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The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated.

The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the

processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged

impurity are included. The configuration averaged one-particle Green’s functions are obtained within Hartree-

Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the

charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural

disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused

by a structural disorder of impurity environment.
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1. Introduction

The purpose of this work is to explore the effects of the structural disorder on the states of electroneg-

ative impurities dissolved in liquid alkali metal. The ions belonging to metal matrix form a complicated

random field for an impurity atom. The model proposed in this study is applicable to a structurally dis-

ordered system in which the tight-binding representation of the electronic wave function is appropriate

and the effect of a short-range order is eminent. The liquid alkali metals as well as amorphous solids are

the systems we would like to investigate.

In this work we describe the states of isolated impurities of such elements as H, O, Cl, F, N using gener-

alized microscopic theory based on the single-impurity Anderson model (SIAM) [1]. While discussing the

macroscopic features of the single-electron properties of the system, the procedure of effective Green’s

function ensemble-averaging over all possible configurations of atoms R1, . . . ,RN is necessary. The pro-

cedure of configurational averaging is an enormously difficult problem in the multiple-scattering theory.

Only the two-particle correlation functions are known from experimental data. In practice, of course,

our knowledge of these density correlation functions is incomplete and various approximate theories for

short-range order involve only the one- and two-site distribution functions [2–6]. The short-range order is

always present in liquid metals; its simplest manifestation is in the characteristic oscillation of the x-ray

structure factor or in the oscillation of radial distribution function.

The main goal of this paper is to show the effect of disordered local impurity environment on its

charge and magnetic states. The experimentally observed magnetic moment decrease for some sorts of

ferromagnetic solids or amorphous alloys is discussed in detail in [7].

Microscopic model to describe the electronegative impurity in a disordered system is proposed in

section 1. The Hamiltonian of the system is a generalization of Anderson impurity model. It also includes

the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a

charged impurity.Qualitative and quantitative estimates of the parameters of the Hamiltonian have been

carried out in [8]. The formation of an effective charge and spin-polarized gaseous impurity states in a

© G.V. Ponedilok, M.I. Klapchuk, 2013 33705-1

http://dx.doi.org/10.5488/CMP.16.33705
http://www.icmp.lviv.ua/journal


G.V. Ponedilok, M.I. Klapchuk

liquid metal can be described as the process of hybridization of local level with quasi-free electron states

under the effect of a polarizing impurity potential [9].

The two-time retarded Green’s functions [10] are obtained within Hartree-Fock (HFA) approximation

in section 3. The configuration averaged system of Green’s functions is obtained in section 4. A system

of self-consistent equations is given for the calculation of the electronic spectrum, as well as the charged

and the spin-polarized impurity states. The qualitative analysis of the effect of the metallic host structural

disorder on the observed values is performed. An additional shift and broadening of a virtual impurity

level is caused by the structural disorder of an impurity environment.

2. Microscopic model of the system

Let us consider a single impurity dissolved in liquid alkaline metal. The liquid metal phase will be

described within the framework of electron-ion model which for such metals gives satisfactory compu-

tational results for electronic and structural properties. Let R1, . . . ,RN be the coordinates of atoms of

metallic alloy which take arbitrary values in the volume V . The impurity has a coordinate R0. We have

chosen the following model Hamiltonian in coordinate representation:

Ĥ = Hcl+ Ĥel-i+ Ĥel-el . (2.1)

The energy operator of electron-ion interaction is written as follows:

Ĥel−i =− ħ2

2m

∑

1ÉiÉN

∆i +
∑

1ÉiÉN

∑

1É jÉN

V (| ri −R j |)+
∑

1ÉiÉNe

V0(| ri −R0 |). (2.2)

In this equation r1, . . . ,rN are the electron coordinates of a metallic subsystem, the amount of which

coincides with the number of metal atoms due to single valence of alkaline elements. It is assumed that

the electrons of valence impurity orbital remain localized on the impurity.

The potentials V (|ri −R j |) and V0(|ri −R0|) describe electron scattering on ions of metal and impurity,

respectively. The first term in equation (2.2) is the operator of a kinetic energy of free electron subsystem.

The last term in (2.1) describes the energy of pair electron-electron interaction

Ĥel-el=
1

2

∑

1Éi, jÉN

Φ(| ri −r j |)=
1

2

∑

1Éi, jÉN

e2

| ri −r j |
. (2.3)

The non-operator part, Hcl, describes the energy of classical ion-ion interaction.

In order to represent the secondary quantization, we use planewaves as a basis in order to decompose

the field electronic operators

ϕk(r)= 1
p

V
exp(ik ·r) (2.4)

and s-shell localized on the impurity

ψ0(r)=
√

1

πr 3
p

exp

(
−|r−R0|

rp

)
. (2.5)

The wave vector k in (2.4) takes specified values in the impulse quasi-continuous space Λ:

Λ=
{

k : k =
∑

1ÉαÉ3

2πV 1/3nαeα, nα ∈ Z , (eα,eβ)= δαβ

}
. (2.6)

Let us mention thatψ0(r) is not orthogonal to the plane waves (2.4). Apart from this, its inclusion into

the basis set causes overfilling of the latter. However, the inaccuracy introduced by such an approximate

procedure will not affect the qualitative picture. In the representation of the secondary quantization
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operator (2.1) with allowance for only a certain class of Coulomb electron-electron interactions we then

have the following expression,

Ĥ = Hcl +
∑

k∈Λ

∑

σ=±1

Ek a+
kσ akσ+

∑

σ=±1

E0 d+
0σ d0σ+

∑

k∈Λ

∑

q∈Λ

∑

σ=±1

(
Vq a+

kσ ak−q,σ+V0,q a+
kσ ak−q,σ

)

+
∑

σ=±1

U0 n̂0σn̂0,−σ+
∑

k∈Λ

∑

σ=±1

(
Wk,0 a+

kσ d0σ+W ∗
k,0 d+

0σ akσ

)
+

∑

k∈Λ

∑

q∈Λ

∑

σ,σ′=±1

Pq,0 a+
kσ ak−q,σ n̂σ′

+
∑

k∈Λ

∑

σ,σ′

(
Uk,0 n̂σ′ a+

kσ d0,σ+U∗
k,0 d+

0,σ akσ n̂σ′
)

. (2.7)

Here, akσ(a+
kσ

) and d0,σ(d+
0,σ) are the annihilation (creation) Fermi-type operators for electrons in the

states {k,σ} and {R0,σ}, whereσ=±1 is quantum spin number, which takes two values due to two possible

orientations of electronic spin relatively to the quantization axis. Ek = ħ2k2/2m is the energy spectrum

of the electrons in states ϕk(r), and E0 is the energy of the localized electronic state ψ0(r). n̂σ = d+
σ dσ is

the spin-dependent occupation number operator for the localized state.

The matrix elements Vq and V0,q characterize the processes of elastic scattering of electrons on the

ions of the metal and on the impurity. Their explicit analytical forms are as follows:

Vq = 1

N

∑

1É jÉN

e−iq·R j v(q), V0,q = e−iq·R0 v0(q). (2.8)

The formfactors of the scattering potentials

v(q) =
∫

V

V (|r|)e−iq·r dr, v0(q) = 1

V

∫

V

V0(|r|)e−iq·r dr (2.9)

depend only on the absolute value of the momentum transfer q due to the locality of the potentials V (|r|)
and V0(|r|).

The processes of inelastic scattering of electrons caused by their transition from the state localized on

the impurity into the conduction band and vice versa are characterized by the matrix element,

Wk,0 =
1
p

V

∫

V

e−ik·r
[
−ħ2

∆r

2m
+VLF(r)

]
ψ0(r)dr. (2.10)

Here,

VLF(r)=
∑

1É jÉN

V (|r−R j |)+V0(|r−R0|) (2.11)

is the potential of a local field of metal ions and the impurity, which acts on the electron at a point r ∈V .

The term
∑

σU0 n̂σn̂−σ in the Hamiltonian (2.7) arises from the operator of Coulomb electron interac-

tion and describes the Hubbard repulsion of electrons localized on the impurity with the intensity U0.

U0 =
∫

dr1

∫
dr2|ψ0(r1)|2 e2

|r1 −r2|
|ψ0(r2)|2 = 5

8

e2

rp
, (2.12)

this value is approximately about 1÷5 eV for the atom of oxygen.

The process of elastic and inelastic scattering of electrons on the charged impurity is described by the

matrix elements,

Pq,0 =
∫

V

e−iq·r
Φ̃(r)dr, Uk,0 =

1
p

V

∫

V

e−ik·r
Φ̃(r)ψ0(r)dr. (2.13)

Here, the value

Φ̃(r)=
∫

V

Φ(|r−r′|) |ψ0(r′)|2 dr′, (2.14)

gives the potential energy of the electron in a field which is generated by the electron localized on the

ψ0(r) orbital.
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The matrix elements (2.10)–(2.13) can be written down in the other form by separating explicitly the

structural multipliers

Wk,0 = e−ik·R0 wk , Uk,0 = e−ik·R0 uk , Pk,0 = e−ik·R0 pk . (2.15)

The coefficients wk ,uk , pk do not depend here on the nodal index and are considered in the coordinate

system related to the impurity. Their analytical form is given in [13].

Actually, only the electrostatic effects including two electrons are taken into account in the Hamilto-

nian (2.7), while the processes of exchange are not considered.

3. Green’s function method. Hartree-Fock approximation

The method of equation of motion of Green’s functions is one of the most important tools to solve the

model Hamiltonian problems in condensed-matter physics [11]. Let us calculate the matrix of retarded

time-dependent temperature Green’s functions

G(ω) =
(

Gσ
k,k′(ω) Mσ

k,0
(ω)

Mσ
0,k′ (ω) Lσ

0,0(ω)

)
≡

(〈〈akσ|a+
k′σ〉〉ω 〈〈akσ|d+

0σ〉〉ω
〈〈d0σ|a+

k′σ〉〉ω 〈〈d0σ|d+
0σ〉〉ω

)
. (3.1)

The equation of motion for each component of (3.1) is given in our earlier work [8, 9, 12, 13]. We make

use of the decoupling scheme that corresponds to the Hartree-Fock approximation type for higher order

Green functions. The limits of the HFA applicability for the description of real systems are considered

in [11, 14–18].

A set of connected Green’s functions is obtained

(ω−Ek )Gσ
k,q(ω) = δk,q +

∑
p

Λk−pGσ
p,q(ω)+Ω

σ
k Mσ

0,q(ω), (3.2)

(ω−E0,σ)Mσ
0,q(ω) =

∑

p

Ω
∗
p
σ

Gσ
p,q(ω), (3.3)

(ω−Ek )Mσ
k,0(ω)=

∑

q

Λk−qMσ
q,0(ω)+Ω

σ
k Lσ

0,0(ω), (3.4)

(ω−E0,σ)Lσ
0,0(ω) = 1+

∑

k

Ω
∗
k
σ

Mσ
k,0(ω). (3.5)

In the equations (3.2)–(3.5), we use the notation

Λq =
2∑

α=1

V (α)
q =

1

N

∑

1É jÉN

e−iq·R j v(|q|)+ ṽ0(|q|). (3.6)

The Fourier-component of an effective impurity potential,

ṽ0(q) = v0(q)+pq〈n̂0〉 =
1

V

∫

V

e−iq·r
[
V0(r )+〈n̂0〉

∫

V

dr′ |ψ0(r′)|2Φ(|r−r′|)
]

dr (3.7)

includes the Hartree-Fock potential, caused by the impurity atom 〈n̂0〉 =
∑

σ 〈n̂0σ〉.
In close similarity, the matrix elements Ωσ

q can be represented in the form, Ωσ
q = [uq 〈n̂−σ〉+wq ], or

Ω
σ
q = 1

p
V

∫

V

e−iq·r
[
− ħ2∇∇∇2

2m
+ Ṽ σ

LF(r)
]
ψ0(r)dr, (3.8)

where

Ṽ σ
LF(r)=VLF(r)+〈n̂0,−σ〉

∫

V

dr′|ψ0(r′)|2Φ(|r−r′|).
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From the equations (3.3), (3.5) one can find locator Green’s function

Lσ
0,0(ω)= 1

ω−E0,σ− ∑
k,q

Ω
σ
k
Λk,q(ω)Ω∗

q
σ , (3.9)

here, we introduced the effective potential Λk,q, which has the form of a series in terms of Λk−q

Λk,q(ω)=
δk,q

ω−Ek−Λ0
+

Λk−q

(ω−Ek−Λ0)(ω−Eq−Λ0)
+

∑

p

Λk−pΛp−q

(ω−Ek−Λ0)(ω−Ep−Λ0)(ω−Eq−Λ0)
+·· · . (3.10)

Note that Λ0 = v(0)+ v0(0)−2π〈n̂0〉e2r 2
p/V .

The non-diagonal Green function Mσ
0,k

(ω), Mσ
k,0

(ω) and the propagator Gσ
k,k′(ω) are expressed by the

locator Lσ
0,0(ω):

Mσ
0,k(ω)=

∑

q

Lσ
0,0(ω)Ω∗

q
σ
Λq,k(ω),

Mσ
k,0(ω)=[Mσ

0,k(ω)]∗,

Gσ
k,k′ (ω)=Λk,k′ (ω)+

∑

q,p

Λk,q(ω)Ωσ
q Lσ

0,0(ω)Ω∗
p
σ
Λp,k′ (ω).

The renormalized impurity level is

E0,σ = E0 +U0 〈n̂0,−σ〉+
∑

k

[
Uk,0 〈a+

k,−σd0,−σ〉+U∗
k,0 〈d

+
0,−σak,−σ〉

]
+

∑

k,q

∑

σ′
Pq,0 〈a+

k,σ′ ak−q,σ′〉. (3.11)

4. Configuration averaged Green’s function

One can start the averaging over all atomic configurations from equation (3.9). Here, the self-energy

part describes the quasi-particles correlation. The problem is specified in terms of (3.10) describing the

degree of correlation. As the first approximation, we take into account Λk−q only, while the higher order

correlation functions are neglected.

As common, we use a notation for the Fourier-transform of the atomic density fluctuations,

ρk = 1
p

N

∑

1É jÉN

e−ik···R j , k, 0,

Λk−q = ρk−qv(|k−q|)+ ṽ0(|k−q|).

The configuration averaged Green’s function of localized electrons is given as

Lσ
0,0(E )= 1

E−Eσ−Σ0(k)





1+
∑

k,q
(k,q)

Ω
σ
k

(Ωσ
q )∗Λk−q

(E−Ek−Λ0)(E−Eq−Λ0)[E−Eσ−Σ0(k)]
+·· ·





, (4.1)

where

Σ0(k) =
∑

k

|Ωσ
k
|2

E −Ek −Λ0

is the self-energy term in the quasi-crystalline approximation.

We would like to discuss the case of inhomogeneous environment, where the impurity atom gives

origin to the spherically symmetrical potential. Therefore, ρk−q = nk−q, in contrast to homogeneous case.

Here, n(r) = (1/V )
∑

k nkeik·r. Taking into account the binary distribution function n(r ), the expression

for the averaged locator Green function is obtained:

Lσ
0,0(ω) =




ω−E0,σ−Σ0(k)−

∑

k,q
(k,q)

Ω
σ
k
Ω

σ
q

[
nk−qv(|k−q|)+ ṽ0(|k−q|)

]

(E −Ek −Λ0)(E −Eq −Λ0)





−1

. (4.2)
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In order to get the density of states per atom for localized electrons, ρσ
0 (E ) with spin σ, we need to

calculate the sum over k in (4.2).

lim
ε→0

∑

k

|Ωk |2

E −Ek −Λ0 + iε
=P

∑

k

|Ωk |2

E −Ek −Λ0
− iπ

∑

k

|Ωk |2δ(E −Ek −Λ0), (4.3)

For the sake of convenience let us introduce the notation,

∆
σ(E )=π

∑

k

|Ωk |2δ(E−Ek−Λ0); (4.4)

Λ
σ(E )=P

∑

k

|Ωk |2

(E −Ek −Λ0)
= 1

π
P

∫
dE ′ ∆(E ′)

E −E ′ . (4.5)

The scattering of the s-electrons and localized electrons cause the impurity level to shift and become

broader. Namely, Λ(E ) is the effective shift whereas ∆(E ) is the effective broadening of impurity level.

For the sake of simplicity, the matrix elements (Ωσ)2 are estimated at the Fermi level [15]. Then, ∆σ(E ),

Λ
σ(E ) are slowly varying functions of E over the band, and they can be treated as parameters,

∆
σ(E )=π(Ωσ)

2
ρ0(E ), (4.6)

Λ
σ(E )= (Ωσ)

2ρ0(E )g (E ). (4.7)

Here,

ρ0(E )= m3/2

2
p

2ħ3π2

p
E

is density of states for the free electron gas and

g (E )= ln
∣∣∣
p

EF/E +1
p

EF/E −1

∣∣∣−2
√

EF/E . (4.8)

In order to calculate the averaged density of localized states, we use the relation

lim
ε→0

∑

k

|Ωσ
k
|2

(E −Ek −Λ0 + iε)2
=−dΛσ(E )

dE
+ i

d∆σ(E )

dE
. (4.9)

In the similar manner,

∑

k,q

Ω
σ
k
Ω

∗
q
σ

[
nk−qv(|k−q|)+ ṽ0(|k−q|)

]

(E −Ek −Λ0)(E −Eq −Λ0)
=

=P
∑

k

|Ωσ
k
|2Λσ(k,E )

E −Ek −Λ0
− iπ

∑

k

|Ωσ
k |

2
Λ
σ(k,E )δ(E −Ek −Λ0)

− iP
∑

k

|Ωσ
k
|2∆σ(k,E )

E −Ek −Λ0
−π

∑

k

|Ωσ
k |

2
∆
σ(k,E )δ(E −Ek −Λ0), (4.10)

where we denote

Λ
σ(k,E ) =P

∑

q

Ω
∗
q
σ

E −Eq −Λ0
f (|k−q|), (4.11)

∆
σ(k,E ) =π

∑
q

Ω
∗
q
σ

f (|k−q|)δ(E −Eq −Λ0), (4.12)

f (|k−q|) =
[
nk−qv(|k−q|)+ ṽ0(|k−q| )

]
. (4.13)

The configuration averaged Green function has the form,

Lσ
0,0 =

1

E −E0,σ− Λ̃σ(E )+ i∆̃σ(E )
, (4.14)
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here,

Λ̃
σ(E )=Λ

σ(E )+dΛσ(E )

dE
f (0)+P

∑

k

|Ωσ
k
|2Λσ(k,E )

E −Ek −Λ0
−π

∑

k

|Ωσ
k |

2
∆
σ(k,E )δ(E −Ek −Λ0), (4.15)

∆̃
σ(E )=∆

σ(E )+d∆σ(E )

dE
f (0)+P

∑

k

|Ωσ
k
|2∆σ(k,E )

E −Ek −Λ0
+π

∑

k

|Ωσ
k |

2
Λ
σ(k,E )δ(E −Ek −Λ0) (4.16)

are the effective shift and broadening of localized impurity level now contain the structural disorder

contribution, besides the contribution from interactions.

The occupation number of electrons for absolute zero temperature is

〈n0σ〉 = 〈d+
0σd0σ〉 =

EF∫

−∞

ρσ
0 (E )dE , (4.17)

where

ρσ
0 (E ) =− 1

π
ImLσ

0,0(E + iε), ε→ 0 (4.18)

is configurational density of localized states with the spin σ.

ρσ
0 (E )= 1

π

∆̃
σ(E )

[E −E0,σ− Λ̃σ(E )]2 + [∆̃σ(E )]2
. (4.19)

After simple transformation of the system of equations (4.15)–(4.16) we obtain:

∆̃
σ(E )= π[(Ωσ)2 +2F̃ρ0(E )+ g (E )]ρ0(E )+π(Ωσ)2 f (0)

dρ0(E )

dE
,

Λ̃
σ(E )= (Ωσ)2g (E )ρ0(E )+ (Ωσ)2 f (0)

dg (E )ρ0(E )

dE
+ F̃ρ0(E )g (E )2−π2F̃ρ0(E )2.

Here, the notation

〈F 〉 =
∑

k,qΩ
σ
k
Ω

σ
q f (|k−q|)δ(E−Eq−Λ0)δ(E−Ek−Λ0)

1/V 2
∑

k,qδ(E−Eq−Λ0)δ(E−Ek−Λ0)

is introduced for the average value of matrix elements Ωσ
k
Ω

σ
q f (|k−q|) at the Fermi level.

5. Results and discussions

We need to calculate the average values of matrix elements Ωσ
k
by using the formfactors of scatter-

ing potentials (2.9). Ashcroft, Heine-Abarenkov, Cohen, Animalu model potentials are widely applicable

in liquid metal physics. The parameters of these potentials are investigated and approved sufficiently

completely, see e.g. [19–22]. We have used the Ashcroft’s potential (including screening by the conduction

electrons) for the liquid sodium [19]. The Fourier-transform of Ashcroft’s potential is

v(q) =−
4πZ e2

Ωq2
cos(qrc), (5.1)

where rc is the core radius. The parameters for liquid sodium are r Na
c =0.0878 nm, Ω = 270 a.u. —

atomic volume of liquid Na at 100 ◦C. They are taken from the experimental data of resistivity mea-

surements [19].

The screened function by the conduction electrons in Heldart-Vosko approximation is as follows:

ε(q)= 1+ 4πZ

Ωq2

(
2

3
EF

)−1

λ

(
q

2kF

)[
1− f (q)

]
,

λ(y) = 1

2
+ 1− y2

4y
ln

∣∣∣
1+ y

1− y

∣∣∣,

f (q)= 1/2q2

q2 +2kF/(1+0.01574(Ω/Z )1/3)
, (5.2)
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where kF = (3π2Z /Ω)1/3 = 0.4786 a.u.−1.

Now, let us consider the interaction between the electron and the negative ion (3.7). Different forms

of polarization potential were discussed in [23–26].

We have proposed a new model potential for electron-negative ion interaction in [12]:

V0(r )= A
e−r /rp

r 2
−

α

(r 2 + r 2
p )2

.

where A = 3/8r 2
pE0 +3αI /r 2

p −3/8. The semi-empirical parameters α and rp do not arise naturally from

the formalism. Thus, the only criterium available to establish the accuracy of the method is in the agree-

ment with the experimental results. Hence, we use the values of rp [25] and α [26] taken from the exper-

imental data for electron photodetachment from negative ions.

The formfactor of the effective impurity potential in Hartree-Fock approximation is

ṽ0(q) = 8πA

q
arctan(qrp)− 4απ2

rp
e−qrp +〈n̂〉8π

q2

[
1−

q2r 2
p

(4+q2r 2
p)

(
1+ 4

4+q2r 2
p

)]
. (5.3)

The correlation function is as follows:

nq = 1+
3η

(qrc)3
[
qr ∗ cos(qr ∗)− sin(qr ∗)

] ,

where r ∗ = rc+ rp.

By using the expressions for the model potentials of liquid metal and impurity and for the correlation

function, one can calculate the average value of Ωσ, 〈F 〉.
The potentials w,u were discussed in the work [13], specifically at Fermi level (w)2 ≈ E 2/(Eγ+1)4,

γ= 2mr 2
p/ħ2, and z = u/w is the parameter of intensity of scattering process on the charged impurity. The

function K (k, q) on the angles in a spherical coordinate system, was introduced to simplify the calculation

of 〈F 〉:

K (k, q) = 2π

π∫

0

sinθ f

(√
k2 +q2 −2kq cosθ

)
dθ.

Then, using
∑

k=[V /(2π)3]
∫∞

0 k2dk
∫2π

0 dϕ, we obtain the averaged value 〈F 〉 that characterizes the struc-
tural contribution.

The parameter δ = 〈F 〉ρ0g /(Ω)2 measures the value of disorder, and we assume 0 < δ≪ 1. The pa-

rameter h =Λ
σ/∆σ has the meaning of a local level shift.

Figure 1. (Color online) The dependence of the impu-

rity magnetic moment on the structural parameter δ

(y = 10, x = 0.2, z = 0.1, h =π/8).

Figure 2. (Color online) The dependence of the im-

purity magnetic moment on the degree of Coulomb

repulsion y =U0/∆ at constant Zeff = 1.
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Figure 3. (Color online) The phase diagram exhibits the regions with magnetic and nonmagnetic states.

The dimensionless value x = (EF−E0)/U0 means that the local impurity level lies on the Fermi level

for x = 0. For x = 1, the Fermi level lies on E0+U0. Formagnetic solutions x = 1/2, whichmeans, of course,

that the Fermi level is exactly halfway between the case where only one electron is in a localized state

and the one in which both are in the same state with opposite spins. The parameter y =U0/∆ measures

the ratio of Coulomb integral respective to the width of virtual state.

The spin-polarized magnetic impurity state m = 〈n+−n−〉, m/m0 is shown in figure 1. Here, m0 =
0.849µB for δ= 0 (the quasi-crystalline case). The decrease of impurity local magnetic moment with the

growing δ is shown in figure 1. The additional local level shift due to the interaction of condition electrons

with the impurity leads to a decrease of the local magnetic moment.

The behavior of magnetic moment at constant value of the effective impurity charge is presented in

figure 2 when the parameter y =U0/∆ increases. When y is large but finite, magnetic solutions are still

possible but as y is reduced they eventually disappear.

The diagram describing the region of existence of magnetic and nonmagnetic states is presented in

figure 3. The interplay of hybridization and local environment disorder produces a rich structure zero-

temperature phase diagram. The region of impurity magnetic states in a disordered metal decreases in

contrast to the quasi-crystalline case (δ= 0) [28]. This famous experimental fact for ferromagnetic alloys

is discussed in various monographs, see e.g. [7].

The solvation free energy, ∆E , that determines the excess free energy associated with the insertion

of an impurity atom into liquid metal, was calculated for this model in our earlier work [27] that corre-

sponds to the quasi-crystalline case. The dependence of ∆E , caused by the impurity solvation in liquid

metal, on Fermi level x, is shown in figure (4). The dotted lines correspond to the cases when the structural

disorder is taken into account. The solid lines correspond to the quasi-crystalline approximation [27].

6. Conclusions

A generalized model proposed in this article permits to calculate the microscopic characteristics of

impurity states in liquid metal and to analyze the effect of the structural disorder on the macroscopic

properties.

Using the equation of motion method for the two-time retarded Green function and using HFA, the

system of self-consistent equations for average thermodynamic occupation numbers of localized impu-

rity level is obtained. The region of impurity magnetic states in a disordered metal decreases in contrast

to the quasi-crystalline case. The contribution to the broadening of virtual impurity level at T = 0 comes

from the scattering processes on the charged impurity and from the structural disorder of the impurity

33705-9
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Figure 4. (Color online) The solvation free energy of impurity atom in liquid metal.

environment as well. This interplay may be relevant to experimental realizations of the system “liquid

metal+electronegative impurity” in order to study its magnetic properties.

The next possible step of exploration of the proposed model can be the study of Kondo regime taking

into account the processes of exchange. In the discussed Hamiltonian (2.7), these processes are described

by the following terms, a+
k1σ

a+
k2σ′d0,σ′d0,σ, d+

0,σ′d
+
0,σ′ ak2σ′ ak1σ, a+

k1σ
d+

0,σ′ ak2σ′d0,σ, that correspond to

the spin flip processes. Theywere not accounted for because their matrix elements are of an order ofmag-

nitude less than the Coulomb matrix elements. However, using these terms and the decoupling scheme

beyond the HFA one can analyse the Kondo effect, which is important at low temperatures. This exchange

interaction is more likely to increase the polarization of the band electrons rather than to enhance the

formation of a magnetic moment.
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Магнiтнi стани iзольованої домiшки у невпорядкованому

середовищi

Г.В. Понедiлок, М.I. Клапчук

Нацiональний унiверситет ”Львiвська полiтехнiка”, Iнститут прикладної математики

та фундаментальних наук, вул. С. Бандери, 12, 79013 Львiв, Україна

Дослiджується зарядовий та магнiтний стани домiшки, розчиненої в аморфному металiчному сплавi. Га-

мiльтонiан системи є узагальненням моделi Андерсона, де додатково враховано процеси пружнього i не-

пружнього розсiяння електронiв провiдностi на iонах металу та на зарядженiй домiшцi. Пропонується ме-

тод розрахунку конфiгурацiйно усереднених одноелектронних функцiй Грiна в наближеннi Хартрi-Фока.

Отримана система самоузгоджених рiвнянь для розрахунку зарядового та спiн-поляризованого стану до-

мiшки. Подано якiсний аналiз впливу структурної невпорядкованостi металевої матрицi на спостережу-

ванi величини. Показано, що структурний безлад середовища приводить до додаткового розширення та

зсуву вiртуального енергетичного рiвня домiшки, зменшуючи магнiтний момент домiшки.

Ключовi слова: домiшковi стани, структурний безлад
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