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We apply simulated tempering and magnetizing (STM) Monte Carlo simulations to the two-dimensional three-

state Potts model in an external magnetic field in order to investigate the crossover scaling behaviour in the

temperature-field plane at the Potts critical point and towards the Ising universality class for negative magnetic

fields. Our data set has been generated by STM simulations of several square lattices with sizes up to 160×160

spins, supplemented by conventional canonical simulations of larger lattices at selected simulation points. We

present careful scaling and finite-size scaling analyses of the crossover behaviour with respect to temperature,

magnetic field and lattice size.
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1. Introduction

The two-dimensional three-state Potts model in an external magnetic field [1, 2] has several inter-

esting applications in condensed matter physics [2], and its three-dimensional counterpart serves as

an effective model for quantum chromodynamics [3–6]. When one of the three states per spin is dis-

favoured in an external (negative) magnetic field, the other two states exhibit Z2 symmetry and one ex-

pects a crossover from Potts to Ising critical behaviour. In the vicinity of the Potts critical point, another

crossover effect takes place when approaching the critical point along different paths in the temperature-

field plane.

To cover such a two-dimensional parameter space, generalized-ensemble Monte Carlo simulations are

a useful tool [7–10]. Well-known examples are the multicanonical (MUCA) algorithm [11, 12], the closely

related Wang-Landau method [13, 14], the replica-exchange method (REM) [15, 16] (see also [17, 18]), also

often referred to as parallel tempering, and simulated tempering (ST) [19, 20]. Inspired by recent multi-

dimensional generalizations of generalized-ensemble algorithms [21–23], the “Simulated Tempering and

Magnetizing” (STM) method has been proposed by two of us and tested for the classical Ising model

in an external magnetic field [24, 25]. Recently, we have extended this new simulation method to the

two-dimensional three-state Potts model and by this means generated accurate numerical data in the

temperature-field plane [26]. Herewe focus on a discussion of the two abovementioned crossover-scaling
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scenarios that include (for the Potts-to-Ising crossover, in particular) the analysis of the specific heat

which provides the clearest signals.

The rest of this article is organized as follows. In section 2 we briefly discuss the model and review the

STMmethod. In section 3 we present the results of our crossover-scaling analyses at the phase transitions

with respect to temperature, magnetic field and lattice size. Finally, section 4 contains our conclusions

and an outlook to the future work.

2. Model and simulation method

The two-dimensional three-state Potts model in an external magnetic field is defined through the

Hamiltonian

H = E −hM , (2.1)

E =−
∑

〈i , j〉
δσi ,σ j

, (2.2)

M =
N
∑

i=1

δ0,σi
, (2.3)

where N = L2 denotes the total number of spins σi ∈ 0,1,2 arranged on the sites of a square L ×L lattice

with periodic boundary conditions, δ is the Kronecker delta function and h is the external magnetic

field. The sum in (2.2) runs over all nearest-neighbour pairs. Note that the magnetization M defined in

(2.3) takes on the value M = N for the ordered state in 0-direction, M = 0 for the ordered states in 1- or

2-direction, and M = N /3 in the disordered phase.

By mapping the integer valued spins σi to spin vectors ~si = [cos(2πσi /3),sin(2πσi /3)] one readily

sees that E = (2/3)(−
∑

〈i , j 〉~si~s j − N ) and M = (2/3)(M (x) + N /2), where M (x) is the component of the

magnetization vector ~M =
∑

i~si in field direction (assumed to be along the x-axis). In this equivalent

notation, it is fairly obvious that the Z3 symmetry for h = 0 is broken to Z2 for negative external magnetic

fields (see figure 1).

Figure 1. Schematic sketch illustrating the behaviour of the spins of the three-state Potts model in an ex-

ternal magnetic field h. For h > 0, the spin state 0 is favoured, whereas the states 1 and 2 are disfavoured.

For h = 0, all three states are equivalent. For h < 0, the spin state 0 is disfavoured and the states 1 and 2

are related to each other by Z2 symmetry.

Another frequently employed definition of the magnetization is the so-called “maximum definition”

Mmax = N mmax ≡
3

2

{

max
j=0,1,2

[

N
∑

i=1

δ j ,σi

]

−
N

3

}

, (2.4)

which yields the physically more intuitive value of 1 when the system is in one of the three ordered

phases and 0 is in the disordered phase, respectively.

Let us now turn to a brief description of the employed Monte Carlo simulation method. In the con-

ventional ST scheme [19, 20], the temperature is considered as an additional dynamical variable besides

the spin degrees of freedom. The STM method is a generalization to a two-dimensional parameter space
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where the magnetic field is treated as the second additional dynamical variable similar to the tempera-

ture [24–26]. Here, one considers

e−(E−hM)/T+a(T,h) (2.5)

as a joint probability for (x,T,h) (∈ X ⊗ {T1,T2, · · · ,TNT }⊗ {h1,h2, · · · ,hNh
}), where a(T,h) is a parameter,

x denotes a (microscopic) state, and X is the sampling space. We have set Boltzmann’s constant to unity.

Note that the temperature and external field are discretized into NT and Nh values, respectively.

A suitable candidate for a(Ti ,h j ) can be obtained from the (empirical) probability of occupying each

set of parameter values,

P (Ti ,h j ) = e− f (Tk ,hl )+a(Tk ,hl ) , (2.6)

where e− f (Tk ,hl ) =
∫

dx e−(E−h j M)/Ti . This shows that the dimensionless free energy f (Ti ,h j ) is the proper

choice for a(Ti ,h j ) in order to generate a uniform distribution of the number of samples according to T

and h. This implies a random-walk-like evolution of T and h in STM simulations as it is demonstrated

in figure 2 for a 80×80 lattice. The block structures reflect the first-order phase transition line at h = 0

in the Potts model and the second-order phase transition at the effective Ising transition temperature

Tc ≈ 1.1346 for negative magnetic field.
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Figure 2. Time history of temperature T and magnetic field h in STM simulations for the linear lattice

size L = 80.

3. Results

Our STM simulations were performed for lattice sizes L = 5,10,20,40,80, and 160 with the total num-

ber of sweeps varying between about 160×106 and 500×106 , where a sweep consisting of N single-spin

updates with the heat-bath algorithm followed by an update of either the temperature T or the field h. We

used the Mersenne Twister [27] as quasi-random-number generator. Statistical error bars are estimated

using the jackknife blocking method [28–31].

Due to its random-walk-like nature, the STM method, combined with reweighting techniques such

as WHAM [32–34] or MBAR [35], yields the density of states n(E , M) (up to an overall constant) in a

wide range of the two-dimensional parameter space. Using these data it is straightforward to compute a

two-dimensional map of any thermodynamic quantity that can be expressed in terms of E and M . As an

example, figure 3 shows the specific heatC = (〈E 2〉−〈E〉2)/T 2 and susceptibility χ= (〈M2
max〉−〈Mmax〉2)/T

per spin as functions of T and h for L = 80. We see a line of phase transitions starting at the Potts critical

point at h = 0, T Potts
c = 1/ln(1+

p
3) = 0.9950 which, for strong negative magnetic fields, approaches the

Ising model limit with the critical point at h → −∞, T
Ising
c = 1/ln(1+

p
2) = 1.1346. For all h < 0, the

Z3 symmetry of the 3-state Potts model in zero field is broken to Z2 symmetry (recall figure 1) and by

universality the critical behaviour is expected to be Ising-like.
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Figure 3. (Color online) (a) Specific heat per site C/L2 and (b) magnetic susceptibility per site χ/L2 as

functions of T and h for L = 80. The solid vertical line corresponds to T = 1.1346, which is the critical

temperature of the Ising model (in 2-state Potts model normalization).

For positive magnetic fields, the phase transition disappears altogether. However, for finite lattices

and small h > 0, the singular behaviour persists to some extent due to finite-size effects. More precisely,

the peaks of, e.g., the specific heat shown in figure 4, growwith an increasing lattice size L until L is larger

than the (finite) correlation length of the system. This can be interpreted as a crossover in the dependence

of field h and lattice size L.

Figure 4. (Color online) Specific heat per site C/L2 as a function of T . With increasing system size L, the

peaks become more pronounced [L = 5 (dashed red), 10 (dotted green), 20 (solid black), 40 (dash dotted

purple), and 80 (solid blue)]. (a) h = 0.0, (b) h = 0.005, (c) h = 0.01, (d) h = 0.02.

To study, in the vicinity of the Potts critical point, the crossover-scaling behaviour in the T −h plane,

we calculated the magnetization m = M/L2 by reweighting. Its scaling form is given by [36]

m(T,h,L) = L−β/ν
Ψ(tLyt ,hLyh ) , (3.1)

where yt = 1/ν and yh = (β+γ)/ν are the usual scaling dimensions which can be expressed in terms of

standard critical exponents. For easier reference, we have collected the exactly known critical exponents

of the two-dimensional Ising and Potts models in table 1. The actually observed exponent depends on

the precise path in which the critical point is approached in the T −h plane. According to the crossover
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Table 1. Critical exponents for the two-dimensional Ising and three-state Potts models [yt = 1/ν, yh =
(β+γ)/ν] [2].

Model yt yh α β γ δ ν

Ising 1 15/8 0 (log) 1/8 7/4 15 1

Potts 6/5 28/15 1/3 1/9 13/9 14 5/6

scaling formalism [36] in the limit of an infinite lattice, if t−yh /yt h (in the Potts model t−14/9h) is small

enough, then the magnetization obeys m ∼ tβ (= t 1/9), and otherwise it scales as m ∼ h1/δ (= h1/14),

where t = (Tc −T )/Tc. Figure 5 (a) shows that as long as finite-size effects are negligible (L6/5t ≫ 0.1)

and t ≫ (h/6)9/14 (i.e., t−14/9h is small), then the critical behaviour is m ∼ t 1/9. Figure 5 (b) shows that if

finite-size effects are negligible (L28/15h ≫ 0.1) and t ≪ (h/6)9/14 (i.e., t−14/9h is large), then the critical

behaviour is m ∼ h1/14. Thus, figure 5 clearly shows that the line h = 6t 14/9 gives the boundary of the two

scaling regimes.

Figure 5. (Color online) The difference between magnetization and its expected scaling behaviours

around the critical point for L = 80. Shown are (a) |mL2/15 −1.2(L6/5t)1/9| where the amplitude 1.2 was

obtained by fitting the magnetization data to t1/9 and (b) |mL2/15−(L28/15h)1/14|. In both plots, the solid

line corresponds to h = 6t14/9.

Since the three-state Potts model in a negative magnetic field is expected to behave like the Ising

model, we also investigated the crossover behaviour between these two models using finite-size scaling

techniques. For the susceptibility maximum χmax ∝ Lγ/ν, the finite-size scaling exponent of the Potts

and Ising model is given by γ/ν = 26/15 = 1.7333. . . and 7/4 = 1.75, respectively. Figure 6 shows that

the exponents are so similar that we can hardly distinguish the difference, despite the accuracy of the

measurements. The difference is much more pronounced for the maxima of the specific heat which are

expected to scale with the system size L with an exponent α/ν = 2/5 for the Potts and α/ν = 0, i.e.,

logarithmically, for the Ising model. We also measured different quantities, which are the maximum

values of
dln〈mmax〉

dβ ,
dln〈m2

max〉
dβ ,

dln〈U2〉
dβ ,

dln〈U4〉
dβ , and

d〈mmax〉
dβ . Here, U2 = 1− 〈m2

max〉
3〈mmax〉2 and U4 = 1− 〈m4

max〉
3〈m2

max〉2

are the Binder cumulants [37]. The derivatives were obtained by using [38]

dln〈mk
max〉

dβ
= 〈E〉−

〈mk
maxE〉

〈mk
max〉

, (3.2)

dln〈U2k〉
dβ

=
〈m2k

max〉

3〈mk
max〉

2

{

〈E〉−2
〈mk

maxE〉
〈mk

max〉
+
〈m2k

maxE〉
〈m2k

max〉

}

, (3.3)

d〈mmax〉
dβ

= 〈mmax〉〈E〉−〈mmaxE〉 . (3.4)

Figure 6 shows our results. Note that
dln〈mmax〉

dβ |max,
dln〈m2

max〉
dβ |max,

dln〈U2〉
dβ |max,

dln〈U4〉
dβ |max, and
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d〈mmax〉
dβ |max are expected to behave asymptotically as L1/ν, L1/ν, L1/ν, L1/ν, and L(1−β)/ν , respectively, as

the lattice size L increases [31]. These critical exponents are presented for the Potts model by 1/ν = 6/5

and (1−β)/ν = 16/15, and for the Ising model by 1/ν = 1 and (1−β)/ν = 7/8 (see table 1). We observe

that all quantities for h = 0 (red curve with filled circles) follow the Potts case and that those for negative

external field (green curve with filled up triangles and blue curve with filled down triangles) follow the

Ising case in the limit of large L. In fact, the two curves for h = −0.5 and h = −1.0 converge into almost

the same line as L increases. On the other hand, the (green) curve for h =−0.5 exhibits greater deviation

from the scaling behaviour for small L. This can also be understood as another crossover effect governed

by h and L.

Figure 6. (Color online) Finite-size scaling behaviour of χmax, Cmax,
dln〈U4〉

dβ
|max, and

d〈mmax〉
dβ

|max for

three characteristic h values.

4. Conclusions

In this work, we reported the scaling and finite-size scaling analyses of the two-dimensional three-

state Potts model in a magnetic field based on the data generated using the Simulated Tempering and

Magnetizing (STM) method [24, 25]. In such simulations, the random walk in temperature and magnetic

field covers a wide range of these parameters so that STM simulations enable one to study crossover

phenomena with a single simulation run [26].

By this means we calculated the magnetization, susceptibility, energy, specific heat and related quan-

tities as functions of temperature, magnetic field, and lattice size around the critical point using reweight-

ing techniques. These data allowed us to extract the crossover behaviours of phase transitions. First, at

the Potts critical point for h = 0, we observed a clear crossover of the scaling behaviours of the magneti-

zation with respect to temperature and magnetic field. Second, from an analysis of the specific heat and

23605-6



Crossover scaling in the two-dimensional three-state Potts model

other quantities, a crossover in the scaling laws with respect to (negative) magnetic field and lattice size

was identified, thereby verifying the expected crossover from 3-state Potts to Ising critical behaviour.

The data of the present work yield the two-dimensional density of states n(E , M) (up to an overall

constant) which determines the weight factor for two-dimensional multicanonical simulations. We can

also perform two-dimensional multicanonical simulations, which will be an interesting future task.

As a final remark we should like to stress that the present method is useful not only for spin systems

as considered here but also for other complex systems with many degrees of freedom. Since our method

does not require any change of the frequently rather intricate energy calculations, it should be highly

compatible with the available program packages.
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Скейлiнґ кросоверу у двовимiрнiй тристановiй моделi
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Ми застосовуємо Монте Карло симуляцiї з симульованим темперуванням i намагнiченням (STM) до дво-

вимiрної тристанової моделi Поттса у зовнiшньому магнiтному полi для того, щоб дослiдити кросоверну

скейлiнгову поведiнку у площинi температура-поле при критичнiй точцi Поттса, а також клас унiверсаль-

ностi моделi Iзинга для негативних магнiтних полiв. Набiр наших даних був згенерований STM симуляцi-

ями декiлькох квадратних ґраток розмiром до 160×160 спiнiв, доповненими звичайними канонiчними

симуляцiями бiльших ґраток при вибраних симуляцiйних точках. Ми представляємо ретельний аналiз

скейлiнгу i скiнченомiрного скейлiнгу кросоверної поведiнки по вiдношенню до температури, магнiтного

поля i розмiру ґратки.

Ключовi слова: тристанова модель Поттса, фазовi переходи, критичнi явища, скейлiнг кросоверу,

симуляцiї Монте Карло, симульоване темперування i намагнiчення (STM)
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