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We study the time-averaged upper level occupation probability in a strongly driven two-level
system, particularly its dependence on the driving amplitude x0 and frequency � and the energy
level separation �E. In contrast to the case of weak driving (x E0 �� � ), when the positions of the
resonances almost do not depend on x0, in the case of the strong driving ( )x E0 � � their positions
are strongly amplitude dependent. We study these resonances in the concrete system — the
strongly driven phase-biased Cooper-pair box, which is considered to be weakly coupled to the
tank circuit.
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Several mesoscopic superconducting devices, which
behave as quantum-mechanical two-level systems
(TLSs), were proposed and studied recently (see re-
views [1,2]). And although these devices are formally
analogous to microscopic TLSs (such as electrons,
atoms, photons, etc. [3]), they differ in that the cou-
pling to controlling gates, and the environment must
be taken into account (this makes the numerical anal-
ysis of a mesoscopic TLS necessary). The study of the
dynamic behaviour of the mesoscopic superconducting
structures is interesting because they are suitable for
observation of the quantum-mechanical features by
measuring macroscopic values and because of their rel-
evance for engineering on the mesoscopic scale, e.g.,
for potentially realizable quantum computers based on
superconducting Josephson qubits. The following
non-stationary effects were studied in the supercon-
ducting effectively TLSs: Rabi oscillations [4–7],
multiphoton excitations [8–11], Landau—Zener tran-
sition [12,13], nonlinear excitations [14]. In this work
we study the strongly driven superconducting TLS.
Namely, we study the phase-biased Cooper-pair box
(PBCPB) (also called the Cooper-pair transistor)
[15–19] strongly driven via the gate electrode and
probed by the classical resonant contour (tank cir-
cuit). The particular interest in this problem is be-

cause due to the interference between the Lan-
dau—Zener tunneling events, the system can be reso-
nantly excited and the probability of the excitation
oscillatory depends on the amplitude of the driving
parameter [20–23]. That is why we are interested in
the dynamics of the strongly driven superconducting
TLS — to clarify this problem and to relate it to the
experimental results [24].

The rest of the paper is organized as following.
First we analyse the resonant excitations of a TLS,
particularly, the difference between the weakly and
strongly driven regimes. Then we study concrete situa-
tion of the strongly driven PBCPB, which is probed
by the tank circuit. The paper ends with the conclu-
sions.

We consider a TLS described by the Hamiltonian

� ( ) � ( sin ) � .H t x x tx z� � ��� � �off 0 (1)

Here � ,� x z are the Pauli matrices. We are interested in
the time-averaged upper level occupation probability,
which is assumed to be related with the observable
values. A driven TLS can be resonantly excited from
the ground state to the upper state [25]. When the
driving amplitude x0 is small compared to the energy
level separation � �E x� �2 2 2

off , the positions of the
resonances in the time-averaged upper level occupation
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probability is determined by the multiphoton relation,
�E K� ��. Here � is the driving frequency and K is an
integer. If the amplitude x0 is increased, the position
of the resonances is shifted (the Bloch—Siegert shift)
[14]. Thus, at fixing � and �E and with increasing
amplitude x0 one should expect the (quasi-) periodic
behaviour due to the shift of the multiphoton reso-
nances. Below we analyse this issue in terms of the
shift of the multiphoton resonances following Ref. 26.
Alternatively the quasi-periodic behaviour of the pro-
bability can be described in terms of the sequential
Landau—Zener transitions with the quantum-mecha-
nical interference between the transition events taken
into account as in Ref. 21.

Consider first, for simplicity, the case of the zero
offset, xoff � 0. In this case the position of the reso-
nances in the dependence of the occupation probabil-
ity on the system’s parameters is determined by the
following equation [26]:
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is the complete elliptic

integral of the second kind and q x /� 0 � . The pa-
rameter q is the key parameter of the problem; con-
sider two limiting cases: that of weak driving, q �� 1,
and that of very strong driving, q �� 1 (the term
«strong driving» we reserve for the case q � 1); from
Eq. (2) it follows that

�E K q� ����, 1 (3)
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The first relation defines the multiphoton resonances,
when the energy level separation, � �E � 2 , is a multi-
ple of a photon energy ��. The resonances determined
by Eq. (3) can be observed in the dependence of the
occupation probability on � or �, but not in the
dependence on x0. In the second case, the resonances,
determined by Eq. (4) can be observed in the depen-
dence on � or x0, but not in the dependence on �; in
this case equation (4) also implies periodic (or quasi-pe-
riodic) dependence on the parameter � �� 4 0x /� ,
which was studied in Refs. 21 and 23. For the strong
driving, q � 1, the resonances are expected in dependen-
cies on each of the three parameters: �, x0, and �.
Thus, we expect to find in the regime of the strong
driving features typical for the two limiting cases:
(i) quasi-periodic resonant dependence on x0 and

(ii) the resonances to appear in the dependence on �
(with their positions being dependent on x0).

Consider the PBCPB [15–19,23] excited through
the gate electrode. The PBCPB is the small supercon-
ducting island, which is connected via two Josephson
junctions (characterized by energies EJ12, and phase
differences �12, ) to the ring with low inductance L
(which is pierced by the magnetic flux �e) and via
the capacitance Cg to the gate with voltage Vg . The
PBCPB is described by the Hamiltonian:

� � ( sin ) � ,( ) ( )H E n n tJ
x C g g z� 
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where the Coulomb energy of the island with the to-
tal capacitance Ctot is E e / CC � 2 2 tot ; the effective
Josephson energy is

� �J J J J J
/E E E E� � �( cos )1
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1 22 ;

the total phase difference, � � �� �1 2, is approxi-
mately equal to 2 0�� �e/ ; and the dimensionless gate
voltage is n t n n tg g g( ) sin( ) ( )� � �0 1 � C V t /eg g( ) . The
Hamiltonian of the PBCPB (5) coincides with the
above Hamiltonian (1) introduced, with the sub-
stitutions: � � � �J /( ) 2, x E nC goff � 
 
2 1 0( )( ) , and
x E nC g0

12� ( ).
Now the parameter q is given by q E n /C g J� 4 1( ) � .

Thus both limiting cases — of weak and of very strong
driving — described above, can in principle be real-
ized in the PBCPB [23], where the domination of the
Coulomb energy of a Cooper pair 4EC over the cou-
pling energy �J is assumed, 4 1E /C J� � . In Ref. 11 we
have studied the case of weak driving, and here we
study the case of strong driving, q � 1, in detail.

We will study the dependencies on ng
( )1 and on � to

demonstrate features (i) and (ii). The occupation
probabilities of the PBCPB are assumed to be probed
by the tank circuit, which is weakly coupled through
the mutual inductance M to the PBCPB [27,28]. The
average current � ��I through the PBCPB is related to
the phase shift between the voltage and current �,
when the tank circuit with the capacity CT , the resis-
tance RT , and the inductance LT is driven at the reso-
nant frequency �T T T/ L C� 1 , as follows [11]:

tan
�

�
�
��

� k QL
e I2 2
�

� �
, (6)

where Q C RT T T
� �1 � , k M / L LT

2 2� �( ). To obtain
the expectation value for the current in the qubit’s ring,
� � �� (� �)I ITr � , we solve numerically the Bloch equations
for the reduced density matrix ��, as we did in Ref. 11.
These equations describe the relaxation and dephasing
processes by including phenomenologically the corre-
sponding rates �relax and ��.
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In Fig. 1 we plot the time-averaged upper level oc-
cupation probability P as a function of the amplitude
ng

( )1 at � �� by making use of the solution of the Bloch
equations. The case of ng

( )0 1� (that is xoff � 0) differs
from the case of ng

( )0 1� (xoff � 0) by the appearance
of the additional peaks, which was discussed in
Refs. 21 and 23. We point out that similar depend-
ence, which illustrates the feature (i), in the case
xoff � 0 can be calculated alternatively by making use
of other approaches, namely with Eq. (13) from Ref.
26 and with Eq. (17) from Ref. 21. The numerical so-
lution of the Bloch equations allows us to overcome
the restrictions of the analytical works: in Ref. 26 nei-
ther decoherence nor xoff � 0 were taken into account
while in Ref. 21 the assumption of very strong driving
was done, which, for example, excludes the feature
(ii), as it was explained above.

Since at � �� the phase shift � is proportional to
the time-averaged difference between the ground and
excited state occupation probabilities [11], 1 2
 P,
Fig. 1 presents also the dependence of � on ng

( )1 . In
Fig. 2 the dependence of the phase shift � on the total
phase difference � is plotted for different amplitudes
ng

( )1 . Note that, as it was explained in Ref. 11, the
dependence of the phase shift � on � has hyper-
bolic-like character in the vicinity of the resonances.
The parameters of the system taken for the Figs. 1 and
2 are the following: E /EJ C1 4 5� . , E /EJ C2 4� ,
��/EC � 0 25. , k Q e LE /C

2 2 22 0 01� � . ; the tempera-
ture was considered to be zero (i.e. much less than
E EJ J1 2
 ); the relaxation and dephasing rates we
considered to be the functions of the energy level se-
paration: � �relax, � � �E( )� [1] (we have taken
� �relax � �� 0 01. ).EC

In conclusion, we have clarified from analytical
consideration the qualitative difference between the
weak driving of a TLS and very strong driving. Then
the strongly driven PBCPB was studied. The numeri-

cal results (Figs. 1 and 2) demonstrated that (i) the
dependence of the tank phase shift � on the amplitude
ng

( )1 at � �� has resonant quasi-periodic character and
(ii) the resonances appear in the dependence on the
phase difference � as the amplitude-dependent hyper-
bolic-like structures. We point out that the dependen-
cies, characterized by the features (i) and (ii), similar
to Figs. 1 and 2, were observed experimentally [24].
And also similar to Fig. 1 quasi-periodic dependence
of the upper level occupation probability on the driv-
ing (microwave) amplitude was observed in the super-
conducting TLS based on a large Josephson-junction
in Fig. 6 of Ref. 5.

We thank the authors of Ref. 24 for communication
of their experimental results prior to the publication
and E. Il’ichev, W. Krech, and V.I. Shnyrkov for
fruitful discussions. The authors acknowledge the
grant «Nanosystems, nanomaterials, and nanotech-
nology» of the National Academy of Sciences of
Ukraine. The work of S.N.S. was partly supported by
grant of President of Ukraine (No. GP/P11/13).

Note added. During the preparation of the ma-
nuscript we became aware that similar works on
strongly driven superconducting systems have ap-
peared [29,30]. Those articles are devoted to the ex-
perimental and theoretical study of the interference
fringes in the strongly driven Cooper-pair transistor
[29] and the flux qubit [30].
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