Condensed Matter Physics, 2013, Vol. 16, No 3, 33705: 1{11] CONDENSED
DOL:[10.5488/CMP.16.33705 IVIANTRER
PRVSIES

http://www.icmp.lviv.ua/journal

Magnetic states of single impurity
in disordered environment

G.V. Ponedilok, M.I. Klapchuk

National University “Lviv Polytechnic”, Institute of Applied Mathematics and Fundamental Sciences,
12 S. Bandera St., 79013 Lviv, Ukraine

Received April 12, 2013, in final form June 18, 2013

The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated.
The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the
processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged
impurity are included. The configuration averaged one-particle Green’s functions are obtained within Hartree-
Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the
charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural
disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused
by a structural disorder of impurity environment.

Key words: isolated impurity states, structural disorder

PACS: 71.23. -k, 71.23. An, 72.15. Rn

1. Introduction

The purpose of this work is to explore the effects of the structural disorder on the states of electroneg-
ative impurities dissolved in liquid alkali metal. The ions belonging to metal matrix form a complicated
random field for an impurity atom. The model proposed in this study is applicable to a structurally dis-
ordered system in which the tight-binding representation of the electronic wave function is appropriate
and the effect of a short-range order is eminent. The liquid alkali metals as well as amorphous solids are
the systems we would like to investigate.

In this work we describe the states of isolated impurities of such elements as H, O, Cl, F, N using gener-
alized microscopic theory based on the single-impurity Anderson model (SIAM) [E|]. While discussing the
macroscopic features of the single-electron properties of the system, the procedure of effective Green’s
function ensemble-averaging over all possible configurations of atoms Ry, ...,Ry is necessary. The pro-
cedure of configurational averaging is an enormously difficult problem in the multiple-scattering theory.
Only the two-particle correlation functions are known from experimental data. In practice, of course,
our knowledge of these density correlation functions is incomplete and various approximate theories for
short-range order involve only the one- and two-site distribution functions [B—Ia] The short-range order is
always present in liquid metals; its simplest manifestation is in the characteristic oscillation of the x-ray
structure factor or in the oscillation of radial distribution function.

The main goal of this paper is to show the effect of disordered local impurity environment on its
charge and magnetic states. The experimentally observed magnetic moment decrease for some sorts of
ferromagnetic solids or amorphous alloys is discussed in detail in [B].

Microscopic model to describe the electronegative impurity in a disordered system is proposed in
section 1. The Hamiltonian of the system is a generalization of Anderson impurity model. It also includes
the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a
charged impurity. Qualitative and quantitative estimates of the parameters of the Hamiltonian have been
carried out in [8]. The formation of an effective charge and spin-polarized gaseous impurity states in a

© G.V. Ponedilok, M.I. Klapchuk, 2013 33705-1


http://dx.doi.org/10.5488/CMP.16.33705
http://www.icmp.lviv.ua/journal

G.V. Ponedilok, M.I. Klapchuk

liquid metal can be described as the process of hybridization of local level with quasi-free electron states
under the effect of a polarizing impurity potential 1d1.

The two-time retarded Green’s functions [IE] are obtained within Hartree-Fock (HFA) approximation
in section 3. The configuration averaged system of Green’s functions is obtained in section 4. A system
of self-consistent equations is given for the calculation of the electronic spectrum, as well as the charged
and the spin-polarized impurity states. The qualitative analysis of the effect of the metallic host structural
disorder on the observed values is performed. An additional shift and broadening of a virtual impurity
level is caused by the structural disorder of an impurity environment.

2. Microscopic model of the system

Let us consider a single impurity dissolved in liquid alkaline metal. The liquid metal phase will be
described within the framework of electron-ion model which for such metals gives satisfactory compu-
tational results for electronic and structural properties. Let Ry,...,Ry be the coordinates of atoms of
metallic alloy which take arbitrary values in the volume V. The impurity has a coordinate Ry. We have
chosen the following model Hamiltonian in coordinate representation:

H=Hq+ Hepi + Hepel (2.1)

The energy operator of electron-ion interaction is written as follows:

Hel-i=—-— A+ Y Y VAri-RjD+ ). Volri—Rol. (2.2)
2m Sion 1<i<N1<j<N 1<i<N,

In this equation ry,...,ry are the electron coordinates of a metallic subsystem, the amount of which
coincides with the number of metal atoms due to single valence of alkaline elements. It is assumed that
the electrons of valence impurity orbital remain localized on the impurity.
The potentials V(|r; —R;|) and Vp(Ir; —Rol) describe electron scattering on ions of metal and impurity,
respectively. The first term in equation is the operator of a kinetic energy of free electron subsystem.
The last term in (Z.I) describes the energy of pair electron-electron interaction

. e?
Hepe1=

Y. @(ri-rj]=

1<i#j<N

(2.3)

>
#j<

1
2 <izjen|ITi—r]

N =

The non-operator part, H|, describes the energy of classical ion-ion interaction.
In order to represent the secondary quantization, we use plane waves as a basis in order to decompose
the field electronic operators

1
QK@) = W exp (ik-r) (2.4)

and s-shell localized on the impurity

1 [r—Ro|
Yol(r) = —Sexpl-————| (2.5)
Ty I'p
The wave vector k in [2.4) takes specified values in the impulse quasi-continuous space A:
A= {k:k: Z 271V1/3naea, Ng €72, (ea,eﬁ)zéaﬁ}. (2.6)

l<as<3

Let us mention that 1/ (r) is not orthogonal to the plane waves @2.4). Apart from this, its inclusion into
the basis set causes overfilling of the latter. However, the inaccuracy introduced by such an approximate
procedure will not affect the qualitative picture. In the representation of the secondary quantization
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operator 2.I) with allowance for only a certain class of Coulomb electron-electron interactions we then
have the following expression,

H = Ha+) Y Exlgyaio+ ) Fodgydos+) 3 ) (Valyy Qg0+ Voa %, Beqo)

keAo=%1 o=+1 keAqeNo==+1
PPN + * g+ + .
+ Y Uphogho-g+ Y, Y. (Wk'o Ay doo + Wil dgy akg) +3 ) Y Pqoay, Gk-qo o’
o=+1 keAo=+1 keAqeNo,0'=+1
+ Z Z (Uk,O gyt ai:U doo + UliO d(;‘,o ko flg/) . 2.7)
keAo#o’

Here, akg(altg) and do,g(d& ) are the annihilation (creation) Fermi-type operators for electrons in the
states {k,o} and {Ry, 0}, where o0=+1 is quantum spin number, which takes two values due to two possible
orientations of electronic spin relatively to the quantization axis. Ex = #%k?/2m is the energy spectrum
of the electrons in states @ (r), and Ey is the energy of the localized electronic state yo(r). fiy = d dy is
the spin-dependent occupation number operator for the localized state.

The matrix elements Vq and Vp q characterize the processes of elastic scattering of electrons on the
ions of the metal and on the impurity. Their explicit analytical forms are as follows:

1

V:
17 N

Y e MRing),  Voq=eT1R0y(g). 2.8)
1<j<N

The formfactors of the scattering potentials

v(q) = f V(e 9%dr,  vo(q) = % f Vo(lrl) e~ dr 2.9
v v
depend only on the absolute value of the momentum transfer q due to the locality of the potentials V (|r|)
and Vp(|r]).
The processes of inelastic scattering of electrons caused by their transition from the state localized on
the impurity into the conduction band and vice versa are characterized by the matrix element,

W _Lf —ikr —thr+V (r)] ) dr (2.10)
k0 = NG e om LF Yo . .
14
Here,
Vie@ = Y V(r—R;)+ Vo(lr—Ro) (2.11)

1<j<N

is the potential of a local field of metal ions and the impurity, which acts on the electron at a pointre V.
The term Y, Uy iy 7i— in the Hamiltonian @2.7) arises from the operator of Coulomb electron interac-
tion and describes the Hubbard repulsion of electrons localized on the impurity with the intensity Uy.

2

e 2

5
o2 =2, 2.12)
8 I'p

Uy =fdr1fdrz|wo(r1)|2

[y — 12|

this value is approximately about 1 + 5 eV for the atom of oxygen.
The process of elastic and inelastic scattering of electrons on the charged impurity is described by the
matrix elements,

S 1 o
Pgo= | e 9T ®(r)dr, Uxo = —fe_lk'rtl)(r) (r)dr. (2.13)
q,0 f k0 N Yo
v v
Here, the value
D) = f O(r—r') o> dr, (2.14)
v

gives the potential energy of the electron in a field which is generated by the electron localized on the
Wo(r) orbital.
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The matrix elements (2.10)-(2.13) can be written down in the other form by separating explicitly the
structural multipliers

Wio = e_ik'RO Wy, Uxo = e_ik'R0 U, Pyo= e_ik'RO Pk (2.15)

The coefficients wy, uy, px do not depend here on the nodal index and are considered in the coordinate
system related to the impurity. Their analytical form is given in ].

Actually, only the electrostatic effects including two electrons are taken into account in the Hamilto-
nian (2.7), while the processes of exchange are not considered.

3. Green's function method. Hartree-Fock approximation

The method of equation of motion of Green’s functions is one of the most important tools to solve the
model Hamiltonian problems in condensed-matter physics [|;L_1|]. Let us calculate the matrix of retarded
time-dependent temperature Green’s functions

g o
Gl [ @ M@ _ (<<akg|a§,a>>w <<aka|d§g>>w _ a0
Mg @) Lgo@) |~ (doslag, ), (dosldg,),
The equation of motion for each component of 3.I) is given in our earlier work , , , |E]. We make
use of the decoupling scheme that corresponds to the Hartree-Fock approximation type for higher order
Green functions. The limits of the HFA applicability for the description of real systems are considered

in [11,14-18).

A set of connected Green’s functions is obtained

(@ = EQ) Gy 4 (@) =Sk g + % Ak-pGyp q(@) + QT MG (w), 3.2)
(@~ Eo,0) Mg g(@) = %‘Q;"Gqu(w), 3.3)
(@ = E)) My (@) = ;Ak_qu, 0(@) + QLT (@), (3.49)
(@ = Eo o)L (@) =1+ ;n;;"Mg 0 (@), (3.5)

In the equations 3:2)-@3.5), we use the notation

1

2 .
Ag=) V¥ = e IRy (q) + To(lql). (3.6)

a=1 lejsN
The Fourier-component of an effective impurity potential,
~ ~ 1 —iq- ~
Uo(q) = vo(q) + pg(fip) = er lqr[Vo(r) + <no>fdl'/|1//0(l'/)|2‘1>(|1'—l'/|) dr 3.7
v v

includes the Hartree-Fock potential, caused by the impurity atom (7) = Y, {7ioo)-
In close similarity, the matrix elements Qg can be represented in the form, Qg = [uq (N_g) + wql, or

h2v?

2
2m

1 . -
Qo = —fe‘“”[ - + V5 (r)]WO(r) dr, 3.8)
7=—F— LF
Yy

where
Vﬁ:(r) = VLF(r)+<ﬁo,_g>fdr’le(r’)IZqJ(lr—r’l).
1%
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From the equations (3.3), one can find locator Green’s function
1

L% (w) = , 3.9
00(¢) w=Eoo— ¥ QF Ak q(@) Q57 39
kq
here, we introduced the effective potential Ax,q> Which has the form of a series in terms of Ax—q
0 Ay Ax—pNp—
Apql@)=——9 ¢ | +y kP pd bl (310)
w—Er—N\o (w—Ek—AO)(w—Eq—AO) P (w—Ek—AO)(w—Ep—AO)(w—Eq—AO)

Note that Ag = v(0) + v(0) — 27 (Aig)e* 15 / V.
The non-diagonal Green function Mg k(cu), MI‘Z 0(w) and the propagator Gl‘f " (w) are expressed by the
locator L, (w):

Mg @)=} L§ (@)Q; Aqi (@),
q

M o (@)=IM, (@),

Giege (@) =Ny (@) + Y Mg (@QG LG 4 (@) 7 Ap o ().
P
The renormalized impurity level is

Eoo = Eo+ U (o) + Y. | Uko (@5, do,-0) + Ug g (g o 1-0) | + X ¥ Pao (@ i g (311)
k kq o’

4. Configuration averaged Green'’s function

One can start the averaging over all atomic configurations from equation (3.9). Here, the self-energy
part describes the quasi-particles correlation. The problem is specified in terms of describing the
degree of correlation. As the first approximation, we take into account Ag_q only, while the higher order
correlation functions are neglected.

As common, we use a notation for the Fourier-transform of the atomic density fluctuations,

_ik--R;
Pk=——= e 7, k+#0,

Ax—q = Pr-qV(k—ql) + To((k—qJ).

The configuration averaged Green’s function of localized electrons is given as

Q7(Q7) Akq

—— 1
LIyE)= ——————< 1+ ) +e CHY
’ E~E;=2o(k) g (E=Ex=NA0)(E=Egq=Mo) [E-E5—Zo (k)]
(k#q)
where )
17
o) =) ———
o(k) %’E—Ek—/\o

is the self-energy term in the quasi-crystalline approximation.

We would like to discuss the case of inhomogeneous environment, where the impurity atom gives
origin to the spherically symmetrical potential. Therefore, pi_q = 711_q, in contrast to homogeneous case.
Here, n(r) = (1/V) Y mce'®™. Taking into account the binary distribution function 7n(r), the expression
for the averaged locator Green function is obtained:

-1

Q707 [mc_qu(k—q)) + To(k—q))]
(E—Ex— o) (E—Eq— Ao)

LY y(@) =4 0= Eog—Zok) = ) 4.2)
i
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In order to get the density of states per atom for localized electrons, pJ (E) with spin o, we need to
calculate the sum over k in (£.2).

Qyl? Qyl?
lim #:.@ZL—inZlelzﬂE—Ek—Ao), (4.3)
=05 E—Ep— Ao +ie x E—Er—NMAo X

For the sake of convenience let us introduce the notation,

A?(E) = 7Y |Qk*6 (E-Ex—Ao); (4.4)
k

o _ w1 f A"

A% (E) = PE”Z(E By Ao)_ﬂp} dE'—F (4.5)

The scattering of the s-electrons and localized electrons cause the impurity level to shift and become
broader. Namely, A(E) is the effective shift whereas A(E) is the effective broadening of impurity level.
For the sake of simplicity, the matrix elements (Q°)? are estimated at the Fermi level ]. Then, AY (E),
A° (E) are slowly varying functions of E over the band, and they can be treated as parameters,

A7 (E) = m(Q7) po (), 4.6)
A% (E) = (QU)ZPO (E)g(E). 4.7
Here,
3/2
B)=—7"
po 2V2h3m2
is density of states for the free electron gas and
VER/E+1
E)=In Er/E. 4.8
gB) =In|> Lo |2 Vs (48
In order to calculate the averaged density of localized states, we use the relation
Q7% dA(E)  dA”(E
lim Y e dVE) G dATE) 4.9)
e—~04 (E — Ex — Ao +i€)? dE dE
In the similar manner,
ZQ‘;QZ}” [n—qu(k—q)) + To(lk—qJ)] _
& (E—Ex—Ao)(E—Eq—Ao)
1Q712A7 (k, E)
= ———— —in Y |QIIPA7 (k, E)5(E - Ex. — A
2 BB ny AT BRE =)
1Q7I*A? (k, E)
- — 7Y 1QY1?A? (k, E)5(E - Ex — Ao), 4.10
i % E—Er— Ny ﬂ;l I7A% (k, E)O( & — o) (4.10)
where we denote
*0
AN (k,E)=22) ——— f(lk—ql), 4.11
(k,E) = ZEEAfu ql) 4.11)
A% (k,E) :nZQ;”f(lk—ql)é(E—Eq —Ao), (4.12)
q
flk—ql) = [nm—qulk—ql) + To((k—ql)]. (4.13)
The configuration averaged Green function has the form,
— 1
L7, = (4.14)

00 E—Eyy—A9(E)+iA°(E)’
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here,
. o QI12A? (k,E)
E=1m+ L P o+ vy BNED o eeno o moE- B ng, @19)
= E—E—ho &
_ o 107 20 (k, E)
RO(E) = A"(E)+dA B o+ oy = S IQIPA (S (E-Ee—Ao)  (416)
x E-—Er—Ao K

are the effective shift and broadening of localized impurity level now contain the structural disorder
contribution, besides the contribution from interactions.
The occupation number of electrons for absolute zero temperature is

(100) = {3y doo) = [ PFTEIAE, @17)
—00
where )
pg (E) = ——Im L], (E +ie), e—0 (4.18)
7T X

is configurational density of localized states with the spin o.

— 1 A (E)
pg ()= — = = . (4.19)

T [E~ Eo,o — A9 (E)]? + [AY (E)]?
After simple transformation of the system of equations (Z.I5)-(.16) we obtain:

_ E
AY(E) = n[(Q°)* +2F po(E) + g(E)1 po(E) + m(Q°)* £ (0) p N ),

dg(E)po(E)

5 +ﬁp0(E)g(E)2—n2ﬁpo(E)2.

A7 (E) = (Q7)*g(E)po(E) + (Q7)?£(0)
Here, the notation
Yiq Q7 f(1k—q))8(E—Eq—Ao)8(E—Ex—NAo)
1/V2 Y q6(E—Eq—No)5(E—E—Ao)

is introduced for the average value of matrix elements Q”Q” f (Ik—ql) at the Fermi level.

(F)=

5. Results and discussions

We need to calculate the average values of matrix elements QZ by using the formfactors of scatter-
ing potentials 2.9). Ashcroft, Heine-Abarenkov, Cohen, Animalu model potentials are widely applicable
in liquid metal physics. The parameters of these potentials are investigated and approved sufficiently
completely, see e.g. M]. We have used the Ashcroft’s potential (including screening by the conduction
electrons) for the liquid sodium [19]. The Fourier-transform of Ashcroft’s potential is

2

Ze
————cos(qr), 6.1

vig) = 0q

where 1. is the core radius. The parameters for liquid sodium are rY2=0.0878 nm, Q = 270 a.u. —
atomic volume of liquid Na at 100 °C. They are taken from the experimental data of resistivity mea-
surements [IE].

The screened function by the conduction electrons in Heldart-Vosko approximation is as follows:

anZ (2 YV (g
e(q) = 1+Q—q2( Ep) /l(zk)[l f@],

- 1+
A) = y In ] Y,

1/2q
g% +2kp/(1+0.01574(Q/ 2)1/3)’

flg) = (5.2)
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where kr = 372 Z/Q)13 = 0.4786 a.u. ™.

Now, let us consider the interaction between the electron and the negative ion (3.7). Different forms
of polarization potential were discussed in M].

We have proposed a new model potential for electron-negative ion interaction in [1.20:

—rlrp a

Wr)=A - .
o(r) r2 (r"-+r1‘02)2

where A =3/ 8r§E0 +3al/ r}% —3/8. The semi-empirical parameters « and rp do not arise naturally from
the formalism. Thus, the only criterium available to establish the accuracy of the method is in the agree-
ment with the experimental results. Hence, we use the values of r [@] and a [IE] taken from the exper-
imental data for electron photodetachment from negative ions.

The formfactor of the effective impurity potential in Hartree-Fock approximation is

dan® _ . 8n q°rs 4
eI+ ()= [1- —— - (14— | (5.3)
p q (4+q°rg) 4+q°rp

- 8T A
Uo(q) = Tarctan(qrp) -

The correlation function is as follows:

3n
+ . ,
(qro)3[gr* cos(gr*) —sin(qr*)]

ng=1

where r* = r¢ + 1p.

By using the expressions for the model potentials of liquid metal and impurity and for the correlation
function, one can calculate the average value of Q7, (F).

The potentials w, u were discussed in the work [13], specifically at Fermi level (w)? ~ E2/(Ey + 1)%,
Y= 2mr§/ 12, and z = u/w is the parameter of intensity of scattering process on the charged impurity. The
function K (k, g) on the angles in a spherical coordinate system, was introduced to simplify the calculation
of (F):

T
K(k,q) =2nfsin9f(\/k2+q2—2chos¢9 de.
0

Then, using Y\ =[V/ 2m)3] f(;’o k2dk f02 4 d¢, we obtain the averaged value (F) that characterizes the struc-
tural contribution.

The parameter § = (F)po g/(Q)2 measures the value of disorder, and we assume 0 < § < 1. The pa-
rameter i = A?/A? has the meaning of a local level shift.

m/m, m

— =350
—_—5=0.2
Zg”; 1,x=05,z=0

— —x=0.2; h=0
—x=0.2; h=n/8

0,8+
0,54

0,6

—
pu—
-——

-

0,24

(o7}

00 r r
00 0,1 02

0'4 T T T
10 20 30

=)
Y

Figure 1. (Color online) The dependence of the impu-
rity magnetic moment on the structural parameter §
(y=10,x=0.2,z2=0.1, h =7/8).

Figure 2. (Color online) The dependence of the im-
purity magnetic moment on the degree of Coulomb
repulsion y = Up/A at constant Zggr = 1.
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——-z=5=0
L X - =z=5=0.1
1,0 —2z=0.1; 6=0.3
—x—z=6=0.1; h=-n/8
0,8 ~
~
~
N
AN
0,6 \
] \
' )
0,4 /
/
7/
s
0,2 -~
Ty
0,0 T T T T T
0,0 2 0,4 0,6 0,8 1,0

Figure 3. (Color online) The phase diagram exhibits the regions with magnetic and nonmagnetic states.

The dimensionless value x = (Ep — Ep)/ Uy means that the local impurity level lies on the Fermi level
for x = 0. For x = 1, the Fermi level lies on Ey+ Up. For magnetic solutions x = 1/2, which means, of course,
that the Fermi level is exactly halfway between the case where only one electron is in a localized state
and the one in which both are in the same state with opposite spins. The parameter y = Up/A measures
the ratio of Coulomb integral respective to the width of virtual state.

The spin-polarized magnetic impurity state m = (n, — n_), m/my is shown in figure [l Here, mg =
0.849up for 6 = 0 (the quasi-crystalline case). The decrease of impurity local magnetic moment with the
growing 6 is shown in figure[Tl The additional local level shift due to the interaction of condition electrons
with the impurity leads to a decrease of the local magnetic moment.

The behavior of magnetic moment at constant value of the effective impurity charge is presented in
figure 2l when the parameter y = Uy/A increases. When y is large but finite, magnetic solutions are still
possible but as y is reduced they eventually disappear.

The diagram describing the region of existence of magnetic and nonmagnetic states is presented in
figure [3] The interplay of hybridization and local environment disorder produces a rich structure zero-
temperature phase diagram. The region of impurity magnetic states in a disordered metal decreases in
contrast to the quasi-crystalline case (6 = 0) [28]. This famous experimental fact for ferromagnetic alloys
is discussed in various monographs, see e.g. [H].

The solvation free energy, AE, that determines the excess free energy associated with the insertion
of an impurity atom into liquid metal, was calculated for this model in our earlier work llﬂ] that corre-
sponds to the quasi-crystalline case. The dependence of AE, caused by the impurity solvation in liquid
metal, on Fermi level x, is shown in figure @. The dotted lines correspond to the cases when the structural
disorder is taken into account. The solid lines correspond to the quasi-crystalline approximation 1271.

6. Conclusions

A generalized model proposed in this article permits to calculate the microscopic characteristics of
impurity states in liquid metal and to analyze the effect of the structural disorder on the macroscopic
properties.

Using the equation of motion method for the two-time retarded Green function and using HFA, the
system of self-consistent equations for average thermodynamic occupation numbers of localized impu-
rity level is obtained. The region of impurity magnetic states in a disordered metal decreases in contrast
to the quasi-crystalline case. The contribution to the broadening of virtual impurity level at T = 0 comes
from the scattering processes on the charged impurity and from the structural disorder of the impurity
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AE/U,
0 ——2z=0
0,0 = z=0,8=0.5
i ——7=0.5
0,2 o 2=0.5,6=0.5
] ——2z=1
04 « z=1,5=05
/w
-0,6
0,8
1,04 PR
A “<4444444\1\“‘44‘444““<444
;/' P AT T
1,2 a \
¢ 4
T R S
14 T T T T T T T T T T
-04 -02 00 02 04 06 0,8 1,0 12 14

x:(EF_EO)/UO

Figure 4. (Color online) The solvation free energy of impurity atom in liquid metal.

environment as well. This interplay may be relevant to experimental realizations of the system “liquid
metal+electronegative impurity” in order to study its magnetic properties.

The next possible step of exploration of the proposed model can be the study of Kondo regime taking
into account the processes of exchange. In the discussed Hamiltonian 2.7), these processes are described
by the following terms, a, ay, .do,o'do,o, do o do o W20 k1o Ay, d& o @k20' oo, that correspond to
the spin flip processes. They were not accounted for because their matrix elements are of an order of mag-
nitude less than the Coulomb matrix elements. However, using these terms and the decoupling scheme
beyond the HFA one can analyse the Kondo effect, which is important at low temperatures. This exchange
interaction is more likely to increase the polarization of the band electrons rather than to enhance the
formation of a magnetic moment.
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MarHiTHi cTaHuM i301bOBaHOI AOMILUKWU Y HEBNOPAAKOBAaHOMY
cepeaoBULLi

I'.B. MoHeainok, M.I. Knanuyk

HauioHanbHMiA yHiBepcuTeT "/IbBiBCbKa NoAiTexHika", IHCTUTYT NpuknagHoi MaTtemMaTrkm
Ta PyHAamMeHTanbHNX Hayk, Byn. C. banaepu, 12, 79013 JbBiB, YKkpaiHa

JoCnifxyeTbca 3apsA0BUA Ta MarHiTHWA CTaHN AOMILLKW, PO34MHeHOi B aMOPPHOMY MeTaniyHoMy cnnasi. la-
MiNbTOHIaH CMCTeMM € y3aranbHeHHAM Mojeni AHAepCOoHa, Ae A0A4aTKOBO BPaxoBaHO NPOLECH MPY>XXHbOTO i He-
NPY>XHbOr0 PO3CiHHA eNeKTPOHIB NPOBIAHOCTI Ha IOHAX MeTany Ta Ha 3apsAKeHili AomilLi. [[PoONoHYETLCA Me-
TO/ PO3paxyHKy KOH}irypauiiHo ycepejHeHX 0AHOeNeKTPOHHUX QYHKLil TpiHa B HabavkeHHi XapTpi-Poka.
OTpumaHa c1cTema caMoy3ropkKeHux PiBHSAHb A1S PO3paxyHKy 3apsA0BOro Ta CriH-Noaspu30BaHoro CTaHy Ao-
MiLKu. MogaHo AKiCHWUIA aHani3 BNAUBY CTPYKTYPHOI HEBMOPAAKOBAHOCTI MeTaneBoi MaTpuL|i Ha CnocTepexy-
BaHi BeIMYMHN. MOKa3aHo, Lo CTPYKTYpPHWI 6e31aj cepefoBuLLa NPUBOANTL A0 A0AATKOBOrO PO3LUMPeHHS Ta
3CyBY BipTyaNbHOr0 €HepreTMYHOro PiBHSA AOMILLKY, 3MEHLLIYOYM MarHiTHUA MOMEHT AOMILLKK.

KnrouoBi cnoBa: 4oMilLKOBI cTaHy, CTPYKTYpHWI 6e3/1a4
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