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Recent important results are briefly presented concerning the screening
of high-Z impurities in colloidal plasmas. The review focuses on the phe-
nomenon of nonlinear screening and its effects on the structure of colloidal
plasmas, the role of trapped ions in grain screening, and the effects of
strong collisions in the plasma background. It is shown that the above ef-
fects may strongly modify the properties of the grain screening giving rise
to considerable deviations from the conventional Debye-Hückel theory as
dependent on the physical processes in the plasma background.
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1. Introduction

Screening of charged objects embedded in a plasma background is one of the
important problems of plasma physics, which attracted the attention of researchers
during decades. Our interest in this issue is connected, first of all, with its im-
plications in spatial ordering phenomena in colloidal plasmas (CP) such as dusty
plasmas (DP) or charged colloidal suspensions (CCS). CP consist of a large number
of highly charged (Z ' 103−105) colloidal particles of submicron size immersed in
a plasma background. Experiments have revealed a number of collective effects in
CP, in particular, the formation of Coulomb liquids or crystals associated with the
strong Coulomb coupling in the colloidal subsystem [1–5]. It is clear that the proper-
ties of grain screening play therewith an important role, since the effective screened
potentials produce the most significant contributions to the grain-grain interactions
and thus determine collective properties of the colloidal component in CP.

The simplest approach conventionally employed in describing the grain screening
in CP is the Debye-Hückel (DH) approximation, or, its modification for the case of
the grain of finite size, the DLVO theory [6,7]. The DH approximation represents the
version of Poisson-Boltzmann (PB) approach linearized with respect to the effective
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potential based on the assumption that the system is in the state of thermodynamic
equilibrium. The DH theory yields the effective interparticle interaction in the form
of the so-called Yukawa potential which constitutes the basis for the Yukawa model.

Extensive molecular dynamics and Monte Carlo (MC) computer simulations per-
formed for the Yukawa system (YS) [8–10] indicate that the latter makes it possible
to explain the formation of condensed state in CP. However, it is clear that an ac-
curate description of grain screening in CP requires more accurate approaches. Let
us point out some important issues which should be primarily taken into account.

Firstly, these are the nonlinear effects in grain screening. Simple estimates evi-
dence that the magnitude of the ratio eφ/kBT (where e is the electron charge, φ is
the potential, kB and T are the Boltzmann constant and the temperature, respec-
tively), which determines the significance of nonlinear effects, is of the order of ' 10
near the grain surface in real experiments on DP and CCS. This means that the
linear approximation may fail in this case.

Secondly, a distinguishing feature of DP is that the charge of dust grains is
maintained by plasma currents to the grain surface. Thus, DP are far from thermo-
dynamic equilibrium even in the steady state. In these conditions, the Boltzmann
distribution for plasma particles does not hold, which makes the equilibrium PB as
well as the DH theory inapplicable. In other words, the kinetic description of grain
screening is needed. Note that in this case the properties of grain screening may
essentially depend on the presence of collisions in the plasma background.

It should be pointed out that the above issues have been the subject of numerous
studies, where a number of important results have been obtained. The effects of
nonlinear screening in the thermodynamically equilibrium case of CCS were studied
in references [11–13]. It was found that in the presence of nonlinear effects, the
effective potential at distances can be described by the linear Debye theory. However,
the effective charge is smaller here than the bare grain charge.

A basic reference model for the case of collisionless plasma background with re-
gard to the absorption of plasma particles by the grain, the OML theory, has been
initiated by the paper of Bernstein and Rabinovitz [14]. As mentioned in this work,
the asymptotic behavior of the screened potential for collisionless case is inversely
proportional to the square distance. The authors also formulate here the question
about the role of the bound ionic states in the grain screening. Later on the OML
theory and the closely related collisionless approaches have been developed in nu-
merous works [15–22]. The particular interest to the collisionless case is due to its
industrial implications and due to the fact that the laboratory and astrophysical
DP may be considered collisionless in most of the cases with a good accuracy. It
was found that within the range of plasma parameters and grain sizes typical of the
experimental observations, the effective potentials in the vicinity of the grain ap-
proach the predictions of DH theory, i.e., the allowance for being charged by plasma
currents does not considerably affect the properties of screening.

Let us say a few words about the role of bound ionic states. In most of the
literature, the effects related to the ions trapped by negatively charged grains are
neglected. Nevertheless, it is a priori unclear to what extent the properties of screen-
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ing can be affected by the presence of the bound states. An attempt to give some
insight into this problem is made in references [14,19–22].

Strictly speaking, the relative contribution of bound states within the collisionless
models is in principle indeterminate, which is, eventually, the consequence of the
time-reversibility of Vlasov equation. The matter is that the stationary solutions
of the Vlasov equation are dependent on the way the steady state of the system is
formed. Thus, to tackle this problem, one has to employ additional considerations
or principles in evaluating the number of the trapped ions.

As mentioned above, this problem was originally pointed out in the work [14].
The authors related the generation of bound states to the ion collisions. Recently,
this idea was used while considering the presence of trapped ions in both analytical
[21,22] and numerical [23] studies. These papers give answers to a number of im-
portant questions but many aspects of the problem still remain open. In particular,
the bound ion distributions found in references [21,22] in the approximation of small
collision frequency based on the calculations of free and bound ion balance, do not
exhaust the variety of many other distributions which could exist in the absence of
collisions.

The opposite case of strongly collisional plasma background is much less exam-
ined. In references [24–26] the grain screening has been studied based on the con-
tinuous drift-diffusion (DD) approximation. The effects of grain charging by plasma
currents are essential in this case and the effective screened field considerably de-
viates from the predictions of DH theory. The main conclusion of the authors is
that the effective potentials can be still fitted by DH theory, though, with effective
parameters, and the screening length is, typically, longer than the Debye radius.

The goal of this paper is to give a concise review of further important results on
the above issues recently obtained in [27–31].

2. Nonlinear phenomena in the grain screening and the struc-
ture of colloidal plasmas

In the case of thermodynamic equilibrium, an accurate description of nonlinear
effects in grain screening can be obtained within the Poisson-Boltzmann (PB) ap-
proach describing the plasma as a two-component gas with Boltzmann distribution.
The relevant equation for the case of a single spherical high-Z grain of a radius a in
a plasma background reads

∆ϕ(r) = −4πen

{

exp

[

−eϕ(r)

kT

]

− exp

[

eϕ(r)

kT

]}

, (1)

with the boundary conditions for the effective self-consistent potential ϕ

ϕ′(a) = Ze/a2, ϕ(∞) = 0,

specifying the electric field on the grain surface and the potential at infinity. Here e is
the charge of a positively charged plasma particle and n is the plasma concentration
at infinity.
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The conventional treatment based on the assumption

eϕ

kT
� 1 (2)

yields, after linearization with respect to ϕ, the well-known DLVO solution [6,7]

ϕ(r) =
Z ′e

r
exp

(

− r

rD

)

(3)

with the effective charge

Z ′ = Z
exp(a/rD)

1 + a/rD

, (4)

where rD denotes the Debye screening length.
It is clear that at short distances the condition (2) is definitely violated. Thus,

the transition a → 0 with the DH limit

ϕD(r) =
Ze

r
exp

(

− r

rD

)

(5)

is incorrect. In other words, in the case of a grain of a small size the nonlinear effects
in screening may be significant and the applicability of equations (3,4) would break
down.

To estimate the validity of the linear approximation, it is convenient to introduce
the plasma-grain coupling

χ =
Ze2

kTa
giving the potential-to-kinetic energy ratio for a plasma particle on the grain surface.
As mentioned above, its magnitude for DP and CCS with high-Z impurities is of
the order of ' 10, which casts doubt on the validity of the linear DH theory for the
description of screening.

Below we consider the problem of screening of a finite-size charge Z in a plasma
background for the range χ ' 1 − 50 in two ways. The first one is the accurate
numerical solution of the above PB equations. The other one is the method of MC
computer simulations providing a microscopic description of screening.

The PB boundary problem (1) has been solved numerically, by using the shoot-
ing method and the second-order Runge-Cutta numerical algorithm [32]. The MC
simulations of screening were performed for the NVT-ensemble using the conven-
tional Metropolis algorithm [33], within the finite model with the microscopic two-
component plasma background represented by a large number of charged hard
spheres confined in a spherical volume with the grain fixed in the centre. The goal of
computations was the effective screened potential ϕ(r) and the charge distribution
function Q(r) defined as the ratio of the total charge residing within a sphere of a
radius r to the grain charge.

Let us say a few words about the choice of parameters. The PB theory is based
on the notion of the mean field, which loses its sense for strongly coupled plasma
background, in the case that

Γ =
e2

kTd
> 1,
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Figure 1. Comparison of the relative charge distributions near the charged grain
obtained within the linear DH approximation (dashed line), nonlinear PB theory
(solid line), and MC simulations (symbols) for Z = 25, Γ = 0.1. The plasma-grain
coupling is χ = 20 (left), and χ = 2 (A), 10 (B), 20 (C) (right).

as the plasma correlations become significant. Here d = (4πn)−1/3 is the average
distance between plasma particles. Typical of CP are the values Z � 1, Γ � 1.
Hereinafter we give the comparison of the results obtained within the two above
approaches for Z = 25, Γ = 0.1 and 0.05, χ = 2, 10, 20.

Figure 2. Relative effective charge Z∗ vs.
grain radius, determined as Z∗ = ϕ/ϕD

at r � a; Z = 25, Γ = 0.1 (A), 0.05
(B). The line (C) corresponds to the lin-
ear DLVO approximation; the dashed line
is the DH theory.

As follows from our computations,
both approaches evidence (at strong
plasma-grain coupling, and in a distinct
contrast with the linear DH theory) the
existence of an interesting effect con-
nected with the accumulation of plas-
ma charge on the grain surface (“plas-
ma condensation”), which sharply af-
fects the characteristics of screening,
figures 1,2. While the asymptotic be-
havior of the screened potential at long
distances retains its Yukawa-like form
given by equation (5), the magnitude
of the effective charge Z∗ can be well
described by the DLVO theory only for
small χ. For stronger plasma-grain cou-
pling, in a sharp contrast with the pre-
dictions of linear screening theory, the
effective charge approaches zero, which
evidences a pronounced enhancement
of screening in this case.
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An important point is the existence of a critical magnitude of this parameter,
χ ' 4 weakly depending on the other plasma parameters. It is interesting to note
that this critical magnitude is much larger than unity, which means that the linear
screening approximation is quite accurate even for the expansion parameter (2)
ranging up to ' 4 − 5.

It is clear that the above phenomenon of nonlinear screening is of importance
to the structural properties of CP. Its effect on the phase diagram for CCS can be
illustrated based on the model of effective intergrain forces in the following way.

As mentioned above, the basic reference system of CP based on the notion of
effective interaction is the Yukawa-system with the interparticle effective potential
given by

V (x)

kBT
=

Γ

x
exp

(

− x

∆

)

, (6)

with two dimensionless parameters: the coupling Γ and the screening length ∆; x is
the dimensionless distance.

Our study employs the connection between the dimensionless parameters Γ and
∆ of a YS and the microscopic parameters of CP, which can be established as follows.

Let us consider a two-component asymmetric strongly coupled plasma, which is
the simplest example of CP. Here a good microscopic model appears to be a system
of charged hard spheres interacting through Coulomb forces. In case the size of a
plasma particle is negligibly small (in agreement with physical situation in CP), such
a system can be described by three dimensionless parameters, such as the packing
fraction for the colloidal component

v =
nπσ3

6
,

the charge asymmetry Z, and the plasma-grain coupling χ.
Under the assumption that the screening of the grains is produced purely by

plasma background and that the screening can be described in terms of the linear
DH theory for point charges, one easily gets the effective interaction in the form (6),
with the parameters of YS determined by

Γ =
Z2e2

kBTd
, (7)

∆ = rD/d, (8)

and the dimensionless distance specified as x = r/d. Here d = (4πnc)
−1/3 is the

average distance between colloidal plasma particles; rD = (4πnbge
2/kBT )−1/2 is the

Debye screening length produced by the single plasma component.
Thus, the parameters entering the effective Yukawa interaction are expressed

herewith via the microscopic plasma parameters. Our further considerations are
based upon the idea that the properties of CP can be described by an effective
pair interaction in the form (6) even in the case that the nonlinear screening is
significant. As mentioned above and shown in [13], the effective screened potential
retains in this case the Yukawa-like form at long distances. The effective charge,
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however, should be found from the exact solution of the relevant PB equation; the
background density nbg, which determines the Debye length, is assumed to be equal
to the average plasma background concentration. Within such an approach, the
account of nonlinear effects reduces to re-scaling the well known melting curve for
YS [9] with the use of the relevant effective charge Z∗ instead of the bare charge

Z. This latter can be evaluated by numerically solving the nonlinear PB equation
for a single grain in one-component plasma background in a spherical cell with
relevant parameters. An important point is that due to the connection between the
microscopic parameters of two-component asymmetric plasmas and the parameters
of the Yukawa model one can obtain important qualitative conclusions about a
minimal charge asymmetry Zmin needed for the formation of Coulomb lattices in
CP. Namely, there is a connection between the parameters Z, Γ and ∆:

Z = Γ∆2, (9)

which is the consequence of the relations (7), (8) and the global charge neutrality
condition Zn = nbg. Therefore, the parameter Z specified via equation (9), which
has the physical meaning of charge asymmetry, can be used for the description of YS
instead of coupling Γ. In other words, the relation (9) makes it possible to transfer
the melting curves onto the Z − ∆ plane.

Figure 3. Melting curves for colloidal
plasmas in Z − ∆ plane. Solid line: v =
5 · 10−2; long dashes: v = 5 · 10−3; short
dashes: v = 5 · 10−4. Nonlinear screening
effects in shifting the melting curves to
higher values of asymmetry Z at small
packing fractions.

The results of computations of the
melting curves are given in figure 3.
As can be seen, there exists a minimal
charge asymmetry Zmin = 355 need-
ed in order to obtain a crystal state.
The same conclusion and a close val-
ue of Zmin = 360 was obtained in [34]
based on the Lindemann melting criteri-
on for the case of specific effective grain-
grain forces. The lower melting curve
in the figure 3 is close to that given in
that work. However, we see that the al-
lowance for the nonlinear screening re-
sults in shifting the melting curves to
higher values of charge asymmetry Z
at small packing fractions of a colloidal
component.

It should be noted that our consider-
ations are based on the effective Yukawa
interaction in the form (6) which is ex-
pected to work in the case of dilute
charged colloidal suspensions with high
charge asymmetry and weakly coupled

plasma background [35]. The effects of nonlinear background screening are com-
monly accepted to be associated with induced many-body forces between colloidal
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particles and are expected to become relevant for moderate packing fractions. The
present example shows that the nonlinear screening may be important in the case
of small packing fractions as well.

A more accurate description of the structure of CP can be obtained by means
of MC computer simulations based on the microscopic model of asymmetric two-
component plasmas (TCP). As shown above, the nonlinear grain screening obtained
within PB theory has the direct analogue in the MC simulations with the microscopic
description of plasma background, i.e., the phenomenon of “plasma condensation”
near the grain surface. This suggests that the above phenomenon should manifest
itself in MC simulations of asymmetric TCP affecting its structural properties as
well.

Below we give our results of MC simulations of strongly coupled TCP with the
charge asymmetry up to Z = 100 based on the “primitive model” aimed at the
elucidation of the nonlinear effects on the structural properties of TCP.

Within the “primitive” model, a TCP is considered as an overall charge neutral
mixture of charged spherical grains in a compensating plasma background. In all the
simulations we assume the size of a plasma particle to be negligibly small, in accord
with the physical situation in CP. We performed MC simulations of such a system
for canonical ensemble by using the conventional Metropolis algorithm and periodic
boundary conditions [33]. An accurate account of long-range Coulomb forces was
achieved due to Ewald’s summation procedure [36].

The idea of simulations was to study radial grain-grain and plasma-plasma dis-
tributions near the critical point χ ' 4. In particular, we performed a number of
simulations for different values of plasma-grain coupling χ though for a fixed value
of coupling Γc = Z2e2/kBTdc in the colloidal component (we use here a slightly
different definition for the average interparticle distance dc = (4πnc/3)−1/3). The
range of parameters was as follows: the charge asymmetry Z = 10 − 100, volume
fractions of colloidal component vc = 0.001−0.1, the coupling χ = 1−50. Note that
these parameters are connected with the coupling Γc by the relation

Γc = Zχvc
1/3. (10)

Therefore, by varying the charge asymmetry Z of a TCP, one can change the pa-
rameter χ while holding the above coupling Γc constant.

The results for Z = 10; 15; 24; 60; vc = 0.01; χ = 2 − 40 are presented in the
figures. The most remarkable result consists in a pronounced change in the behavior
of the system near the point χ ' 4. If the coupling between the components χ is
smaller than 4, the TCP grain-grain distribution exhibits an oscillatory behavior
characteristic of a liquid phase. It means that the effects of screening produced by
the plasma component, do not qualitatively change the properties of the colloidal
component, and the latter behaves like one-component plasma. In figure 4, we can
see that in this case (for χ = 2 and 3) the plasma-plasma distributions are char-
acteristic of a gas phase. In the case of strong plasma-grain coupling χ > 4 the
reduction in grain-grain correlations, and the appearance of correlations (on the
length of the order of the grain diameter σc) in plasma-plasma distributions are
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Figure 4. Radial plasma-plasma distribution functions for infinite TCP: (a) Γc =
26, vc = 0.01. Solid line: χ = 2, Z = 60. Dashed line: χ = 5, Z = 24. (b) Z = 10,
vc = 0.01. Solid line: χ = 3, Γc = 6.5. Dashed line: χ = 5, Γc = 10.8. The unit of
distance is σc.

Figure 5. Radial grain-grain distri-
bution functions for infinite TCP for
the same grain-grain coupling Γ = 26
and packing fraction vc = 0.01 (liquid
state). Solid line: χ = 2; dashed line:
χ = 8; the charge asymmetry Z = 60
and 15. The unit of distance is dc.

Figure 6. Equilibrium configuration
for the plasma component near a sin-
gle grain, Z = 100; the coupling in
the plasma background is Γp = 0.05;
χ = 20. The unit of distance is σc.
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observed, figures 4, 5. These indicate a pronounced enhancement of grain screening
and the accumulation of plasma particles near grain surfaces. Remarkably, this was
observed in all the simulations near the same threshold value χ = 4 within a wide
range of other parameters of TCP regardless of the way of simulations. Direct visu-
al observations of equilibrium configurations for strong plasma-grain coupling also
evidence the accumulation of plasma particles near the grains, figure 6.

Thus, we see that the qualitative change in the structural properties near the
point χ = 4 is a rather general feature of asymmetric TCP and the threshold value
obtained in MC simulations of this system is in a good agreement with the studies
of nonlinear screening of a single grain based on the continuous PB theory.

3. Grain screening in collisionless plasmas and the effects of
trapped ions

As mentioned in the introduction, the problem of grain screening in collisionless
background with regard to the effect of plasma particle loss at the grain surface has
attracted much attention of the researchers. However, the effects of trapped ions
remain in many respects poorly known.

The purpose of this section is an attempt to elucidate the properties and the role
of bound ionic states in grain screening within the nonlinear collisionless model in
the case of a grain charged by plasma currents. In particular, we are going to focus
on the effects produced by various numbers of trapped ions on the charge densities
and the effective screened potentials.

We start from the conventional Poisson equation for a single charged spherical
grain of a radius a immersed in a plasma background

∆φ(r) = −4πe[Zini(r) − ne(r)] (11)

with the ion and electron densities ni(r) and ne(r) being specified as

ni(r) = nib(r) + nif(r),

where

nif(r) =
n0i

2
exp

[

−Zieφ(r)

kBTi

]{

1 − erf

(

vib√
2si

)

+
2√
π

vib√
2si

exp

(

− v2
ib

2s2
i

)

+

√

1 − a2

r2
exp

(

−v2
imin

2s2
i

)

[

1 −
(

erf

(

√

v2
ib − v2

imin√
2si

)

− 2√
π

√

v2
ib − v2

imin√
2si

exp

(

−v2
ib − v2

imin

2s2
i

)

)

θ(v2
ib − v2

imin)

]}

, (12)

nib(r) = An0i exp

[

−Zieφ(r)

kBTi

]

√

1 − a2

r2
exp

(

−v2
imin

2s2
i

)

×
[

erf

(

√

v2
ib − v2

imin√
2si

)

− 2√
π

√

v2
ib − v2

imin√
2si

exp

(

−v2
ib − v2

imin

2s2
i

)

]

θ(v2
ib − v2

imin),

(13)
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and

ne(r) =
n0e

2
exp

[

eφ(r)

kBTe

]

{

1 + erf

(

ve0√
2se

)

−
√

2

π

ve0

se

exp

(

− v2
e0

2s2
e

)

+

√

1 − a2

r2
exp

(

v2
e0

2s2
e

a2

r2 − a2

)

[

1 − erf

(

ve0√
2se

√

r2

r2 − a2

)

+

√

2

π

ve0

se

√

r2

r2 − a2
exp

(

− v2
e0

2s2
e

r2

r2 − a2

)

]}

. (14)

Here nib/if(r) is the density of bound/free ions, n0i/0e is the ion/electron density
at infinity; φ(r) is the self-consistent effective potential; e is the absolute value of
the electron charge; Ti/e is the ion/electron temperature; si/e =

√

kBTi/e/mi/e is the
thermal ion/electron velocity; mi/e is the ion/electron mass, and Zi is the ion charge
number.

Also, here we introduced the notation

v2
i0 =

2eZi

mi
[|φ(a)| + φ(r)] , v2

ib =
2eZi

mi
|φ(r)|,

v2
imin =

a2v2
i0

r2 − a2
, v2

e0 =
2e

me
[|φ(a)| + φ(r)] .

The relations (12)–(14) can be obtained by integrating the Maxwellian distributions
over velocities taking into account the energy and angular momentum conservation
laws and the limitations imposed by the presence of the absorbing grain. I.e., i) we
take into account all the ion and electron trajectories which do not touch the grain,
ii) we exclude from the phase space all the finite ion trajectories which intersect
the grain surface, and iii) we exclude the outgoing free ion or electron trajectories,
which previously met the grain. Notice that the above equations also follow from the
stationary solution of the Vlasov equation with the appropriate boundary conditions
(Maxwellian distributions at the infinity and zero value of distribution functions with
positive radial velocity at the grain surface).

It should be noted that in the derivation of the density for bound ions, we also
start from the Maxwellian distribution, though the finite trajectories do not reach
the infinity and, therefore, cannot be coupled to the heatbath. Thus, we employ an
additional assumption that the bound states are initially formed with equilibrium
distribution.

The relation (13) contains a free parameter, the amplitude A, which determines
the relative contribution of bound ionic states to the charge density. As mentioned
in the Introduction, its value is indeterminate within the collisionless model, because
the concentration of bound states cannot be related in any way to the ion concen-
tration at infinity. However, some reasonable estimates for the magnitude of A can
be obtained as follows. Consider the limit a → 0 in equations (12)–(14). It can be
verified that the value A = 1 can be found from the additional requirement for the
distributions to be Boltzmannian, which corresponds to the case of thermodynamic
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equilibrium. It is natural to assume that, in general case, the value of A, though
being dependent on various physical situations (i.e., on how the system reaches its
steady state), would have a magnitude of the same order.

In order to solve the problem (11)–(14) within the interval a 6 r 6 rmax, we
have to formulate the boundary conditions for the effective potential φ(r)

φ(a) = φ0, (15)

φ(rmax) = φas. (16)

Here, the right boundary rmax has to be chosen at a sufficiently long distance, rmax �
rD, so that the potential is described by its asymptotic value φas. The latter is known
[17,18], and it reads

φas(r) ' −πen0ia
2

(

1 +
2eZi|φ0|

kBTi

)

r2
D

r2

= − Te

2Zi(Te + Ti)

(

Zi +
kBTi

2e|φ0|

)

a2

r2
|φ0|. (17)

The boundary value of the potential φ0 at the grain surface is determined by
the balance of plasma currents to the grain surface. In order to find it, we use the
well-known equation [37]

ω2
pe

se
e−u =

ω2
pi

si
(t + u). (18)

Here ω2
pσ = 4πe2

σnσ/mσ, sσ = (kBTσ/mσ)1/2, t = Ti/TeZi, nσ is the particle density
of σ species at infinity, and u = e|φ0|/kBTe is the sought-for dimensionless potential
at the grain surface.

The two-point boundary value problem for the effective potential (11)–(16) was
solved numerically by using the shooting methods [32]. The computations were per-
formed for the following range of parameters: τ = Ti/Te = 0.08 − 1.0, ρ = a/rD =
0.015 − 3.0, A = 0 − 10, Zi = 1, µ = mi/me = 104.

The results of computations are given in the figures.
In figure 7 the behavior of plasma charge densities associated with the calculated

effective potentials are displayed within a typical range of parameters. As is seen,
the bound ionic states tend to concentrate in the vicinity of the grain surface. The
most remarkable feature in the behavior of the bound ion states is that, beginning
with some critical distance rc, the density of bound states is strictly equal to zero.
In figure 8 we give the relevant dependencies for rc obtained in our calculations.
Notice that, with the increasing the grain size, the value rc diminishes. As a result,
in the case of very large grains, for a ' 2 − 3rD, the bound states cannot exist at
all. This conclusion is in agreement with the results of reference [14], where it was
mentioned that the role of the bound states for large grain sizes is insignificant.

Let us show that this effect is connected with the asymptotic behavior of the
effective potential inversely proportional to the square distance. The expression for
the density of the bound states (13) contains a multiplier, θ-function accounting for
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Figure 7. Charge densities for electrons (1), free (2) and bound (3) ionic states
vs. distance for τ = 0.4, A = 1.0, ρ = 0.1 (left), and ρ = 1.5 (right).

the loss of ions with the trajectories meeting the grain. Its argument is given by

η = v2
ib − v2

imin =
2eZi

mi(1 − a2/r2)

{

|φ(r)| − a2

r2
|φ(a)|

}

.

At larger distances, the potential φ(r) may be replaced by its asymptotic expres-
sion (17). In this case, the argument of the θ-function

Figure 8. Critical distance rc (divid-
ing the region with bound ionic states
and the region where they are ab-
sent) vs. the grain radius for τ =
0.08 (1), 0.4 (2), 1.0 (3). The amplitude
A = 1.0.

η(r → ∞) = −
[

1 + 2τ

(

1 − 1

4Ziu

)]

× a2|φ0|
r2

eZi

mi(1 − a2/r2)(1 + τ)

is always negative, η(∞) < 0, since Zi >

1 and u = e|φ0|/kBTe > 1. It means that
the density of the bound states is equal
to zero (i.e. they are absent) at larger
distances, where the potential assumes
its asymptotic form.

In figure 9 the calculated effective
potentials are displayed. As can be seen,
the allowance for the bound ionic states
for the amplitudes A = 0 − 1 results in
rather insignificant changes in effective
potentials, suggesting that the densities
of free and bound ions adjust themselves
self-consistently to produce very close
potentials for different values of A.
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Figure 9. Comparison of the DH theory (1) with the calculated effective poten-
tials for A = 0 (2), 0.1 (3), 1.0 (4). The ion-to-electron temperature ratio is
τ = 0.08, the grain radius is ρ = 0.015 (left) and ρ = 1.5 (right).

Remarkably, for smaller grain sizes, a ' 0.01rD, the critical radius rc tends to
increase indicating that the region where the potential takes its asymptotic form
moves to larger distances. In this case, the effective potentials within the region
r < rc are very close to those predicted by DH theory. This conclusion is in agree-
ment with the theoretical results of the papers [16,20], as well as with the recent
experiments [38], where the Yukawa type of the effective grain-grain interactions
was demonstrated in the direct measurements.

4. Screening of a grain charged by plasma currents in strongly
collisional background

In this section we consider the screening of a spherical grain charged by plasma
currents in a weakly ionized high pressure gas. As will be shown below, the prop-
erties of grain screening in this case substantially depend on the type of boundary
conditions (BC). In contrast to the works [24–26], where complicated semirealistic
multigrain systems with relevant specific BC are considered, we are going to examine
the simplest case of a single grain with the emphasis on the basic features of this
problem.

Thus, we examine a single spherical grain of a radius a imbedded in a weakly
ionized high pressure gas. In this case, it is natural to use the drift-diffusion (DD)
approach, because the collisions of plasma particles with the neutrals play here a
dominant role. Assuming two types of plasma particles (ions and electrons) only , we
write the general time-dependent equations for the unknown ion/electron densities
ni,e and self-consistent potential φ in the form

∂ni,e

∂t
= −divji,e + I0 − αnine , (19)
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∆φ = −4πe(ni − ne). (20)

Here, α is the coefficient of recombination, I0 is the intensity of plasma ionization
(we examine the case of uniformly distributed plasma sources). The expression for
the current densities ji,e is as follows:

ji,e = −µi,eni,e∇φ − Di,e∇ni,e,

where µi,e and Di,e are the ionic/electronic mobility and diffusivity, respectively. The-
se latter are assumed to be related by the Einstein’s equation µi,e = zi,eei,eDi,e/kBT
(here zi,e = ±1 is the ion/electron charge number). In a weakly ionized gas with
dominating plasma-neutrals collisions, it is reasonable to assume that the ion and
electron temperatures are equal. Thus, hereinafter we consider only the case that
Ti = Te = T . The grain charge emerges as a result of plasma currents due to the
difference in electron and ion diffusivities. With regard to spherical symmetry, the
relevant equation for the grain charge number Z reads

dZ

dt
= −4πa2(j(r)i − j(r)e), (21)

where the subscript (r) denotes the radial component of a current.
In order to formulate the BC, we admit that the system is confined within a

spherical volume of sufficiently large radius R ' 50− 500rD (where rD is the Debye
screening length) with the grain placed at the center. The BC are specified at the
surface of this sphere and at the surface of the grain. In our simulations, we consider
the two basic cases and two types of BC, respectively. In the first case (I), the
sources of plasma ionization, which compensate the losses of plasma particles due to
the absorption on the grain surface, are assumed to be far from the grain (outside the
spherical volume). The action of these sources is modelled by maintaining constant
electron and ion densities on the surface of the sphere, ni = ne = n0. According to
this, we write the BC for the densities ni,e

ni,e = n0, r = R,

and assume the rates of plasma ionization and recombination over the volume I0 and
α to be equal to zero. In the second case (II), we examine the problem with uniformly
distributed plasma sources (I0 6= 0) with allowance for the plasma recombination
over the volume (α 6= 0). Note, that in this case the quantities I0 and α are related
to the unperturbed bulk plasma density n0 by the equation I0 = αn2

0 valid in the
absence of the grain. The relevant BC read

∂ne

∂r
=

∂ni

∂r
= 0, r = R.

The BC for the potential at the grain surface have the form

∂φ

∂r
= −Z(t)e

a2
, r = a
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and for the densities ni,e we use the BC [24]

ni,e = 0, r = a

appropriate for the case of strongly collisional background.
We solved the above system of equations (19)–(21) using the method of lines

and the Gear’s method. In addition, we performed a limited number of Brownian
dynamics (BD) simulations based on the particle-in-cell (PIC) method [39] with
spherically symmetric concentric cells and the BC corresponding to the case (I). In
these simulations, the plasma background is modelled by finite numbers of particles
of two types representing the ion and the electron components. The dynamics of the
system is governed by the reduced Langevin equations of overdamped motion

h
dxk

dt
= −∇kU + Fk(t).

Here, xk is the radius vector of the k-th particle, and U is the potential energy of the
configuration. The friction coefficient h and the random force Fk(t) are determined
by the properties of the heatbath (in our case the role of the heatbath is played by
the high pressure neutral gas). Random force acting on k-th particle is specified by
the Gaussian distribution

P (Bk(∆t)) =
1

(4πh2D∆t)3/2
exp

[

−|Bk(∆t)|2
4h2D∆t

]

,

which determines the probability for the momentum

Bk(∆t) =

∫ t+∆t

t

Fk(t)dt

to be transferred to the k-th plasma particle during the time span ∆t. The random
forces, which act on different plasma particles are uncorrelated. It is clear that the
quantities h and D related to the ion and the electron components are different.
In the above expressions, we omitted the subscripts for simplicity. Note that the
friction coefficient h can be expressed via diffusivity and temperature, hD = kBT ,
which enables one to establish the correspondence with the continuous DD approach.
A detailed presentation of the issues concerning BD and its relation to the continuous
probabilistic approaches, such as Fokker-Planck and Smolukhovsky equations, can
be found in references [40,41]. Here we would like to point out that the overdamped
BD represents the direct microscopic analogue to the DD approach, since the latter
can be derived from the Smolukhovsky equations for one-particle distributions (i.e.,
within the additional mean field approximation). The aim of BD simulations was to
test the results of the DD approximation.

The range of parameters is typical of the DP experiments in high pressure weakly
ionized noble gases like Ne or Ar: plasma background coupling Γ ' 10−3; plasma
density n0 ' 1010 cm−3; the density of the neutrals n ' 1018 cm−3; radius of the grain
a ' 10−3 cm; electron-ion recombination coefficient α ' 10−7 cm3/sec; the ratio of
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Figure 10. Comparison of charge distri-
butions for different types of BC for the
same stationary bulk plasma parameters.
The Debye length is rD/a = 10 for (1)
and (1a), and rD/a = 2 for (2) and (2a).
Dashed and solid lines relate to the BC (I)
and (II), respectively.

Figure 11. Relative charge distributions
as dependent on the ionization rates for
BC (II) at a fixed bulk plasma densi-
ty. The dimensionless intensity of plasma
sources over the volume i0 = I0a

5/Di is
(1) 1.25 · 10−2, (2) 2.5 · 10−3, (3) 5 · 10−4,
(4) 10−4. The bold line relates to the linear
DH theory; dashed line is DD approach for
BC (I). The grain radius a/rD is 0.158.

the Debye length to the grain radius
rD/a ' 0.1 − 50. The ratio of diffu-
sivities in all computations was fixed,
A = De/Di = 103 (with the excep-
tion for the BD simulations). The goal
of the simulations was the final time-
independent density and charge dis-
tributions which establish themselves
after sufficiently long period of relax-
ation.

The results of computations are
given in the figures. In figure 10, we
give the relative charge distributions
for different types of BC. Remarkably,
in the case of BC (I), we observe the
Coulomb-type asymptotic behavior of
the screened field with the effective
charge determined by the asymptotic
value of the charge distribution. Note
that such an asymptotic behavior of
the screened field may be viewed as
a consequence of the Ohm’s law for
the problem under consideration. In
contrast to the case (I), the screen-
ing in the case of ionization over the
volume has a finite screening length
' 10 − 50rD. The computations per-
formed for the same plasma parame-
ters, in particular, for the same steady
bulk density n0 at long distances for
the cases (I) and (II) indicate that
there exist a sheath ranging up to 10rD

independent of the type of BC (pro-
vided that the ionization rate is rel-
atively low). At longer distances, a
distinct difference in the asymptotic
behavior is observed. The stationary
grain charges acquired by the grain in
both cases are nearly equal.

Figure 11 illustrates the behavior
of the relative charge distributions as
dependent on the rate of ionization.
The bulk plasma density is held con-
stant therewith due to the simultane-
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Figure 12. Comparison of the results of DD and BD simulations for the same
parameters, a/rD = 0.373, A = 10.0. Left: relative charge distributions. Right:
comparison of ion (1) and electron (2) densities obtained in DD approximation
(dashed lines) and in BD simulations (solid lines).

ous appropriate change of the recombination coefficients. The approximate straight-
ness of the lines outside the sheath (on the log scale) suggests the exponential type
of the screening at distances. Different rates of ionization (and recombination) cor-
respond to the different slopes and the screening lengths, respectively. The higher
is the intensity of ionization, the shorter is the length of screening. At higher rates,
the relative indifference of the sheath is likely to break down, and the properties of
screening approach the predictions of the DH theory (the bold line in figure 11). We
see that, typically, the charging plasma currents in the presence of collisions result
in the increase of the length of screening, as compared to the equilibrium DH theory.
These results correlate qualitatively with those of reference [26] dealing with a more
complicated case of non-isothermic nitrogen plasma.

Comparison of the continuous DD approach and the microscopic BD simulations
shows a qualitative agreement between both cases, see figure 12. Some discrepancy
(DD approach yields approximately 10% higher absolute value of the stationary grain
charge) is, apparently, the result of microscopic effects in the plasma background in
BD simulations.

5. Conclusions

Thus, we see that the properties of screening of high-Z impurities in colloidal
plasmas may considerably vary depending on the physical processes in the plasma
background.

The nonlinear effects in screening in the thermodynamically equilibrium case
of a high-Z grain with a fixed charge (e.g., the case of colloidal suspensions) are
essential for a strong plasma-grain coupling. The nonlinearity is associated with the
accumulation of plasma particles on the grain surface and results in a sharp decrease
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of the effective charge as compared with the linear theory. The linear DLVO theory
works well only for weak plasma-grain coupling, χ < 4. The nonlinear effects have
a number of consequences for the structural properties of strongly coupled CP. In
particular, they give rise to qualitative changes in the pair distribution functions
and result in shifting the melting curves to larger magnitudes of charge asymmetry.

The grain screening in the collisionless background, with regard to the absorbtion
of plasma particles by the grain, is close to the predictions of the DH theory (in the
vicinity of grains) for the range of plasma parameters typical of DP and for small
grain sizes (a � rDeb). At longer distances, we observe the asymptotic behavior of
the effective potentials inversely proportional to the squared distance. The bound
ionic states result in considerable changes in the plasma densities near the grain.
However, they weakly affect the effective potentials in these conditions. The presence
of the bound states is limited by some critical distance (' 2− 3rDeb), beyond which
they cannot exist at all.

The processes of grain charging in strongly collisional plasma background result
in a considerable deviation from the equilibrium DH theory. In case the plasma
sources are placed at infinity, at long distances we observe the Coulomb field with
a certain effective charge. The effect of screening manifests itself in the decrease
of this effective charge as compared to the stationary grain charge. The smaller
is the ratio of the Debye length to the grain size, the smaller effective charge is
observed. In case the plasma sources are distributed uniformly over the volume, there
exists a finite screening length depending on the rate of ionization. Typically, this
screening length in the presence of plasma currents and strong collisions considerably
exceeds the Debye radius. The stationary grain charge as well as the field within the
sheath around the grain (' 10rD) does not depend on the type of BC and on the
ionization rate, provided that this latter is relatively low. At higher ionization rates,
the properties of screening approach the predictions of DH theory.

In conclusion, we would like to mention that an important problem, which still
remains poorly examined, is the properties of grain screening in a weakly collision-
al and intermediate case. It would be interesting to study this issue within the
Bhatnagar-Gross-Krook model, or based on the Fokker-Planck equations. Of partic-
ular interest is the collisionless limit obtained within these approaches, which could
be compared to the results of the paper [21]. Further valuable information on the
above issues could be obtained by means of microscopic computer simulations in the
spirit of reference [23].
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Екранування сильнозаряджених макрочастинок та

споріднені явища в колоїдній плазмі

О.Бистренко, Т.Бистренко, А.Загородній

Інститут теоретичної фізики ім. М.М.Боголюбова НАН України

03143 Київ, вул. Метрологічна, 14б

Отримано 3 квітня 2003 р.

Подано стислий виклад важливих останніх результатів по екрану-
ванню сильнозаряджених домішок в колоїдній плазмі. В центрі ува-
ги огляду – нелінійне екранування та його вплив на структуру коло-
їдної плазми, роль зв’язаних іонів в екрануванні макрочастинок та

ефекти сильних зіткнень в плазмовому середовищі. Показано, що

ці явища можуть сильно впливати на властивості екранування мак-
рочастинок, призводячи до значних відхилень від традиційної теорії

Дебая-Гюкеля, в залежності від фізичних процесів у плазмовому се-
редовищі.

Ключові слова: сильнозаряджена домішка, заряджена колоїдна

суспензія, запорошена плазма, нелінійне екранування, зв’язані

іонні стани, сильні зіткнення

PACS: 52.25.Vy, 52.27.Lw, 52.65.-y
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