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We apply simulated tempering and magnetizing (STM) Monte Carlo simulations to the two-dimensional three-
state Potts model in an external magnetic field in order to investigate the crossover scaling behaviour in the
temperature-field plane at the Potts critical point and towards the Ising universality class for negative magnetic
fields. Our data set has been generated by STM simulations of several square lattices with sizes up to 160 x 160
spins, supplemented by conventional canonical simulations of larger lattices at selected simulation points. We
present careful scaling and finite-size scaling analyses of the crossover behaviour with respect to temperature,
magnetic field and lattice size.
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1. Introduction

The two-dimensional three-state Potts model in an external magnetic field [1, 2] has several inter-
esting applications in condensed matter physics [2], and its three-dimensional counterpart serves as
an effective model for quantum chromodynamics [3-H6]. When one of the three states per spin is dis-
favoured in an external (negative) magnetic field, the other two states exhibit Z, symmetry and one ex-
pects a crossover from Potts to Ising critical behaviour. In the vicinity of the Potts critical point, another
crossover effect takes place when approaching the critical point along different paths in the temperature-
field plane.

To cover such a two-dimensional parameter space, generalized-ensemble Monte Carlo simulations are
a useful tool [7H10]. Well-known examples are the multicanonical (MUCA) algorithm [11,/12], the closely
related Wang-Landau method [13,/14], the replica-exchange method (REM) [15,/16] (see also [17,/18]), also
often referred to as parallel tempering, and simulated tempering (ST) [19, 20]. Inspired by recent multi-
dimensional generalizations of generalized-ensemble algorithms [21-23], the “Simulated Tempering and
Magnetizing” (STM) method has been proposed by two of us and tested for the classical Ising model
in an external magnetic field [24, 25]. Recently, we have extended this new simulation method to the
two-dimensional three-state Potts model and by this means generated accurate numerical data in the
temperature-field plane [26]. Here we focus on a discussion of the two above mentioned crossover-scaling
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scenarios that include (for the Potts-to-Ising crossover, in particular) the analysis of the specific heat
which provides the clearest signals.

The rest of this article is organized as follows. In section 2 we briefly discuss the model and review the
STM method. In section 3 we present the results of our crossover-scaling analyses at the phase transitions
with respect to temperature, magnetic field and lattice size. Finally, section 4 contains our conclusions
and an outlook to the future work.

2. Model and simulation method

The two-dimensional three-state Potts model in an external magnetic field is defined through the
Hamiltonian

H=E-hM, 2.1
E==3 80,0 2.2)
(i)
N
M = Z 60,0‘1- ’ (23)

i=1

where N = I? denotes the total number of spins o; € 0,1,2 arranged on the sites of a square L x L lattice
with periodic boundary conditions, § is the Kronecker delta function and 4 is the external magnetic
field. The sum in runs over all nearest-neighbour pairs. Note that the magnetization M defined in
takes on the value M = N for the ordered state in 0-direction, M = 0 for the ordered states in 1- or
2-direction, and M = N/3 in the disordered phase.

By mapping the integer valued spins o; to spin vectors s; = [cos(2m0;/3),sin(27w0;/3)] one readily
sees that E = (2/3)(— ¥,y $iSj — N) and M = (2/3)(M™ + N/2), where M™ is the component of the
magnetization vector M = Y ;S; in field direction (assumed to be along the x-axis). In this equivalent
notation, it is fairly obvious that the Z3 symmetry for 4 = 0 is broken to Z, for negative external magnetic
fields (see figure ).

0=1‘§‘ og=1
; >
S o=0 =0
o=2J og=2
h>0 h=0 h<0

Figure 1. Schematic sketch illustrating the behaviour of the spins of the three-state Potts model in an ex-
ternal magnetic field h. For h > 0, the spin state 0 is favoured, whereas the states 1 and 2 are disfavoured.
For h =0, all three states are equivalent. For i < 0, the spin state 0 is disfavoured and the states 1 and 2
are related to each other by Z, symmetry.

Another frequently employed definition of the magnetization is the so-called “maximum definition”

i
-—= 1 2.4

N

Z 6]',0'1-

i=1

3
Mmax:NmmaxE—{ max
2 |j=012

3

which yields the physically more intuitive value of 1 when the system is in one of the three ordered
phases and 0 is in the disordered phase, respectively.

Let us now turn to a brief description of the employed Monte Carlo simulation method. In the con-
ventional ST scheme [19,20], the temperature is considered as an additional dynamical variable besides
the spin degrees of freedom. The STM method is a generalization to a two-dimensional parameter space
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where the magnetic field is treated as the second additional dynamical variable similar to the tempera-
ture [24-26]. Here, one considers

e (E-hM)/T+a(T,h) 2.5)

as a joint probability for (x, T, h) (€ X ® {11, T, , Tn,} ® {hy, ho, -+, hn, }), where a(T, h) is a parameter,
x denotes a (microscopic) state, and X is the sampling space. We have set Boltzmann’s constant to unity.
Note that the temperature and external field are discretized into Nt and N}, values, respectively.

A suitable candidate for a(T;, ;) can be obtained from the (empirical) probability of occupying each
set of parameter values,

P(T;, hj) = e~/ Tehoraliohy, (2.6)

where e~/ Te/) = [ dxe™E=1M/Ti This shows that the dimensionless free energy f (73, h;) is the proper
choice for a(T;, h;) in order to generate a uniform distribution of the number of samples according to T
and h. This implies a random-walk-like evolution of T and & in STM simulations as it is demonstrated
in figure 2l for a 80 x 80 lattice. The block structures reflect the first-order phase transition line at 7 =0
in the Potts model and the second-order phase transition at the effective Ising transition temperature
T. = 1.1346 for negative magnetic field.

15 05
- < 0
1 ﬂﬁ 0.5

0.5 ‘ ‘ ‘ -1.5 ‘ ‘ ‘
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x10% MC sweeps x10% MC sweeps

Figure 2. Time history of temperature 7' and magnetic field / in STM simulations for the linear lattice
size L = 80.

3. Results

Our STM simulations were performed for lattice sizes L =5, 10,20,40,80, and 160 with the total num-
ber of sweeps varying between about 160 x 10° and 500 x 10%, where a sweep consisting of N single-spin
updates with the heat-bath algorithm followed by an update of either the temperature T or the field h. We
used the Mersenne Twister [27] as quasi-random-number generator. Statistical error bars are estimated
using the jackknife blocking method [28-31].

Due to its random-walk-like nature, the STM method, combined with reweighting techniques such
as WHAM [32-34] or MBAR [35], yields the density of states n(E, M) (up to an overall constant) in a
wide range of the two-dimensional parameter space. Using these data it is straightforward to compute a
two-dimensional map of any thermodynamic quantity that can be expressed in terms of E and M. As an
example, figure[3shows the specific heat C = ((E?)—(E)?)/ T? and susceptibility y = ((M2,,.)—(Mmax)?)/ T
per spin as functions of T and & for L = 80. We see a line of phase transitions starting at the Potts critical
point at 2 =0, TP = 1/In(1 + v/3) = 0.9950 which, for strong negative magnetic fields, approaches the
Ising model limit with the critical point at h — —oo, Tismg = 1/In(1 + v2) = 1.1346. For all h < 0, the
Z3 symmetry of the 3-state Potts model in zero field is broken to Z, symmetry (recall figure [ and by
universality the critical behaviour is expected to be Ising-like.
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Figure 3. (Color online) (a) Specific heat per site C/ I? and (b) magnetic susceptibility per site y/ I? as
functions of T and h for L = 80. The solid vertical line corresponds to T = 1.1346, which is the critical
temperature of the Ising model (in 2-state Potts model normalization).

For positive magnetic fields, the phase transition disappears altogether. However, for finite lattices
and small & > 0, the singular behaviour persists to some extent due to finite-size effects. More precisely,
the peaks of, e.g., the specific heat shown in figure[ grow with an increasing lattice size L until L is larger
than the (finite) correlation length of the system. This can be interpreted as a crossover in the dependence
of field & and lattice size L.
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Figure 4. (Color online) Specific heat per site C/ 2 as a function of T. With increasing system size L, the
peaks become more pronounced [L =5 (dashed red), 10 (dotted green), 20 (solid black), 40 (dash dotted
purple), and 80 (solid blue)]. (a) & = 0.0, (b) h =0.005, (c) h =0.01, (d) = =0.02.

To study, in the vicinity of the Potts critical point, the crossover-scaling behaviour in the T — & plane,
we calculated the magnetization m = M/L? by reweighting. Its scaling form is given by I@]

m(T,h,L) = PV W (LY, hIh), (3.1)

where y; = 1/v and yj = (8 +7y)/v are the usual scaling dimensions which can be expressed in terms of
standard critical exponents. For easier reference, we have collected the exactly known critical exponents
of the two-dimensional Ising and Potts models in table [1l The actually observed exponent depends on
the precise path in which the critical point is approached in the T — & plane. According to the crossover
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Table 1. Critical exponents for the two-dimensional Ising and three-state Potts models [y = 1/v, yj =

B+ v (2.

[Model [ yi | yu | @ [ B[ v [6] v ]
Ising | 1 | 158 [0Qog) [ 1/8 ] 7/4 [ 15| 1
Potts | 6/5 | 28/15 | 1/3 | 1/9 | 13/9 | 14 | 5/6

scaling formalism [36] in the limit of an infinite lattice, if /7 (in the Potts model r~14/91) is small
enough, then the magnetization obeys m ~ tP (= t'/9), and otherwise it scales as m ~ h'/? (= hl/1%),
where t = (T, — T)/ T,. Figure 5] (a) shows that as long as finite-size effects are negligible (L6/°¢ > 0.1)
and £ > (h/6)%'1 (i.e., t714/9% is small), then the critical behaviour is m ~ t'/°. Figure 5] (b) shows that if
finite-size effects are negligible (1?2 h > 0.1) and t < (h/6)%1* (i.e., " '%/%1 is large), then the critical
behaviour is m ~ h'/™. Thus, figure[lclearly shows that the line & = 6¢'4/° gives the boundary of the two
scaling regimes.

14
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Figure 5. (Color online) The difference between magnetization and its expected scaling behaviours
around the critical point for L = 80. Shown are (a) |mL2/ 15 _ 1.2(L6/ 5 t)” 9| where the amplitude 1.2 was
obtained by fitting the magnetization data to 19 and (b) |mL2/15 — (128/15 p)L/14| n both plots, the solid
line corresponds to i = 611419,

Since the three-state Potts model in a negative magnetic field is expected to behave like the Ising
model, we also investigated the crossover behaviour between these two models using finite-size scaling
techniques. For the susceptibility maximum ymax < L'?, the finite-size scaling exponent of the Potts
and Ising model is given by y/v = 26/15 = 1.7333... and 7/4 = 1.75, respectively. Figure [6| shows that
the exponents are so similar that we can hardly distinguish the difference, despite the accuracy of the
measurements. The difference is much more pronounced for the maxima of the specific heat which are
expected to scale with the system size L with an exponent a/v = 2/5 for the Potts and a/v =0, i.e,,
logarithmically, for the Ising model. We also measured different quantities, which are the maximum

dinGnge) din(mie) din@) A .+ dlmme) oo Smh) =1 - Smmed
values of =gz, ——qgt¥t, =g5=", =35, and =g, Here, Up =1 - g7 w5 and Uy = 1 ()’

are the Binder cumulants ﬂﬂ]. The derivatives were obtained by using @]

dIn(mk . —(E) - (mk < E) (3.2)
dp (mk oo ‘
din(Upe) __(miky { 5 - 2<ml’;ax13> . <m§,{<axE>} 33
B 3(mk, )’ (Mfady (Mg
d{mmax)
~ - (Mimax) (E) — {MmaxE) . (3.4)

2
Figure [6] shows our results. Note that ‘“n(d—”g"“}|max, %h}m, dlI(lj<ﬂU2>|maX’ dh(11<ﬁU4>|maX, and
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%Imw{ are expected to behave asymptotically as LY, L'/, LV, LMV, and LO~P)V, respectively, as
the lattice size L increases [31]. These critical exponents are presented for the Potts model by 1/v = 6/5
and (1 - B)/v = 16/15, and for the Ising model by 1/v =1 and (1 — 8)/v = 7/8 (see table [[). We observe
that all quantities for & =0 (red curve with filled circles) follow the Potts case and that those for negative
external field (green curve with filled up triangles and blue curve with filled down triangles) follow the
Ising case in the limit of large L. In fact, the two curves for & = —0.5 and h = —1.0 converge into almost
the same line as L increases. On the other hand, the (green) curve for i = —0.5 exhibits greater deviation
from the scaling behaviour for small L. This can also be understood as another crossover effect governed
by h and L.
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Figure 6. (Color online) Finite-size scaling behaviour of ymax, Cmax. dh:i%]“) lmax, and ‘ﬂ'g—?ax)hnax for

three characteristic / values.

4. Conclusions

In this work, we reported the scaling and finite-size scaling analyses of the two-dimensional three-
state Potts model in a magnetic field based on the data generated using the Simulated Tempering and
Magnetizing (STM) method [24, 125]. In such simulations, the random walk in temperature and magnetic
field covers a wide range of these parameters so that STM simulations enable one to study crossover
phenomena with a single simulation run [26].

By this means we calculated the magnetization, susceptibility, energy, specific heat and related quan-
tities as functions of temperature, magnetic field, and lattice size around the critical point using reweight-
ing techniques. These data allowed us to extract the crossover behaviours of phase transitions. First, at
the Potts critical point for i = 0, we observed a clear crossover of the scaling behaviours of the magneti-
zation with respect to temperature and magnetic field. Second, from an analysis of the specific heat and
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other quantities, a crossover in the scaling laws with respect to (negative) magnetic field and lattice size
was identified, thereby verifying the expected crossover from 3-state Potts to Ising critical behaviour.

The data of the present work yield the two-dimensional density of states n(E, M) (up to an overall
constant) which determines the weight factor for two-dimensional multicanonical simulations. We can
also perform two-dimensional multicanonical simulations, which will be an interesting future task.

As a final remark we should like to stress that the present method is useful not only for spin systems
as considered here but also for other complex systems with many degrees of freedom. Since our method
does not require any change of the frequently rather intricate energy calculations, it should be highly
compatible with the available program packages.
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CKkeWniHr KpocoBepy y ABOBUMIpPHilA TpncTaHOBIW Moaeni
MoTTca

T. Haraf®, 0. OkamoToT23# B, g1k

T Bigain ¢i3nkn, yHiBepcuTeT M. Haros, Haros, Alidi 464-8602, AnoHis

2 LleHTp gocnigkeHb CTPYKTYpHOI 6ionorii, yHiBepcuTeT M. Haros, Haros, Aiivi 464-8602, SinoHis
3 LleHTp KOMM'tOTEPHMX Hayk, yHiBepcuTeT M. Haros, Haros, Ailui 464-8602, inoHis

4 LleHTp iHpopMaLiiHNX TeXHONOTIN, yHiBepcuTeT M. Haros, Haros, Alivi 464-8602, AnoHis

5 IHCTUTYT TeopeTuyHoi $i3nky, yHiBepcuTeT Jiaiinuiry, 04009 m. fiainuir, HimeyunHa

6 LleHTp TeopeTnyHUX NprpoAHUYmnX Hayk (NTZ), yHiBepcuteT Jlanuiry, 04009 Nainuir, HimeuunHa

Mw 3actocoByeMo MoHTe Kapno cumynsuii 3 CMyboBaHUM TeMrnepyBaHHAM i HaMarHivyeHHsam (STM) go aBso-
BMMIipHOI Tp1CTaHOBOI Mogeni MoTTca y 30BHiLLHBOMY MarHiTHOMY NoAi A4S TOro, Wo6 AOCAIANTA KPOCOBEPHY
CKeliNiHroBy NoBeAIHKY Y NAOLLVHI TemnepaTtypa-nose npu KpUTUYHIl Touui MoTTca, a TakoX Knac yHiBepcanb-
HOCTi Mogeni I3nHra Ans HeraTUBHUX MarHiTHUX nonis. Habip Halmx gaHux 6yB 3reHepoBaHuini STM cumynaui-
AMU AeKiNbKoX KBaApaTHMX rpaTok po3Mipom Ao 160 x 160 cniHiB, JONOBHEHUMM 3BUYARHUMK KaHOHIYHUMM
cMynALaMK BinbLUMX rpaTok Npu BUGPaHUX CUMYAALIAHMX Toukax. MU NpeACTaBASEMO peTeibHUIA aHai3
CKeliNiHry i CKiH4eHOMipHOTrO CKeiniHry KPOCOBEPHOI MOBeZAIHKY MO BiHOLLEHHIO 40 TeMMnepaTypu, MarHiTHOro
nons i po3mipy rpatku.

KntouoBi cnoBa: TpuctaHoBa Mogesb 1oTTca, $pa3oBi nepexoiu, KpUTUYHI ABULYE, CKeUIHI KpocoBepy,
cumynayii MoHte Kapso, cumyniboBaHe TemnepysaHHs | HamarHiyeHHs (STM)
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