 1), (3.1)

k

where
n(t=0) = [exp(for) — 117" +Igkl* /1w (3.2)
is the initial phonon distribution function, and the function

: sinh(Bwg/2) — (o3) cosh(Bwy/2)
Alw) = cosh(Bwy/2) — (o3)sinh(Bwy/2) (8.3)

represents the contribution of initial correlations.

With equations and (3.2, it is easy to calculate the time evolution of the non-equilibrium phonon
energy £(t) = Y pwini(2). The final result is conveniently written in terms of the bath spectral density
J(w) which is introduced by the well-known rule [1, 2, |7]

Y 4lgil* f(wi) =f](w)f(w)dw. (3.4)
k
0

After simple manipulations we arrive at

e)=¢e(t=0)+= (A(w)<ag>+1)f%(1—coswt) do, (3.5)
0
where the initial phonon energy is given by
1 7 J(w)
e(t=0)=go+Ae =) wilexp(Bor)—1]7" —f— w. (3.6)
T 4 ) o

Here the last term occurs due to initial correlations in the system.
Usually [1,12, 7], the spectral density function is chosen in the form

J(w) = A0 5w’ exp(—w/Q), (3.7)

where s > 0 and A; is a dimensionless coupling constant. This formula ensures both a proper low-
frequency behavior of J(w) and a cut-off at high frequencies (w > Q). The case s = 1 is usually called
the “Ohmic” case, the case s > 1 “super-Ohmic”, and the case 0 < s < 1 “sub-Ohmic”. Using expression
@D, it is possible to analyze the time behavior of £(#) for different s, but in this brief report we would
like to discuss only one physically interesting point related to the result for the phonon energy.

At first glance, the fact that the phonon energy (3.5) depends on time may appear as an apparent para-
dox. Indeed, on the one hand, one may conclude that there is an energy exchange between the qubit and
the bath. On the other hand, the qubit Hamiltonian Hg commutes with the total Hamiltonian (2.1), and
hence the qubit energy (Hs) does not depend on time. To explain this paradox, let us calculate the non-

equilibrium correlation energy €cor(t) = (Hmt(t)) where H, (1) is the interaction term in equation 2.1)
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(in the Heisenberg picture) and the average is taken over the initial state (2.6). After some algebra, which
we omit, we obtain

€cor(t) =Trs g {p(t = 0)Hint (1)} = €0 + (2A(p)(03) + 1) Ae — &(2). (3.8)

Combining this expression with equation (3.5), it is easy to check that the sum &(f) + £¢or(£) is a time-
independent quantity (see also a footnote on page 2). We see that the dynamics of the correlation energy
£cor(t) exactly compensates the time dependence of the non-equilibrium phonon energy £(¢), ensuring
the energy conservation law. Physically, the sum £(f) + €¢or(#) is precisely the quantity which should be
interpreted as the environment energy.

One more remark is to the point. It can be seen from equations (3.3), 3.5), and (3.8) that both the
non-equilibrium phonon energy £(z) and the correlation energy &.or(#) do not depend on time under
conditions (o3) = 1. Note in this connection that the correlational contribution ycor(#) to the general-
ized decoherence function [7] vanishes for the same values of the mean inversion population of the lev-
els, manifesting a close relationship between the essentially non-equilibrium behavior of the correlation
energy and the onset of the additional channel of decoherence in the system.

4. Conclusions

Here, we present a summary of the results and discuss their relation to some problems in the dynam-
ics of open quantum systems.

We have derived exact expressions (2.13) and (2.17) for the bath density matrix in the model 2.1)
which describes the dephasing mechanism of decoherence in a qubit interacting with a bosonic environ-
ment. To the best of our knowledge, a derivation of a bath density matrix has never been performed in
the theory of open quantum systems. The explicit form of pg(f) could be essential, for instance, when
constructing master equations (especially non-Markovian) and taking into account the intrinsic dynam-
ics of the environment along with the equation of motion for pgs(#). Such an approach would modify
the well-known Zwanzig-Nakajima projection technique [1,13, /9] where the bath degrees of freedom are
“eliminated”. We believe that this modification is quite natural in the case of the finite size of the bath,
when all the environmental modes are involved in the composite system dynamics, and a back-flow of
energy (information) from the bath to the open system is essential. Thus, the exact solutions 2.13) and
(Z1D can give a valuable insight into general properties of the dynamics of decoherence and can serve as
a step toward consistent derivation of master equations ensuring regular behavior of composite systems
on all timescales and for strong coupling regimes.

Our analysis of the phonon energy in section 3 illustrates the special role of dynamic correlations
between an open system and its environment. We have seen that a “naive” picture with the “energy
exchange between the qubit and the bath” is inadequate (even in the case of weak coupling), and only
the proper inclusion of non-equilibrium correlations ensures the conservation of the total energy.
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AviHamika TepmocTaTy Ang TOUYHOI Mogeni Ky6iTy npun
HasiBHOCTi MOYaTKOBUX KOPensLii 3 ioro 0OTOUYEHHAM

B.B. IrnaTtok, B.I. Mopo3og?

1 IHCTUTYT $i3nKkm KoHAeHcoBaHMX cnctem HAH YkpaiHu, Byn. CBeHuilpkoro, 1, 79011 Jlbsis, YkpaiHa

2 MocKoBCKMii Aep>XaBHUI TeXHIYHUIA YHIBEPCUTET paAioenekTPOHIKN Ta aBTOMAaTUKW,

npocn. BepHagcbkoro, 78, 119454 Mocksa, Pocis

MpoBeAeHO AOCNIAXKEHHS AVHAMIKU TepMOCTaTy Y BUNaAKYy Mogesni 3 po3dasyBaHHAM, L0 OMNWCYE ABOPiBHEBY
KBaHTOBY cucTeMy (KybiT), Aka B3aEMOZIE 3 rapMOHIYHNMY OCLMASTOPaMM 3i CBOrO OTOYeHHs. Lia mogenb mae
aHaniTMYHKin po3e'asok [Morozov et al., Phys. Rev. A, 2012 85, 022101] ik AnA CMIHOBMX 3MiHHUX, TaK i ANs
3MiHHMX TepMocTaTy. BrkopuctoBytoum Lieli po3B's30K, OTPMMaHO aHaNiTUYHWIA BUpa3 ANa NpuUBeAeHOT MaTpu-
Lji ryCTVHW TepMOCTaTy MPW HasBHOCTI NOYaTKOBMX kopensaui. OTpuMaHO HepiBHOBaXXHY QYHKLIiH0 po3noginy
$OHOHIB Ta AeTanbHO AOCAIAXKEHO YacoBY eBOJIOLt0 eHeprii TepMocTaTy. MokasaHo, Lo fuLle HanexHe Bpa-
XyBaHHS AUHAMIYHNX KOpensLiii Mix KybiToM Ta ioro otToueHHsM 3abe3neyye 36epedxeHHs BeINYNHW, SKY CNifd
BBaXaTW “eHeprieto 0ToYeHHs".

KnrouoBi cnoBa: kBaHTOBI BigKpuTi cuctemu, kopensiyii, Ky6it
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