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Quantum stochastic processes:
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Dynamics of quantum systems which are stochastically perturbed by lin-
ear coupling to the reservoir can be studied in terms of quantum stochastic
differential equations (for example, quantum stochastic Liouville equation
and quantum Langevin equation). In order to work it out one needs to de-
fine the quantum Brownian motion. As far as only its boson version has
been known until recently, in the present paper we present the definition
which makes it possible to consider the fermion Brownian motion as well.
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The description of time-dependent behavior of non-equilibrium systems involv-
ing stochastic forces can be given with the help of the Langevin equation. It is the
stochastic differential equation for dynamic variables and is of fundamental impor-
tance in the theory of Brownian motion [1,2]. Random forces in Langevin equation
are usually described by Gaussian white stochastic processes [3] since such a descrip-
tion is a convenient model for the processes with short correlation times. Similarly,
from the mathematical point of view, white noise can be considered to be a limit
of some well specified stochastic processes. Stochastic integral with respect to such
processes is defined as a kind of a Riemann-Stieltjes one [4] where multiplication
between the stochastic increment and integrand is commonly considered in the form
of Itô [5] or Stratonovich [6].

The Langevin equation can be used to calculate various time correlation func-
tions. Now it is radically extended to solve numerous problems arising in different
areas [7–11]. In particular, the theory of Brownian motion itself has been extended
to the situations where the “Brownian particle” is not a real particle anymore, but
instead it possesses some collective properties of a macroscopic system. A corre-
sponding equation in the phase space or the Liouville space of quantum mechanical
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statistical operators can be also considered as a sort of stochastic differential equa-
tion. In order to investigate classical stochastic systems, the stochastic Liouville
equation was first introduced by Anderson [12] and Kubo [13–15].

There were several attempts to extend the classical theory (both Langevin and
stochastic Liouville equations) to the quantum cases. Study of the Langevin equa-
tion for quantum systems has its origin in papers by Senitzky [16], Schwinger [17],
Haken [18–20] and Lax [21], where they investigated a quantum mechanical damped
harmonic oscillator in connection with laser systems. In particular, it was shown that
the quantum noise, i.e. the spontaneous emission, can be treated in a way similar
to the thermal fluctuations, and that the noise source has non-zero second moments
proportional to a quantity which can be associated with a quantum analogue of a
diffusion coefficient. As it was noticed by Kubo [22] in his discussion with van Kam-
pen, the random force must be an operator defined in its own Hilbert space, which
does not happen in the classical case since there is no consideration of space for the
random force.

Mathematical study of the quantum stochastic processes was initiated by Davies
[23,24]. Essential progress in this subject has been made by mathematicians [25–31].
For instance, quantum mechanical analogues of Wiener processes [25] and quantum
Itô formula for boson systems [26,27] were defined first by Hudson and co-authors.
The classical Brownian motion is replaced here by the pair of one-parameter unitary
group automorphisms, namely by the boson random force annihilation and creation
operators with time indices in the boson Fock space, named quantum Brownian
motion. Fermion stochastic calculus was first suggested by Applebaum, Hudson and
Parthasarathy [32–35]. In these papers, they developed the fermion analog of the
corresponding boson theory [27] in which the annihilation and creation processes
are fermion field operators in the fermion Fock space. Within the framework of this
formalism, the Itô-Clifford integral [36] – fermion analog of the classical Brownian
motion – is contained as a special case.

In this paper we give the definition of boson and fermion Brownian motion
following the approach suggested by Hudson and Parthasarathy [27,34]. We do not
pay much attention to purely mathematical aspects of the subject. Instead of that we
try to represent the material in the terms which are easy for physicists to understand.
We also consider quantum Brownian motion with allowance for thermal degree of
freedom.

Let Γ0
s denote the boson Fock space (the symmetric Fock space) over the Hilbert

space H = L2(R+) of square integrable functions, and bt and b
†
t denote, respectively,

boson annihilation and creation operators at time t ∈ [0,∞) satisfying the canonical
commutation relations

[bt, b
†
s] = δ(t− s), [bt, bs] = [b†t , b

†
s] = 0. (1)

The bra- and ket-vacuums (| and |), respectively, are defined by (|b†t = 0 and bt|) = 0.
The space Γ0

s is equipped with a total family of exponential vectors

(e(f)| = (| exp

{
∫ ∞

0

dt f ∗(t)bt

}

, |e(g)) = exp

{
∫ ∞

0

dt g(t)b†t

}

|), (2)
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whose overlapping is (e(f)|e(g)) = exp
{∫ ∞

0
dt f ∗(t)g(t)

}

. Here f, g ∈ H. The dense

span of exponential vectors we denote by E. Operators bt, b
†
t and exponential vectors

are characterized by the relations (e(f)|b†t = (e(f)|f ∗(t) and bt|e(g)) = g(t)|e(g)).
Let us introduce operator Ut defined as

Ut = σ<P[0,t] + σ>P(t,∞), (3)

where σ< and σ> are two independent parameters taking values ±1, and P[a,b] (a6b)
is an operator on H of multiplication by the indicator function whose action reads

P[a,b]

∫ ∞

0

dt g(t) =

∫ ∞

0

dt θ(t− a)θ(b− t)g(t). (4)

Here, θ(t) is the step function specified as

θ(t) =

{

1, t > 0,
0, t < 0.

(5)

Operator P[a,b] has the following properties:

P 2
[a,b] = P[a,b], P

†

[a,b] = P[a,b], P[a,b]P[c,d] = P[c,d]P[a,b], (6)

which are easily verified using definition (4). Then we see that operator Ut is unitary,
and satisfies

U2
t = I, U

†
t = Ut, UtUs = UsUt, (7)

where I is the identity operator. The so-called reflection process Jt ≡ Jt(Ut), t ∈ R+,
whose action on E is given by [34]

Jt|e(g)) = |e(Utg)) = exp

{

Ut

∫ ∞

0

dt′ g(t′)b†t′

}

|), (8)

inherits properties of the operator Ut (7), i.e.

J2
t = I, J

†
t = Jt, JtJs = JsJt, (9)

and does not change the vacuum: (|Jt = (|, Jt|) = |).
Let us now consider new operators

bt = Jtbt, b
†
t = b

†
tJt. (10)

Apparently, they annihilate vacuums: (|b†
t = 0, bt|) = 0. The following matrix

elements

(e(f)|[Jt, bs]−σ|e(g)) = (e(f)|{1− σ[σ> + (σ< − σ>)θ(t− s)]}g(s)Jt|e(g)), (11a)

(e(f)|[bt, b
†
s]−σ|e(g)) = (e(f)|{δ(t− s) + JtJs(σ>σ< − σ)f ∗(s)g(t)}|e(g)), (11b)
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are valid for f, g ∈ H, where for arbitrary operators A and B the (anti-)commutator
is defined as

[A, B]−σ = AB − σBA, σ = ±1. (12)

Then the requirement of equal-time (anti-)commutativity between Jt and bt, i.e.
[Jt, bt]−σ = 0, gives 1− σσ< = 0, while the requirement of canonical (anti-)commu-
tation relation

[bt, b
†
s]−σ = δ(t− s) (13)

leads to σ>σ<−σ = 0. All those conditions are satisfied when σ< = σ and σ> = +1.
Then the operator Ut turns out to be

Ut = σP[0,t] + P(t,∞). (14)

Note that for a boson system, i.e. σ = 1, Ut = I and the operators bt and b
†
t reduce,

respectively, to bt and b
†
t .

We see that the generalized quantum Brownian motion, defined by

Bt =

∫ t

0

dt′ bt′ , B
†
t =

∫ t

0

dt′ b
†
t′ , (15)

with B0 = 0, B
†
0 = 0, satisfies [Bt, B

†
s]−σ = min(t, s). The case σ = 1 represents

the boson Brownian motion [27,30], whereas the case σ = −1 represents the fermion

Brownian motion [34]. Their increments annihilate the vacuum, i.e.

dBt = Bt+dt −Bt = btdt, dBt|) = 0, (16a)

dB
†
t = B

†
t+dt −B

†
t = b

†
tdt, (|dB

†
t = 0, (16b)

and their matrix elements read

(e(f)|dBt|e(g)) = (e(f)|Jtg(t)dt|e(g)), (e(f)|dBtdBt|e(g)) = 0, (17a)

(e(f)|dB
†
t |e(g)) = (e(f)|f ∗(t)dtJt|e(g)), (e(f)|dBtdB

†
t |e(g)) = dt(e(f)|e(g)).

(17b)

Here we neglected the terms of the order higher than dt. The latter equations are
summarized in the following table of multiplication rules for increments dBt and
dB

†
t :

dBt dB
†
t dt

dBt 0 dt 0

dB
†
t 0 0 0

dt 0 0 0

(18)

Quantum stochastic calculus with consideration for thermal degree of freedom
can be derived within the framework of Non-Equilibrium Thermo Field Dynamics
(NETFD). It is a unified formalism, which enables us to treat dissipative quantum
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systems by the method similar to the usual quantum mechanics and quantum field
theory, which accommodates the concept of the dual structure in the interpretation
of nature, i.e. in terms of the operator algebra and the representation space. Infor-
mation about the general structure of NETFD can be found in many papers and we
first of all refer to the original source [37] and to the review article [38]. With that in
mind, we now consider a tensor product space Γ̂ = Γ0

s⊗ Γ̃0
s. Its vacuum states |)) and

exponential vectors |e(f, g))) are defined through the “principle of correspondence”
[37]

|)) ←→ |)(|, (19a)

|e(f, g))) ←→ |e(f))(e(g)|. (19b)

Annihilation and creation operators acting on Γ̂ are defined through

bt|e(f, g)))←→ bt|e(f))(e(g)|, b̃t|e(f, g)))←→ |e(f))(e(g)|b†t , (20a)

b
†
t |e(f, g)))←→ b

†
t |e(f))(e(g)|, b̃

†
t |e(f, g)))←→ |e(f))(e(g)|bt, (20b)

and similarly for Jt and J̃t, i.e.

Jt|e(f, g)))←→ Jt|e(f))(e(g)|, J̃t|e(f, g)))←→ |e(f))(e(g)|Jt. (21)

Algebra of commutation relations between these operators reads

[bt, b
†
s] = [b̃t, b̃

†
s] = δ(t− s), [bt, b̃s] = [bt, b̃

†
s] = 0, (22a)

[Jt, b̃s] = [J̃t, bs] = 0, [Jt, bt]−σ = [J̃t, b̃t]−σ = 0. (22b)

Let us now consider new operators defined by

bt = Jtbt, b
†
t = b

†
tJt, (23a)

b̃t = τ̂ J̃tb̃t, b̃
†
t = τ̂ b̃

†
t J̃t, (23b)

where τ̂ is an operator whose characteristic is determined to ensure the (anti-)com-
mutation relations

[bt, b̃s]−σ = [bt, b̃
†
s]−σ = 0, (24a)

[bt, b
†
s]−σ = [b̃t, b̃

†
s]−σ = δ(t− s). (24b)

First of all, we require that it should commute with Jt and J̃t, and (anti-)commute
with bt and b̃t, i.e. [τ̂ , Jt] = [τ̂ , J̃t] = 0 and [τ̂ , bt]−σ = [τ̂ , b̃t]−σ = 0. Other properties
of the operator τ̂ can be derived using definitions (23). For example, from (23b) one
has

[b̃t, b̃
†
s]−σ = στ̂ 2[J̃tb̃t, b̃

†
sJ̃s]−σ = στ̂ 2δ(t− s), (25)

which gives τ̂ 2 = σ. On the other hand, commutativity of tilde conjugation and
hermitian conjugation, i.e. (b̃t)

† = (b†
t)

∼, means τ̂ † = στ̂ . From the requirement that
(b̃t)

∼ = bt and noting that (b̃t)
∼ = τ̂ (τ̂)∼Jtbt = τ̂ (τ̂)∼bt, one obtains (τ̂ )∼ = τ̂ †.
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Thermal degree of freedom can be introduced by the Bogolubov transformation
in Γ̂. For this purpose we require that the expectation value of b

†
tbs should be

〈b†
tbs〉 = n̄δ(t− s) (26)

with n̄ ∈ R+, where 〈. . .〉 = 〈| . . . |〉 indicates the expectation with respect to tilde
invariant thermal vacuums 〈| and |〉. The requirement (26) is consistent with the
thermal state conditions for states 〈| and |〉 such that

〈|b̃†
t = τ ∗〈|bt,

b̃t|〉 =
τ n̄

1 + σn̄
b
†
t |〉,

τ =
√

σ. (27)

Let us introduce annihilation and creation operators

ct = [1 + σn̄]bt − στn̄b̃
†
t , (28a)

c̃
+
◦

t = b̃
†
t − στbt, (28b)

and their tilde conjugates. From (27) one has 〈|c+
◦

t = 〈|̃c+
◦

t = 0 and ct|〉 = c̃t|〉 = 0.
With the thermal doublet notations

b̄
µ
t = (b†

t ,−τ b̃t), b
ν
t = collon(bt, τ b̃

†
t), (29)

c̄
µ
t = (c+

◦

t ,−τ c̃t), c
ν
t = collon(ct, τ c̃

+
◦

t ), (30)

(28) and their tilde conjugates can be written in the form of the Bogolubov trans-
formation

c
µ
t = Bµνbν

t ,

c̄
ν
t = b̄

µ
t [B

−1]µν ,
Bµν =

(

1 + σn̄ −σn̄

−1 1

)

. (31)

This transformation is canonical since new operators satisfy canonical (anti-)com-
mutation relations

[ct, c
+
◦

s ]−σ = δ(t− s). (32)

In the following, we will use the representation space constructed on vacuums
〈| and |〉. Note that 〈| 6= |〉†, i.e., it is not a unitary representation. Let Γ̂β denote
the Fock space spanned by the basic bra- and ket-vectors introduced by a cyclic
operations of ct, c̃t on the thermal bra-vacuum 〈|, and of c

+
◦

t , c̃
+
◦

t on the thermal ket-
vacuum |〉. Quantum Brownian motion at finite temperature is defined in the Fock
space Γ̂β by operators

B
]
t =

∫ t

0

ds b
]
s, B̃

]
t =

∫ t

0

ds b̃
]
s, (33)

with B
]
0 = 0 and B̃

]
0 = 0, where ] stands for null or dagger. The explicit rep-

resentation of processes B
]
t and B̃

]
t can be performed in terms of the Bogolubov

transformation. The couple Bt and B
†
t , for example, is calculated as

Bt =

∫ t

0

ds
[

cs + στn̄c̃
+
◦

s

]

= Ct + στn̄C̃
+
◦

t , (34a)

B
†
t =

∫ t

0

ds
[

[1 + σn̄]c+
◦

s + τ c̃s

]

= [1 + σn̄]C+
◦

t + τ C̃t, (34b)
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where we defined new operators

C
]
t =

∫ t

0

ds c
]
s, C̃

]
t =

∫ t

0

ds c̃
]
s, (35)

with C
]
0 = 0 and C̃

]
0 = 0, and ] standing for null or the Venus-mark. Since matrix

elements of dC
]
t and dC̃

]
t in thermal space Γ̂β read

〈dCt〉 = 〈dC̃t〉 = 0, 〈dC
+
◦

t dCt〉 = 〈dC̃tdC̃
+
◦

t 〉 = 0, (36a)

〈dC
+
◦

t 〉 = 〈dC̃
+
◦

t 〉 = 0, 〈dCtdC
+
◦

t 〉 = 〈dC̃
+
◦

t dC̃t〉 = dt, (36b)

the calculation of moments of quantum Brownian motion in the thermal space Γ̂β

can be performed, for instance, as

〈dBtdB
†
t〉 =

〈(

dCt + στn̄dC̃
+
◦

t

)(

[1 + σn̄]dC
+
◦

t + τdC̃t

)〉

= [1 + σn̄]〈dCtdC
+
◦

t 〉
= [1 + σn̄]dt. (37)

Repeating this for other pair products of dB
]
t, dB̃

]
t and dt, multiplication rules for

these increments can be summarized in the following table:

dBt dB
†
t dB̃t dB̃

†
t dt

dBt 0 [1 + σn̄]dt τ n̄dt 0 0

dB
†
t n̄dt 0 0 τ [1 + σn̄]dt 0

dB̃t στn̄dt 0 0 [1 + σn̄]dt 0

dB̃
†
t 0 στ [1 + σn̄]dt n̄dt 0 0

dt 0 0 0 0 0

(38)

As far as we know, the result (38) is the first report about quantum boson and

fermion stochastic calculus valid for the stationary non-equilibrium case. Similar
result for a purely boson system was obtained in [39]. In [40] we derive stochastic
calculus valid for both stationary and non-stationary cases and use them for the
analysis of quantum stochastic differential equations. The obtained equations include
quantum Langevin equation and quantum stochastic Liouville equation together
with the corresponding master equation. The Fokker-Planck equation is derived by
taking the random average of the corresponding stochastic Liouville equation. The
relation between the Langevin equation and the stochastic Liouville equation, as
well as between the Heisenberg equation for the operators of gross variables and the
Fokker-Planck equation obtained there, is similar to the one between the Heisenberg
equation and the Schrödinger equation in quantum mechanics and field theory. The
application of quantum stochastic differential equations in particular problems will
be presented elsewhere.
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Квантове стохастичне числення: бозонний та

ферміоний броунівський рух

О.Є.Кобрин 1,2 , Ц.Хаяші 1 , Т.Аріміцу 1

1 Інститут фізики Університету м. Цукуба,
Японія, префектура Ібаракі 305-8571

2 Інститут молекулярних досліджень, Міодаіджі,
Японія, м. Оказакі, префектура Аічі 444-8585

Отримано 5 вересня 2003 р.

Динаміка квантових систем, що зазнають збурення через лінійну

взаємодію із термостатом стохастично, може бути описана за до-
помогою квантових стохастичних диференціальних рівнянь (напри-
клад, квантового стохастичного рівняння Ліувіля, або квантового

рівняння Ланжевена). Для цього необхідно дати означення кванто-
вого броунівського руху. Оскільки донедавна воно було наведене

лише для бозонних систем, у даній роботі показується як таке озна-
чення можна ввести у випадку ферміонних систем.

Ключові слова: стохастичні процеси, бозонний броунівський рух,
ферміонний броунівський рух
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