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1. Introduction

The present paper has been prepared on the occasion of M.P. Kozlovskii’s 60-th anniversary, a promi-

nent physicist and specialist in the phase transition theory. As a collaborator of I.R. Yukhnovskii and an

adept of this collective variables method (CVM) M.P. Kozlovskii has made much in applying this method

to the investigation of the Ising model, especially to the study of the role of external field in the critical

behaviour of thermodynamic functions.

The advantage of the CVM, as compared with other methods, is a possibility to obtain not only the

universal characteristics near the phase transition point (critical exponents and critical amplitudes ra-

tio) but also non-universal ones (i.e., expressions for different thermodynamic functions) [1, 2]. In those

investigations, the Ising model and the n-component model with a spherical-symmetric potential of in-

terparticle interaction were presented. More realistic systems (i.e., combination of short and long range

or non-symmetric potentials) were not studied. The problem is in the choice of the basic distribution for

CV and the form of layer-by-layer integration in the CV-space. These two circumstances change the shape

of recursion relations for coefficients of basic distribution and are responsible for the critical properties

of a system.

In papers [3–8], a major solution for some of these problems was suggested. There are two main

points to be underlined. The first one: the transformation of a real Hamiltonian into quasi-diagonal form

(like Ising model). And the second one: the frequency dependent CV introduction and a choice of non-

spherical form of CV-layers for integration. The latter is necessary to take into account the peculiarity of

dipole-dipole interparticle interactions.

The aim of this paper is to demonstrate the capabilities of CVM in the calculation of a partition func-

tion for a system of interacting clusters having a ferroelectric type of ordering. The main goals are to

calculate the equation of state and to study the role of the external electric field in the formation of fer-

roelectric order parameter.
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2. Hamiltonian. Partition function functional

The problem regarding the phase transition in ferroelectric cluster systems starts from the well-

known Slater paper [9] on the KH2PO4 (KDP) crystal. The most fundamental progress in this direction

was obtained by Blinc [10], who was the first to consider not only short range interparticle interactions

of particles in several groups–clusters, but also long range interactions between particles from different

clusters and the effect of a transverse field (such as the tunneling motion of a particle in the two-minima

potential). The self-consistent field approximation for particles from different clusters was exploited to

calculate the free energy of such a system. Naturally, the classical critical behaviour of the cluster system

was observed in such approximation.

In order to investigate the real critical behaviour of a cluster system, modern methods of phase tran-

sition description should be used. Most of them are based on the Ising or Heisenberg model study. So, the

initial cluster Hamiltonian should be reduced to an Ising-like form. This problem was solved in [3] using

generalized Hubbard-Stasyuk operators [3, 11].

We start with the Ising-like form of cluster Hamiltonian of ferroelectric system with two quasispin

particles in every cell of crystalline lattice:

H =
22 f0
∑

i=1

{

N
∑

q=1

Λi Y i (~Rq )+
N
∑

q,q ′=1

Vi (~Rq ,~Rq ′ )Y i (~Rq )Y i (~Rq ′ )

}

. (2.1)

Here Y i (~Rq ) is a generalized Hubbard–Stasyuk operator in a q site; Λi is the energy of every cluster of

f0 particles (including short range interparticle interaction and external electric field E ); Vi (~Rq
~Rq ′ ) is an

eigenvalue of the dipole interaction matrix (see [3, 12]).

Taking the first term in (2.1) as the basic state of the investigated system, the general form for the

partition function functional in CVM can be obtained. With the accuracy up to the fourth order in the

exponential form we have:

Z = Z0

∫

[

dρλ(~k,ν)
]N

exp

{

∑

λ

∑

k ,ν

β

2
Φλ(~k)ρλ(~k,ν)ρλ(−~k,−ν)

}

×
∫

[

dωλ(~k,ν)
]N

exp

{

i2π
∑

λ

∑

k ,ν

[

ρλ(~k,ν)−M λ(~k,ν)
]

ωλ(~k ,ν)

−
(2π)2

2

∑

λ

∑

k ,ν

Mλλ(~k,ν,−~k ,−ν)ωλ(~k,ν)ωλ(−~k,−ν)

+
(i2π)3

3!

∑

λ1,λ2,λ3

∑

k1,k2,k3
ν1,ν2,ν3

Mλ1λ2λ3
(~k1,ν1,~k2,ν2,~k3,ν3)ωλ1

(~k1,ν1)ωλ2
(~k2,ν2)ωλ3

(~k3,ν3)

+
(2π)4

4!

∑

λ1,λ2,λ3,λ4

∑

k1,k2,k3 ,k4
ν1,ν2,ν3,ν4

Mλ1λ2λ3λ4
(~k1,ν1,~k2,ν2,~k3,ν3,~k4,ν4)ωλ1

(~k1,ν1)

×ωλ2
(~k2,ν2)ωλ3

(~k3,ν3)ωλ4
(~k4,ν4)

}

. (2.2)

Here, ρλ(~k,ν) is a CV, corresponding to Y i (~Rq ) operator in quasimomentum-frequency representation;

Φλ(~k) is a Fourier transform of the intercluster dipole-dipole potential; β = 1/kT , k is the Boltzmann

constant, T is the absolute temperature; Mλ, Mλ1λ2
, Mλ1λ2λ3

, Mλ1λ2λ3λ4
are cluster cumulants of first,

second, third and fourth order, ωλ(~k,ν) are variables conjugated to ρλ(~k ,ν); Z0 is a partition function of

non-interacting part of the Hamiltonian (2.1). All rules of quasimomentum and frequency conservation

in (2.2) are presented.

Since we investigate a two-particle cluster system ( f0 = 2) (λ runs from 1 to 4), the explicit form of all

coefficients in (2.2) is as follows:

Z0 = Z N
01 =

[

e
β
2 V

(

1+2coshβE
)

+e−
3β
2 V

]N

; (2.3)
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Ferroelectric order parameter

M1(~k ,ν) =
p

2e
β
2 V sinhβE

Z01
δ(~k)δ(ν),

M2(~k ,ν) = 0,

M11(~k1,ν1,~k2,ν2) =
(

e−
β
2 V coshβE

Z01
−

2eβV sinh2βE

Z 2
01

)

δ(~k1 +~k2)δ(ν1 +ν2),

M22(~k1,ν1,~k2,ν2) =
4V e−

β
2 V sinhβV

β(4V 2 +ν2)Z01
δ(~k1 +~k2)δ(ν1 +ν2),

M111(~k1,ν1,~k2,ν2,~k3,ν3) =
e

β
2 V sinhβE
p

2Z01

δ(~k1 +~k2 +~k3)δ(ν1 +ν2 +ν3)

−
3
p

2eβV sinhβE coshβE

Z 2
01

δ(~k1 +~k2)δ(~k3)δ(ν1 +ν2)δ(ν3)

+
4
p

2e
3β
2 V sinh3βE

Z 3
01

δ(~k1)δ(~k2)δ(~k3)δ(ν1)δ(ν2)δ(ν3),

M122(~k1,ν1,~k2,ν2,~k3,ν3) =
4
p

2V sinhβV sinhβE

β(4V 2 +ν2)Z 2
01

δ(~k1 +~k2)δ(~k3)δ(ν1 +ν2)δ(ν3),

M222(~k1,ν1,~k2,ν2,~k3,ν3) = 0,

M1111(~k1,ν1,~k2,ν2,~k3,ν3,~k4,ν4) =
e

β
2 V coshβE

2Z01
δ(~k1 +~k2 +~k3 +~k4)δ(ν1 +ν2 +ν3 +ν4)

−
4eβV sinh2βE

Z 2
01

δ(~k1 +~k2 +~k3)δ(~k4)δ(ν1 +ν2 +ν3)δ(ν4)

−
3eβV cosh2βE

Z 2
01

δ(~k1 +~k2)δ(~k3 +~k4)δ(ν1 +ν2)δ(ν3 +ν4)

+
24e

3β
2 V sinh2βE coshβE

Z 3
01

δ(~k1 +~k2)δ(~k3)δ(~k4)δ(ν1 +ν2)δ(ν3)δ(ν4)

−
24e2βV sinh4βE

Z 4
01

δ(~k1)δ(~k2)δ(~k3)δ(~k4)δ(ν1)δ(ν2)δ(ν3)δ(ν4),

M1122(~k1,ν1,~k2,ν2,~k3,ν3,~k4,ν4) = −
4V sinhβV coshβE

β(4V 2 +ν2)Z 2
01

δ(~k1 +~k2)δ(~k3 +~k4)δ(ν1 +ν2)δ(ν3 +ν4)

+
8V e

β
2 V sinhβV sinh2βE

β(4V 2 +ν2)Z 3
01

δ(~k1 +~k2)δ(~k3)δ(~k4)δ(ν1 +ν2)δ(ν3)δ(ν4),

M2222(~k1,ν1,~k2,ν2,~k3,ν3,~k4,ν4) =
3e−

β
2 V

[

coshβV − 4V sinhβV

β(4V 2+ν2)

]

2β2(4V 2 +ν2)Z01

×δ(~k1 +~k2 +~k3 +~k4)δ(ν1 +ν2 +ν3 +ν4)

−
48V 2e−βV sinh2βV

β2(4V 2 +ν2)Z 2
01

δ(~k1 +~k2)δ(~k3 +~k4)δ(ν1 +ν2)δ(ν3 +ν4), (2.4)

where V is a short range interparticle interaction constant.

Among two CV ρ1(~k ,ν) and ρ2(~k ,ν), the first one is related to the ferroelectric order parameter

〈ρ1(0,0)〉 =
1

2

[

σz
1(~Rq )+σz

2(~Rq )
]

(2.5)

and the second one is related to the antiferroelectric order parameter

〈ρ2(0,0)〉 =
1

2

[

σz
1(~Rq )−σz

2(~Rq )
]

, (2.6)
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where σz
f

(~Rq ) is a quasispin of f -th particle in the q cluster.

In order to calculate the ferroelectric order parameter, the integration in (2.2) over all CV with the

exception of ρ1(0,0) must be performed. As a result, the equation of state will be obtained.

3. Integration in CV space

Since the ferroelectric order parameter is determined by the mean value of ρ1(0,0), the effect of

ρ2(~k,ν) is not crucial and integration in (2.2) over ρ2(~k,ν) may be performed in a lower approximation

i.e. using Gaussian distribution only. For this purpose, the higher orders of the products of ρ2(~k,ν) and

ω2(~k ,ν) variables in (2.2) must be decomposed into a series and every term should be represented as a

Gaussian momentum. Using the following mathematical trick for n-order product of ωλ(~k ,ν) variables:

exp

{

i2π
∑

k ,ν

ρλ(~k,ν)ωλ(~k,ν)−
(2π)2

2

∑

k ,ν

Mλλ(~k ,ν,−~k ,−ν)ωλ(~k,ν)ωλ(−~k,−ν)

}

×ωλ(~k1,ν1)ωλ(~k2,ν2) . . .ωλ(~kn ,νn )

=
1

(2πi)n

∂n

∂ρλ(~k1,ν1)∂ρλ(~k2,ν2) . . .∂ρλ(~kn ,νn )
exp

{

i2π
∑

k ,ν

ρλ(~k ,ν)ωλ(~k,ν)

−
(2π)2

2

∑

k ,ν

Mλλ(~k,ν,−~k ,−ν)ωλ(~k ,ν)ωλ(−~k,−ν)

}

, (3.1)

reduces the integration over ω2(~k,ν) to the calculation of a simple integral:

I =
∫

[

dω2(~k,ν)
]

exp

{

i2π
∑

k ,ν

ρ2(~k,ν)ω2(~k,ν)−
(2π)2

2

∑

k ,ν

M22(~k,ν,−~k ,−ν)ω2(~k,ν)ω2(−~k,−ν)

}

. (3.2)

Now, the integration of (2.2) of real ρc
2(~k,ν) and imaginary ρs

2(~k,ν) parts of

ρ2(~k,ν) = ρc
2(~k,ν)+ iρs

2(~k,ν) (3.3)

can be easy performed.

As a result, the total partition function functional (2.2) of exclusively CV ρ1(~k ,ν), which form the

branch of the investigated system active in the ferroelectric phase transition, is obtained:

Z = Z0Z2

∫

[

dρ1(~k,ν)
]N

exp

{

∑

k ,ν

β

2
Φ1(~k)ρ1(~k,ν)ρ1(−~k,−ν)

}

×
∫

[

dω1(~k,ν)
]N

exp

{

i2π
∑

k ,ν

[

ρ1(~k,ν)−M1(~k,ν)δ(~k)δ(ν)
]

ω1(~k,ν)

−
(2π)2

2

∑

k ,ν

[

M11(~k,ν,−~k ,−ν)+
1

12

∑

k ′,ν′
M1122(~k ′,ν′,−~k ′,−ν′,~k,ν,−~k ,−ν)g2(~k ′,ν′)

]

×ω1(~k,ν)ω1(−~k,−ν)+
(2π)4

4!

∑

k1,...,k4
ν1,...,ν4

M1111(~k1,ν1, . . . ,~k4,ν4) ω1(~k1,ν1) . . .ω1(~k4,ν4)

}

. (3.4)

In (3.4)

Z2 =
∏

k ,ν

{

[

1−βΦ2(0)M22(0,0)
]− 1

2

[

1−βΦ2(~k)M22(~k,ν)
]−1

}

×exp

{

1

8

∑

k ,ν,k ′,ν′
M2222(~k,ν,−~k ,−ν,~k ′,ν′,−~k ′,−ν′)g2(~k ′,ν′)

}

(3.5)
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is a partition function of non-active in the ferroelectric phase transition subsystem with λ= 2, and

g2(~k ,ν) =βΦ2(k)
[

1−βΦ2(~k)M22(~k,ν)
]−1

(3.6)

is a corresponding screening potential.

As far as the ferroelectric phase transition in its origin is a classical phenomenon, only CV with zero

Matsubara frequencies change their distribution form in the phase transition point from Gaussian to

non-Gaussian. Thus, the summation over all ν, 0 may be performed in the Gaussian approximation. As

a result, using nodal (l) variables:

ρl =
1

p
N

∑

k

ρ1(~k,0)e
~k~l , (3.7)

and the fourth-order basic measure density for ρl , the working form for integration of (3.4) over ρl can

be obtained:

Z = Z0Z2Z1 , (3.8)

where

Z1 =
p

2N−1Q

∫

[

dρ1(~k,0)
]N

exp

{

β

2

∑

k

Φ1(~k)ρ1(~k,0)ρ1(−~k,0)

}

∏

l

{

−
1

2
a(1)

2 ρ̃2
l −

1

4!
a(1)

4 ρ̃4
l

}

; (3.9)

ρ̃l = ρl −
p

NM16, Q = 2

∞
∫

0

f (ω)dω,

a(1)
2 = (2π)2Q−1

∞
∫

−∞

ω2 f (ω)dω, a(1)
4 =−(2π)4Q−1

∞
∫

−∞

ω4 f (ω)dω+3(a(1)
2 )2,

f (ω) = exp

{

−
(2π)2

2
M̃11ω

2 −
(2π)4

4!
M1111ω

4

}

. (3.10)

The renormalized cumulant M̃11 (obtained after summation over ν, 0) takes the following form:

M̃11(~k,0,−~k ,0)=M11(~k,0,−~k ,0)−
M

24

∑

k ′
βΦ2(~k ′)











1

V −βΦ2(~k ′)N
+
β
p

V cothβ

√

V [V −βΦ2(~k ′)]N
√

V −βΦ2(~k ′)N











,

M =
sinhβV

βZ 2
01

(

coshβE −
2e

β
2 sinh2βE

Z01

)

, N =
e−

β
2 V sinhβV

βZ01
. (3.11)

To integrate (3.9) over CV ρ1(~k,0), we will use the Yukhnovskii’s layer-by-layer method [1, 13], which is

based on the substitution of Φ1(~k,0) by its mean value in a narrow range of ~k in the Brillouin zone. In

fact, here the Fourrier transform of the dipole potential is presented:

Φ1(~k) =ϕ0 −λcos2
Θ− A|~k |2, (3.12)

where ϕ,λ, A are some constants, Θ̃ is a polar angle. The layers of integration are not spherically sym-

metric as compared with the situation for a simple Ising model [1, 2]. The presence of the term λcos2
Θ

in (3.12) leads to the situation in which the coefficient a(n)
2 in some subzone BG

n in n-th layer Bn be-

comes positive and the corresponding integral in (3.9) is finite even in the Gaussian approximation. In

B
q
n = Bn −BG

n , the non-Gaussian distribution must be used to fulfill the condition of convergency of the

corresponding integrals. The sequence of zones Bn , BG
n , B

q
n is presented by the next relations:

Bn :

[

0 < |~k | É
B1

Sn−1
; Θn−1 <ΘÉπ−Θn−1; o <ϕÉ 2π

]

,

BG
n :

[

0 < |~k | É
B1

Sn−1
; Θn−1 <ΘÉΘn , π−Θn <ΘÉπ−Θn−1; o <ϕÉ 2π

]

,

B
q
n :

[

B1

Sn
< |~k | É

B1

Sn−1
; Θn <ΘÉ π−Θn ; o <ϕÉ 2π

]

, (3.13)
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where B1 is the initial Brillouin zone, ϕ is the azimuth angle, S Ê 1 is the parameter for dividing the

Brillouin zone into layers [1, 12]:

Θn = arctan

√

βλ

βϕ0 −a(n)
2

−1. (3.14)

The general scheme of the proposed two-stage integration for magnetic systems was presented in [8].

Here, we present only the recursion relations for coefficients of consequent basic distributions, which

determine the critical character of fluctuation processes near Tc in a ferroelectric cluster system with

dipole-dipole interactions.

rn+1 = S2(rn +q)

{

N̄n +
3

4zn

(

N̄ −
1

3

)

[

1−S−n

√

3(−rn)

2βλ

]}

−S2q,

Un+1 =
√

rn

rn−1
EnUn . (3.15)

Here,

rn = S2nd (n)
2 , d (n)

2 = a(n)
2 −βΦ1(~k), Un = S4n a(n)

4 ;

q =
3

5

1− s5

1− s3
βAB2

1 ;

N̄n =
2

√

ξn K (ξn)

3
p

znK (zn)
+

1

3
, En = S6 L(ξn )

L(zn )
,

zn =
3[d (n)

2 ]2

4a(n)
4

, ξn =
3

2
S3 K 2(zn)

L(zn)
,

K (zn) =
p

zn

[

K3/4(zn)

K1/4(zn)
−1

]

; L(zn ) = 6K 2(zn)+4
p

znK (zn)−1; (3.16)

K1/4(zn), K3/4(zn) are Bessel functions of zn argument.

At T < Tc, the integration over ρ1(~k,0) in (3.9) should be performed up to n =µτ, which is determined

from the following relation:

d
(µτ)

2 (Bµτ ) = 0 (3.17)

and it is equal to

µτ = 1+ ln
C2R −q

C1

/

ln E1 . (3.18)

Here, E1 is the bigger of the two eigenvalues of the matrix of relations (3.15) linearized in the neighbor-

hood of their fixed point, C1 ∼ τ ln−1/3 |τ|, τ= (Tc −T )/(Tc), C2, R are constants independent of n.

The logarithmic corrections toC1 arose when the Gaussian integrationwas performed in BG
n subzones

with the summation of infinite series of diagrams (as it was proposed in paper [14]). It must be noted that

for a spherically-symmetric potential (i.e., simple Ising model), such corrections are neglected. However,

in nonspherically-symmetric case (for dipole-dipole interaction), they are important.

In order to correctly extract the CV ρ1(~k,0) with zero values of quasimomentum (i.e., order parame-

ter) in (3.9), the displacement of the center of its fluctuation in the ordered phase should be made:

ρ1(~k,0) = ρ1(~k ′,0)+
p

2N〈σz
1〉δ(~k). (3.19)

As a result, the fourth-order form integrand in (3.9), for the last (n = µτ) stage of integration, transforms

into

Eµτ(ρ1(0,0)) =
[

a
(µτ)

2 +2d̄2(0)
] p

NM1ρ1(0,0)+
1

4

[

d̄2(0)−a
(µτ)

2 I
]

ρ2
1(0,0)−

1

N
a

(µτ)

4 ρ4
1(0,0), (3.20)

where

d̄2(~k) = 2|d (µτ )

2 (0)|+qk2, I =
1

Nµτ

∑

k

1

d̄2(~k)
=

3(t −arctan t)

d̄2(0)t 3
t =

π

bSµτ

√

q

d̄2(0)
, (3.21)
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b is a lattice constant.

Finally, for functional integral in (3.9), the following expression has been obtained:

Zµτ = f (T )

∫

exp
{

N
(

Aρ+Bρ2 −Dρ4
)}

dρ. (3.22)

Here, ρ ≡ ρ1(0,0), f (T ) is a continuous function of temperature in the phase transition point neighbor-

hood and

A =
[

a
(µτ)

2 +
d̄2(0)

2

]

M1 , B =
1

4

(

d̄2(0)−a
(µτ)

4 I
)

, D =
1

4!

N

Nµτ

a
(µτ)

4 . (3.23)

Thus, the procedure of integration in the partition function functional (3.4) over all CV is performed ex-

cept the one-fold integral (3.22) which determines the order parameter of the cluster ferroelectric system.

4. Order parameter and dielectric susceptibility

To obtain the explicit form for coefficients A,B,D we had to use the solution of linearized recursion

equations (3.15) in the vicinity of the Gaussian type fixed point (3.15), (3.16).

A =
[

βΦ1(0) ln−2/3 |τ|+∆1τ ln−1/3 |τ|
]

p
2sinhβh

1+2coshβh+e−2βV
,

B =
∆1

4

(

1−
3∆2

∆1

t −arctan t

t 3

)

τ ln−1/3 |τ|,

D =
c2

2 R2
∆2

6∆1
ln−2/3 |τ|. (4.1)

In CVM, the coefficients ∆1,∆2 do not depend on the form of interparticle potential Φ1(~k) and are the

same as for isotropic Ising model [2].

The minimization of the integrand in (3.22) with respect to the variable ρ yields the equation of state:

A+2Bρ−4Dρ3 = 0. (4.2)

The temperature dependence of the real roots of this equation at different values of the external field

is presented in figure 1. Here, we used the energy parameters Φ1(0) = 265 K, V = 40 K. One can see a

different situation for T < Tc and T > Tc. At E = 0 there are three roots for T < Tc but only one root for

T > Tc. At h = 0, only two symmetric non-zero roots for T < Tc remain.

  1

-0.001

 

 

3
1

3 2

1

2

0.001

-1

Figure 1. Temperature dependencies of the real roots of equation of state (4.2) at different values of

external field E : 1 – E = 0 K, 2 – E = 0.1 K, 3 – E = 0.01 K.
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The field dependence of the real roots (4.2) for different temperatures is shown in figure 2. For T > Tc,

only a unique real root exists, but for T < Tc, there arise three real roots forming a non-synonymous

situation. This problem is solved due to using the stability condition
(

∂ρ/∂E > 0
)

, so the hysteresis in the

ρ behaviour takes place in the region −Eτ É E ≤ Eτ (see figure 3). Naturally, the value of Eτ depends on

temperature.

-0.5

  0.030.020.01-0.01-0.02  

E

3 2

1

-0.03

0.5

Figure 2. Field dependencies of the real roots of the equation of state (4.2) at different values of relative

temperature τ: 1 – τ= 5 ·10−5 , 2 – τ=−1 ·10−6 , 3 – τ=−1 ·10−4 .

E E

E

-E
-E

-E

-0.5

0.03 0.020.01-0.01-0.02

E

1
2

-0.03

0.5

3

Figure 3. Hysteresis loops of the order parameter for different values of the relative temperature τ: 1 –

τ=−1 ·10−5 , 2 – τ=−3 ·10−5 , 3 – τ=−1 ·10−4 .

A static dielectric susceptibility as a function

χ=β

(

∂ρ

∂βE

)

E=0

(4.3)

is shown in figures 4 and 5, where temperature depending “susceptibilities” are presented for different

values of non-zero external field (figure 4). The “suppressive” action and a shift of χ maximum are ob-

served with an increase of E .

The field dependence of χ for τ> 0 is well defined, all curves are symmetric with respect to E = 0. The

field dispersion of χ is proportional to τ [figure 5 (a)].

However, for τ< 0, the situation ismuchmore complicated [figure 5 (b)]. The position of χmaxima (at

different τ) depends on the direction of the external field E change. When E arises (from negative values

to positive ones) the χmaximum is located in the area of positive E . In the opposite case, (E changes from
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0.0005-0.0005 0.001

10.0

-0.001 0.0

1

2

3

4

Figure 4. Temperature dependencies of the static dielectric “susceptibility” for different values of the

external field E : 1 – E = 0 K, 2 – E = 1 ·10−2 K, 3 – E = 2 ·10−2 K, 4 – E = 4 ·10−2 K.

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

0.5

 

 

1

2

3

4

E
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

7|
7

6| 6

55|

7,7| 6,6|
7,7|6,6|

5,5|5,5|

E

(a) (b)

Figure 5. Field dependencies of the static dielectric “susceptibility” for τ > 0 (a) and τ < 0 (b): 1 – τ =
1 ·10−6 , 2 – τ= 2 ·10−5 , 3 – τ= 3 ·10−5 , 4 – τ= 6 ·10−5 , 5 – τ=−2 ·10−5 , 6 – τ=−5 ·10−5 , 7 – τ=−1 ·10−4 .

Curve numbers 5′ , 6′ , 7′ correspond to the oppositive change (from positive values to negative ones) of

the external field h. Solid lines (b) describe the behaviour of χ independent of the direction of h change.

positive values to negative ones) the χ maximum is located in the area of negative E . This behavior is in

strict correlation with the hysteresis of ρ (see figure 3).

The temperature behaviour of the order parameter ρ and static dielectric susceptibility χ with loga-

rithmic corrections makes it possible to obtain the effective temperature critical indices β∗ and γ∗ from

the relations:

ρ ∼ |τ|β
∗

, χ∼ |τ|−γ
∗

. (4.4)

Correspondingly, effective field critical indices δ∗ and ǫ∗

ρ ∼ |E |1/δ∗ , χ∼ |E |−ǫ
∗

(4.5)

can be also calculated.

For example, at τ= 10−5, we obtain:

β∗ = 0.4552, γ∗ = 0.9121, δ∗ = 3.27, E
∗ = 0.69.
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Inasmuch as for E = 0 the equation (4.2) can be solved in the analytic form:

ρ1 =−ρ2 =
√

B

2D
, ρ3 = 0, (4.6)

the effective critical indices β∗ and γ∗ with logarithmic corrections can be easy calculated. From the

comparison of (4.4), (4.6) and their derivatives we have:

β∗ =
1

2
+

1

6ln |τ|
, γ∗ = 1+

1

3ln |τ|
, (4.7)

so in the limit τ→ 0, their classic values take place. However, the logarithmic convergence is very weak.

It must be noted that due to dipole–dipole (anisotropic) and long-range interaction, the critical be-

haviour of the system investigated is wholly different from the isotropic Ising model critical behaviour

[15, 16], where strong non-classical exponents take place. Due to the specific recursion relations (3.15)

the fixed point for rn , un (3.16) is of Gaussian type and the conclusion on the classical behaviour is ob-

vious. Outside the immediate neighbourhood of Tc, the system behaves similar to the isotropic one (the

fine characteristics of interparticle potential do not manifest themselves decisively) and effective critical

indices β∗ and γ∗ are somewhat less than its limit (τ→ 0) values. Due to this fact, the effective critical

index α∗ = −2/(3ln |τ|) > 0 and specific heat behaviour near Tc is in agreement with the experimental

data [17].

The main peculiarity of the obtained results is a very weak dependence of β∗ and γ∗ on the dividing

parameter S, while in the isotropic Ising model, the corresponding dependence is great. The latter is one

of unsolved problems in the theory using CVM [1, 2]. When |T → Tc|, the susceptibility increases weakly

as compared with its behaviour in the self-consistent field approximation (γ= 1). The “law of doubling”

(χ for T > Tc is twice bigger than χ for T < Tc) has been fulfilled.

Thus, the basic properties of the investigated ferroelectric cluster system are described. The order

parameter is calculated and its critical behaviour is analyzed.

5. Conclusions

An essential generalization of CVM towards investigation of Ising-like systems with non-isotropic in-

teractions near the second order phase transition point has been proposed. The basic distribution for CV

contains an external field E and the higher order terms as compare to Gaussian term and depends on

a dipole–dipole interparticle interaction. As a result, the obtained physical characteristics of the studied

ferroelectric cluster system demonstrate non-classical behaviour near Tc with effective critical indices.

The main advantage of the CVM used herein, as compared with the usual renormalization group

methods, is the possibility to calculate an order parameter and to describe its behaviour near the critical

point (T = Tc and E = 0). A complete set of both temperature and field critical dependencies are obtained

here. The logarithmic corrections to critical indices are calculated for the first time in counterbalance to

[14], where similar corrections were applied to temperature dependencies of the order parameter and

dielectric susceptibility only. The power of temperature logarithmic correction to dielectric susceptibility

is twice bigger than the power to the order parameter while in [14] they are declared as equal each other.

A scrupulous study of the effect of the external field on the critical behaviour of the order parameter

and on dielectric susceptibility of the ferroelectric system confirms its suppressive action, the shift of the

point of transition and hysteresis of the order parameter behaviour. The position of the points of the first

order phase transition depends on the direction of the field change.
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Сегнетоелектричний параметр порядку двочастинкової

кластерної системи поблизу точки фазового переходу.

Метод колективних змiнних

М.А. Кориневський1,2,3, В.Б. Солов’ян1

1 Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького 1, 79011 Львiв, Україна

2 Нацiональний унiверситет “Львiвська полiтехнiка” вул. С. Бандери 12, 79013 Львiв, Україна

3 Щецiнський унiверситет, Iнститут фiзики, вул. Вєлькопольська 15, 70451 Щецiн, Польща

Запропоновано новий пiдхiд для вивчення поведiнки параметра впорядкування поблизу точки сегнето-

електричного фазового переходу. Враховано короткосяжнi i дипольнi взаємодiї мiж частинками. Розра-

ховано i обговорено логарифмiчнi поправки та ефективнi критичнi показники.

Ключовi слова: фазовий перехiд, параметр порядку, критичнi показники, метод колективних змiнних
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