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Based on the effective Hubbard model we suggest a statistical description
of reaction-diffusion processes for bimolecular chemical reactions of gas
particles adsorbed on the metallic surface. The system of transport equa-
tions for description of particles diffusion as well as reactions is obtained.
We carry out the analysis of the contributions of all physical processes to
the formation of diffusion coefficients and chemical reactions constants.
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1. Introduction

Investigation of diffusion processes of atoms adsorbed on metallic surface, cat-
alytic reactions between adsorbed particles, creation of nanostructures are the top-
ical problems of modern surface physics [1–4]. Usually, these studies are carried out
based on the reaction-diffusion type transport equations obtained semi-phenomeno-
logically using various statistical approaches [4–5], with coefficients of adsorption,
desorption, diffusion, chemical constant rates defined experimentally. However, these
coefficients conceal the mechanisms of certain physical processes depending on atom-
atom interaction, interaction between atoms and surface, its electron and polariza-
tion properties. In particular, the processes of CO oxidation on a platinum surface
are described by chemical kinetics equations based on the ZGB model [6] and its
generalizations [7–9]. These equations contain determined adsorption constants of
CO and O particles and constant rates of CO2 synthesis on the surface. Theoretical
scheme for diffusion-reaction processes of gaseous mixture in the system “metal-
adsorbate-gas” was presented in reference [10], where the authors considered both
the kinetics of reacting atoms and the electron structure of surface.
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To take into account specified processes on the surface of metal one has to work
out in detail the basic model of the system. In references [11,12] such a model was
based on the effective Hubbard Hamiltonian allowing particles tunnelling from one
site of the lattice to another, oscillation between ground and excited states within
quantum well created by surrounding atoms, and interaction with phonons of the
surface. This model looks quite attractive for the study of catalytic processes after
a minor generalization concerning complex creation. In our paper we proceed in
the similar direction allowing bimolecular chemical reactions on the substrate sites.
We consider them as instant processes, though being described in quantum statis-
tics manner. It is worth noting that the obtained reaction-diffusion type transport
equations possess the same basic property as chemical kinetics equations for classi-
cal systems [13–15]; namely, a coupling between diffusion coefficients and reaction
rates due to renormalization of transport kernels. In our case this renormalization
follows from the inclusion of the two-particle distribution function into the basic set
of dynamic variables. We derived the system of kinetic equations using the method
of nonequilibrium statistical operator (NSO) of D.N.Zubarev [16]. The formalism
presented here resembles the projection operator technique used by the authors of
references [13–15] in describing the bimolecular reactions in liquids, though the ori-
gin of dissipative processes is quite different. Constant rates have a more complicated
form as well, involving all parameters of the initial Hamiltonian.

Our paper is organized as follows: in the second section we present the general-
ized Hubbard Hamiltonian with taking into consideration the term responsible for
chemical reactions. In section 3 the set of kinetic equations for weakly nonequilibri-
um case is written down. Though being linear in fluctuations of dynamic variables,
these equations possess “hidden” nonlinearity which is disclosed by introducing the
two-particle correlation function in section 5 with subsequent renormalization of
both diffusion coefficients and constant rates. In the preceding section 4 we perform
the analysis of partial contributions of all processes into the formation of coherent
and incoherent dynamics of the system. Finally, we supply the last section with some
conclusions.

2. Effective Hubbard model

The subject of our interest is a four-sort system of adsorbed particles on the
metallic surface which allows bimolecular chemical reactions. We picture this surface
as a lattice of s sites where atoms are located within quantum wells. An adsorbed
atom can tunnel from one site to another, transfer from the ground state to the
excited one within the well, interact with phonons of the lattice and react with
other atoms. To describe the kinetics of such reactions we use the effective Hubbard
model with generalized Hamiltonian

H = HA + Hph + Hint + Hreac, (2.1)

where HA corresponds to the atoms adsorbed on the metal surface:
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HA =
∑

f,f ′,σ

∑

α

(−tα0 a†
αf0σaαf ′0σ + tα1 a†

αf1σaαf ′1σ)

+
∑

αf

Wα

2
(nαf1 − nαf0) +

∑

αf

Uα

2
nαf (nαf − 1); (2.2)

we use notations f, f ′ for numeration of adsorbing sites (AS) on which particles
locate in the ground (0) and excited (1) states with corresponding tunnelling ampli-
tudes (tα0 , tα1 ) from one AS f to another f ′; σ means spin label. Wα denotes vibra-
tional frequency within a well between ground and excited states of the adsorbed
atom; a†

αfiσ , aαfiσ are creation and annihilation Fermi operators for the atoms of
sort α in AS f , vibrational state i and with spin σ,

fαfiσ = a†
αfiσaαfiσ (2.3)

stands for the density operator for the atoms of sort α with quantum numbers f , i,
σ; Uα denotes the intrasite repulsion energy. Besides,

fαfi =
∑

σ

fαfiσ, fαf = fαf0 + fαf1. (2.4)

Hamiltonian of phonon subsystem which describes metallic surface has the form

Hph =
∑

k

h̄ωk

(

b†kbk +
1

2

)

+ H int
ph , (2.5)

where b†k, bk correspond to phonon creation and annihilation operators in normal
modes k, while the second term H int

ph describes the coupling between phonons of
substrate and gas particles:

Hint =
∑

α,f

[

fαf

∑

k

γα
fk(bk + b†k) +

∑

σ

(a†
αf0σaαf1σ + a†

αf1σaαf0σ)
∑

k

χα
fk(bk + b†k

]

,

(2.6)
with additional assumption that amplitudes of coupling between phonons and ad-
sorbate density γ as well as between phonons and vibrational excitations within each
well χ depend only on the sort of the particle and on its localization.

Hamiltonian responsible for chemical reactions between the adsorbed patricles
in representation of secondary quantization has the following form:

Hreac =
∑

ᾱ,β̄,ᾱ′,β̄′

〈ᾱ′, β̄ ′|Φreac|ᾱ, β̄〉a†

ᾱ′
a†

β̄′
aᾱaβ̄ + 〈ᾱ′, β̄ ′|Φreac|ᾱ, β̄〉∗a†

β̄
a†

ᾱaβ̄′aᾱ′ , (2.7)

where indexes ᾱ, β̄ denote the set of all quantum numbers {α, f, i, σ}, {β, f ′, i′, σ′}
(sort, number of AS, vibrational state, spin), while 〈ᾱ′, β̄ ′|Φreac|ᾱ, β̄〉 mean reaction
amplitudes. One has to point out that Hamiltonian (2.7) describes bimolecular re-
actions A+B → C+D though its generalization to the case of reaction of synthesis
A+B → AB is straightforward. However, the analysis of complex creation on the
metallic surface is a rather complicated separate problem which lies beyond the
scope of our investigation. Instead of this, we set our mind on studying the kinetics
of chemical reactions. In the next section we present the chain of kinetic equations
for unary and binary distribution functions of adsorbed particles in weakly nonequi-
librium case.
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3. Kinetics of chemically reacting adsorbed particles

To describe the kinetics of chemical reactions on the surface of substrate we
introduce nonequilibrium one- and two-particle distribution functions

〈fᾱᾱ′〉t ≡ 〈fαfiσ,α′f ′i′σ′〉t = Sp
[

a†
α′f ′i′σ′aαfiσρ(t)

]

, (3.1)

〈Gᾱᾱ′β̄β̄′〉t = Sp
[

a†
α′f ′i′σ′aαfiσa†

β′s′j′κ′aβsjκρ(t)
]

, (3.2)

where ρ(t) denotes a nonequilibrium statistical operator obeying the quantum Li-
ouville equation

(

∂

∂t
+ iL

)

ρ(t) = 0. (3.3)

Here iL stands for Liouville operator defined via commutator with Hamiltonian

iLρ(t) ≡ ρ̇(t) =
i

h̄
[H, ρ(t)]. (3.4)

Phonon subsystem (metal surface) will be considered to be equilibrium. However,
if one is interested in surface reconstruction processes due to adsorption, chemi-
cal reaction, desorption, he needs to include a nonequilibrium phonon distribution
function

〈nph(k)〉t = Sp[nph(k)ρ(t)], nph(k) = b†kbk (3.5)

into the initial basic set of dynamic variables (3.1)–(3.2).
To calculate averages (3.1)–(3.2) or to obtain transport equations one has to

solve the quantum Liouville equations for ρ(t). Using the method of nonequilibrium
statistical operator, the retarded solutions for ρ(t) could be expressed via a time
integral with the relevant (quasiequilibrium) statistical operator ρrel(t), for which
boundary condition ρ(t)t=t0 = ρrel(t0) is formulated. Relevant statistical operator is
constructed from the entropy maximum principle under conditions of fixed param-
eters of abbreviated description (3.1), (3.2) and normalization to unity. It takes the
usual exponential (quasi Gibbs) form

ρrel(t) = exp{−Φ(t) − β(H −
∑

ᾱᾱ′

µᾱᾱ′(t)fᾱᾱ′ −
∑

ᾱᾱ′β̄β̄′

µᾱᾱ′β̄β̄′(t)Gᾱᾱ′β̄β̄′)}, (3.6)

where

Φ(t) = ln Sp exp







−β(H −
∑

ᾱᾱ′

µᾱᾱ′(t)fᾱᾱ′ −
∑

ᾱᾱ′β̄β̄′

µᾱᾱ′β̄β̄′(t)Gᾱᾱ′β̄β̄′)







(3.7)

is the Massier-Planck functional, β = 1/kBT , (kB denotes Boltzmann constant)
while µᾱᾱ′(t), µᾱᾱ′β̄β̄′(t) mean Lagrange multipliers determined from self-consistency
conditions

〈fᾱᾱ′〉t = 〈fᾱᾱ′〉trel , (3.8)

〈Gᾱᾱ′β̄β̄′〉t = 〈Gᾱᾱ′β̄β̄′〉trel . (3.9)
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Diagonal elements µᾱᾱ(t) denote the time-dependent chemical potential of the par-
ticle in ᾱ state. Diagonal elements of the other Lagrange multiplier sometimes are
treated as a chemical potential of the complex on the metallic surface if one allows
the synthesis reactions [17] but do not have transparent physical meaning in case of
instant bimolecular chemical reactions.

In the framework of NSO method one can obtain the chain of integro-differential
equations for averages (3.1)–(3.2). However, these equations in a general case are
not closed and are very complicated for analysis. To overcome this complicity we
will consider a weakly nonequilibrium approximation which is linear in fluctuations
of generalized thermodynamic forces (or, which is the same, linear in fluctuations
of dynamic variables), when deviations from corresponding equilibrium values are
very small. On the other hand, since we deal with intrinsic nonlinear processes
during chemical reactions, we have to exceed the limits of linear kinetics. Taking
into consideration two-particle distribution functions, we can effectively proceed
further (to quadratic fluctuations) and describe the reaction-diffusion processes on
metallic surface. Limiting ourselves by linear approximation in δµγ̄γ̄′(t′), δµζ̄ ζ̄′γ̄γ̄′(t′),
excluding them from statistical operator ρrel(t) due to self-consistency conditions
(3.8)–(3.9), we can write down the following system of kinetic equations:

∂

∂t
〈δfᾱᾱ′〉t =

∑

γ̄γ̄′

Ωfᾱᾱfγ̄γ̄′
〈δfγ̄γ̄′〉t −

∑

γ̄γ̄′

t
∫

−∞

eε(t′−t)φfᾱᾱ′fγ̄γ̄′
(t, t′)〈δfγ̄γ̄′〉t

′

dt′

+
∑

ζ̄ ζ̄′γ̄γ̄′

Ωfᾱᾱ′Ḡζ̄ζ̄′ γ̄γ̄′
〈δḠζ̄ζ̄′γ̄γ̄′〉t

−
∑

ζ̄ ζ̄′γ̄γ̄′

t
∫

−∞

eε(t′−t)φfᾱᾱ′ Ḡζ̄ζ̄′ γ̄γ̄′
(t, t′)〈δḠζ̄ζ̄′γ̄γ̄′〉t

′

dt′, (3.10)

∂

∂t
〈δḠᾱᾱ′β̄β̄′〉t =

∑

γ̄γ̄′

ΩḠᾱα′β̄β̄′fγ̄γ̄′
〈δfγ̄γ̄′〉t +

∑

ζ̄ ζ̄′γ̄γ̄′

ΩḠᾱᾱ′β̄β̄′Ḡζ̄ζ̄′ γ̄γ̄′
〈δḠζ̄ζ̄′γ̄γ̄′〉t

−
∑

γ̄γ̄′

t
∫

−∞

eε(t′−t)φḠᾱᾱ′β̄β̄′fγ̄γ̄′
(t, t′)〈δfγ̄γ̄′〉t

′

dt′

−
∑

ζ̄ζ̄′γ̄γ̄′

t
∫

−∞

eε(t′−t)φḠᾱᾱ′β̄β̄′Ḡζ̄ζ̄′ γ̄γ̄′
(t, t′)〈δḠζ̄ ζ̄′γ̄γ̄′〉t

′

dt′, (3.11)

where one has to put ε → 0 in thermodynamic limit [16], δfγ̄γ̄′ = fγ̄γ̄′ − 〈δfγ̄γ̄′〉0 ,
δḠᾱᾱ′β̄β̄′ = Ḡᾱᾱ′β̄β̄′ − 〈Ḡᾱᾱ′β̄β̄′〉0 are fluctuations of dynamic variables near their
equilibrium values determined by the equilibrium statistical operator ρ0,

Ḡγ̄γ̄′ ζ̄ζ̄′ = Gγ̄γ̄′ζ̄ ζ̄′ −
∑

ᾱᾱ′β̄β̄′

〈Gγ̄γ̄′ ζ̄ζ̄′fᾱᾱ′〉0 [Φff ]
−1
ᾱᾱ′β̄β̄′ fβ̄β̄′ , (3.12)

[Φ−1
ff ]ᾱᾱ′β̄β̄′ denotes the matrix inverse to the matrix of two-particle equilibrium cor-

relation function Φfᾱᾱ′fβ̄β̄′
= 〈fᾱᾱ′

∫ 1
0 dτρτ

0fβ̄β̄′ρ−τ
0 〉0, which could be obtained from
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the relation
∑

γ̄γ̄′

[Φff ]
−1
ᾱᾱ′γ̄γ̄′ Φfγ̄γ̄′fβ̄β̄′

= δᾱβ̄δᾱ′β̄′ . (3.13)

In transport equations (3.10)–(3.11) Ω denotes static correlation functions to be
determined as follows:

Ωfᾱᾱ′fβ̄β̄′
=

∑

γ̄γ̄′

〈ḟᾱᾱ′

1
∫

0

dτρτ
0fγ̄γ̄′ρ−τ

0 〉0 [Φff ]
−1
γ̄γ̄′β̄β̄′ , (3.14)

Ωfᾱᾱ′Gβ̄β̄′γ̄γ̄′
=

∑

ζ̄ ζ̄′ν̄ν̄′

〈ḟᾱᾱ′

1
∫

0

dτρτ
0Ḡζ̄ ζ̄′ν̄ν̄′ρ−τ

0 〉0 [ΦḠḠ]−1
ζ̄ ζ̄′ν̄ν̄′,β̄β̄′γ̄γ̄′ , (3.15)

ΩḠᾱᾱ′β̄β̄′fγ̄γ̄′
=

∑

ζ̄ ζ̄′

〈 ˙̄Gᾱᾱ′β̄β̄′

1
∫

0

dτρτ
0fζ̄ζ̄′ρ

−τ
0 〉0 [Φff ]−1

ζ̄ζ̄′γ̄γ̄′ , (3.16)

ΩḠᾱᾱ′β̄β̄′Ḡγ̄γ̄′ ζ̄ζ̄′
=

∑

ν̄ν̄′κ̄κ̄′

〈 ˙̄Gᾱᾱ′β̄β̄′

1
∫

0

dτρτ
0Ḡν̄ν̄′κ̄κ̄′ρ−τ

0 〉0 [ΦḠḠ]−1
ν̄ν̄′κ̄κ̄′,γ̄γ̄′ ζ̄ζ̄′ , (3.17)

[ΦḠḠ]−1 denotes the matrix inverse to the fourth-order correlation function

ΦḠγ̄γ̄′ ζ̄ζ̄′ Ḡᾱᾱ′β̄β̄′
= 〈Ḡγ̄γ̄′ ζ̄ζ̄′

1
∫

0

dτρτ
0Ḡᾱᾱ′β̄β̄′ρ−τ

0 〉0 (3.18)

and is determined in the standard way as
∑

ᾱᾱ′β̄β̄′

[ΦḠḠ]−1
ν̄ν̄′µ̄µ̄′,ᾱᾱ′β̄β̄′ ΦḠᾱᾱ′β̄β̄′Ḡγ̄γ̄′ ζ̄ζ̄′

= δν̄γ̄δν̄′γ̄′δµ̄ζ̄δµ̄′ ζ̄′. (3.19)

Functions (3.14)–(3.17) describe a non-dissipative dynamics and give coherent con-
tribution to the motion of particles on the metallic surface [12].

In its turn, the dissipative dynamics (diffusion of the particles on substrate sites)
is described via kinetic kernels φff in equations (3.10)–(3.11), which possess the
following structure:

φfᾱᾱ′fβ̄β̄′
(t, t′) =

∑

γ̄γ̄′

〈Īfᾱᾱ′
T 0(t, t′)

1
∫

0

dτρτ
0 Īfγ̄γ̄′

ρ−τ
0 〉0 [Φff ]

−1
γ̄γ̄′β̄β̄′ , (3.20)

φfᾱᾱ′Ḡβ̄β̄′γ̄γ̄′
(t, t′) =

∑

µ̄µ̄′ν̄ν̄′

〈Īfᾱᾱ′
T 0(t, t′)

1
∫

0

dτρτ
0 ĪḠν̄ν̄′µ̄µ̄′

ρ−τ
0 〉0 [ΦḠḠ]−1

ν̄ν̄′µ̄µ̄′,β̄β̄′,γ̄γ̄′ ,

(3.21)

φḠᾱᾱ′β̄β̄′fγ̄γ̄
(t, t′) =

∑

ζ̄ζ̄′

〈ĪḠᾱᾱ′β̄β̄′
T 0(t, t′)

1
∫

0

dτρτ
0 Īfζ̄ζ̄′

ρ−τ
0 〉0 [Φff ]

−1
ζ̄ζ̄′γ̄γ̄′ , (3.22)

φḠᾱᾱ′β̄β̄′Ḡζ̄ζ̄′ γ̄γ̄′
(t, t′) =

∑

ν̄ν̄′µ̄µ̄′

〈ĪḠᾱᾱ′β̄β̄′
T 0(t, t′)

1
∫

0

dτρτ
0 ĪḠν̄ν̄′µ̄µ̄′

ρ−τ
0 〉0 [ΦḠḠ]−1

ν̄ν̄′µ̄µ̄′,ζ̄ζ̄′,γ̄γ̄′ ,

(3.23)
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where Īfᾱᾱ′
, ĪḠᾱᾱ′β̄β̄′

denote generalized dissipative fluxes in weakly nonequilibrium
approximation defined as follows:

Īfᾱᾱ′
= (1 − P0)ḟᾱᾱ′ , ĪḠᾱᾱ′β̄β̄′

= (1 − P0)
˙̄Gᾱᾱ′β̄β̄′, (3.24)

where Mori projection operator P0 has the following structure:

P0A = 〈A〉0 +
∑

ᾱᾱ′β̄β̄′

〈A

1
∫

0

dτρτ
0fᾱᾱ′ρ−τ

0 〉0 [Φff ]
−1
ᾱᾱ′β̄β̄′ fβ̄β̄′

+
∑

ᾱᾱ′β̄β̄′

∑

γ̄γ̄′ζ̄ ζ̄′

〈A

1
∫

0

dτρτ
0Ḡᾱᾱ′β̄β̄′ρ−τ

0 〉0 [ΦḠḠ]−1
ᾱᾱ′β̄β̄′,ζ̄ζ̄′γ̄γ̄′ Ḡζ̄ζ̄′γ̄γ̄′ (3.25)

and projects any variable A onto the space of dynamic variables f and Ḡ, which
are orthogonal to each other due to definition (3.12). P0 enters the evolution op-
erator T 0(t, t′) = exp {(1 − P0)iL(t′ − t)} and because of its complicated structure
render an exact calculation of kinetic kernels (3.20)–(3.23) practically impossible. In
reference [12] the diffusion coefficients determined by φff were calculated in assump-
tion of the absence of cross-correlations between intrawell and interwell processes
(as well as between intrawell processes changing the quantum state of the particle).
Such diagonalization of the kinetic kernels allowed the authors to obtain the diffu-
sion coefficients D in “neares-neighbours interaction” approximation and to show
that D possess some additional, nongeometric, anisotropy due to the coupling of
adsorbate motion to the lattice vibrations. Disclaiming any explicit calculation of
coherent terms Ω and kinetic kernels φ, we perform the analysis of the contribution
of each of the processes to the formation of diffusion coefficients. Some words will be
said about the possibility of calculations of non-dissipative terms defining coherent
motion of adsorbate on the lattice.

4. Partial contributions of various processes on the surface
to the formation of coherent and incoherent motion of the
adsorbate

Let us dwell our attention on the structure of dissipative fluxes (3.24) more in
detail. Taking into account the equilibrium state of phonon subsystem and com-
mutative relations for fermion operators [a†

ᾱ, aβ̄]− = δᾱβ̄ one can write down the

results of Liouville operator action on one-particle dynamic variable fᾱᾱ′ = a†
ᾱ′aᾱ.

For convenience of the analysis we present contributions from each part of Hamil-
tonian (2.1) separately. Besides, we note down explicitly the dependence of Fermi
operators on the sorts of the particles, AS numbers, vibrational states and spins.
We will also suppose that Hubbard repulsion constant U does not depend on the
sort of the particles.1

1Taking the sort-dependent Uα into consideration leads to the 4-th power term in creation and
annihilation operators which does not contribute to diffusion coefficients, see the next page.
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As a result of the commutator of one-particle dynamic variable a†
ᾱ′aᾱ with Hamil-

tonian of the adsorbed particles (2.2) we have got the following flux:

IA
fᾱᾱ′

=
i

h̄

[

a†
αfiσaα′f ′i′σ′ , HA

]

=
i

h̄

∑

s′

(

−tα
′

0 a†
αfiσaα′s′0σ′δi′0 + tα0 a†

αs′0σaα′f ′i′σ′δi0

)

−
(

0 → 1
)

+
i

2h̄

(

Wα′a†
αfiσaα′f ′1σ′δi′1 − Wαa†

αf1σaα′f ′i′σ′δi1

)

−
(

1 → 0
)

. (4.1)

From the structure of expression (4.1) for the flux generated by the Hamiltonian of
the adsorbed particles it is clear that its diagonal part consists only of the first term.
The total number of particles of the sort α does not change due to tunnelling between
different AS, oscillations between ground and excited states and Hubbard repulsion:
∑

siσ IA
fαsiσfαsiσ

= 0. Another thing worth mentioning concerns the linear structure
of the current in the combination a†a. Since Mori operator is defined on one- and
two-particle dynamic variables, the action of (1−P0) projects out the contribution
(4.1) from the dissipative kernels. Hence, the purely coherent term associated with
(2.1) does not contribute to the diffusion of the particles.

The next step is to analyze the contribution of interactive part of Hamiltonian
(2.5) into the formation of incoherent dynamics of the system. The flux associated
with Hint has the following form:

I int
fᾱᾱ′

=
i

h̄

[

a†
αfiσaα′f ′i′σ′ , Hint

]

=
i

h̄

∑

k

(

γα′

f ′k − γα
fk

) (

b†k + bk

)

a†
αfiσaα′f ′i′σ′

+
i

h̄

∑

k

(

b†k + bk

) (

χα′

f ′ka
†
αfiσaα′f ′1σ′δi′0 − χα

fka
†
αf0σaα′f ′i′σ′δi1

)

+
(

0 ↔ 1
)

.

(4.2)

Looking at the expression for I int
fᾱ′fᾱ

one can note that its diagonal part consists
only of the term related to χ. However, it does not mean that the coupling with
density modes can not contribute to diffusion coefficients. It gives contribution in in-
direct way: via tunnelling (or “jumping”) processes with change of quantum numbers
αfiσ → αf ′i′σ. At the stage of calculation of diagonal elements, see equation (3.10),
the transition probabilities fαfiσ,αf ′i′σ′ form the coefficients of diffusion in the same
way as density fluctuations.

Nonlinear term (b†k + bk)a
†a being not from the basic set of dynamic variables

after the action of projection operator (1−P0) determines the dissipative flux Īfᾱfᾱ′

(3.24) and diffusion coefficients of the particle on the lattice.
The last contribution to the formation of kinetic kernels comes from chemical

reactions. Dynamic flux associated with the reactive part of Hamiltonian (2.1) has
the following structure:

Ireac
fᾱᾱ

=
i

h̄

∑

β̄γ̄ζ̄

{

〈γ̄ζ̄|Φreac|ᾱβ̄〉a†

ζ̄
a†

γ̄aᾱaβ̄ − 〈γ̄ζ̄|Φreac|ᾱβ̄〉∗a†

β̄
a†

ᾱaγ̄aζ̄

}

. (4.3)
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In the latter equation for reasons of convenience we presented only the diagonal
part. Again we see that (4.3) does not contribute to diffusion coefficients, being a
linear combination of the basic dynamic variables and vanishing after the action of
projection operator (1 − P0).

In the similar way one can perform the analysis of different processes contribution
to the formation of dissipative flux ĪḠ. It consists of the terms related to substrate-
adsorbate interaction as well as to chemical reactions, while contribution from IA

Ḡ

vanishes after the projecting procedure (1 − P0).
If we suppose equilibrium correlations between phonons and particles to be small

〈(b† + b)a†a〉0 ≈ 〈(b† + b)〉0〈a
†a〉0 , (4.4)

(in general case it is not true a priori), then we can obtain dissipative flux Īf =

(1 − P)0ḟ by simple change of variables b†k, bk → δb†k, δbk, where δbk = bk − 〈bk〉0,
δb†k = b†k−〈b†k〉0. In reference [11] the initial Hamiltonian (2.1) without chemical reac-
tions (2.7) by means of double unitary transformation was put into exponential form
with respect to phonon-adsorbate interaction, exp[−

∑

k ∆ss′

k bk − h.c.], where func-
tions ∆ss′

k were determined by corresponding coupling coefficients γ and χ whereas
the terms linear in bosons were absent. In our case, the averaging procedure with
non-transformed Hamiltonian (2.1) results in nonzero values 〈b†k〉0, 〈bk〉0. If we are in-
terested in nonequilibrium dynamics of the substrate we have to add the one-particle
phonon distribution function to the basic set (3.1)–(3.2) and construct the system
of kinetic equations for different subsystems: adsorbate (distribution functions f(t),
Ḡ(t)) and substrate (phonon distribution function 〈npk(k)〉t = 〈b†kbk〉

t). 2

In the end of the section we touch upon the evaluation of non-dissipative terms
related to the coherent motion of the adsorbate. According to the definition of
equilibrium correlation functions Ω (3.14)–(3.17) one has to calculate the action of
equilibrium statistical operator ρ0 on Bose and Fermi operators. This procedure is
known to be satisfiable only in the limit of weak interaction and neglecting the non-
linear term related to chemical reactions [11,16], when, on the one hand, explicit
expressions could be obtained, and on the other hand – one can use Wick’s decom-
position. In any case, additional information is necessary about the exact quantum
number dependence of tunnelling constants as well as the coupling amplitudes.

5. Contribution of chemical reactions to kinetic equations

In the previous section we obtained the closed system of kinetic equations for fluc-
tuations of one- and two-particle distributions functions 〈δfᾱᾱ′〉t, 〈δḠᾱᾱ′β̄β̄′〉t around
their equilibrium values. Let us remind that all these formulae were derived in the
assumption of weakly nonequilibrium case. On the other hand, we intend to apply
the obtained kinetic equations for such intrinsic nonlinear processes as bimolecular
chemical reactions. However, there is no contradiction here: equations for 〈δḠᾱᾱ′β̄β̄′〉t

2Dynamic correlation function between adsorbate and substrate should also be included into
the basic set if one intends to advance deeper in the hierarchy of kinetic equations.
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possess an implicit nonlinearity in fluctuations of one-particle distribution function.
Indeed, introducing a two-particle correlation function gᾱᾱ′β̄β̄′(t) in its usual way
[16] one can write down the expression for dynamic variable 〈δḠᾱᾱ′β̄β̄′〉t as follows:

〈δḠᾱᾱ′β̄β̄′〉t = δgᾱᾱ′β̄β̄′(t) + 〈δfᾱᾱ′〉t〈δfβ̄β̄′〉t + 〈δfβ̄β̄′〉t〈δfᾱᾱ′〉0

− 〈δfᾱβ̄′〉t〈δfβ̄ᾱ′〉t − 〈δfβ̄ᾱ′〉t〈δfᾱβ̄′〉0 −
∑

ν̄ν̄′

χḠᾱᾱ′β̄β̄′fν̄ν̄′
〈δfν̄ν̄′〉t. (5.1)

Here
δgᾱᾱ′β̄β̄′(t) = gᾱᾱ′β̄β̄′(t) − g0

ᾱᾱ′β̄β̄′, (5.2)

means fluctuation of correlation function and

χḠᾱᾱ′β̄β̄′fν̄ν̄′
=
∑

γ̄γ̄′

〈Gᾱᾱ′β̄β̄′fγ̄γ̄′〉0 [Φff ]
−1
γ̄γ̄′ν̄ν̄′ (5.3)

denotes static correlation function of adsorbed atoms. Further we will neglect per-
mutations of quantum indexes related to Fermi statistics referring readers to refer-
ence [17] for their explicit expressions.

It is necessary to make the following remark. In principle, it is possible to proceed
in a somewhat different way: to elaborate on nonlinear terms 〈δf〉t in original kinetic
equations instead of taking two-particle distribution function into consideration. But
in our opinion this line is less promising. On the one hand, it is necessary to use one
of the nonlinear dynamics methods to exclude generalized thermodynamic forces
in the relevant statistical operator; on the other hand, all the information about
nonequilibrium correlations will be lost. For the reactions of synthesis to take into
account the two-particle distribution functions is a principal question.

Thus, limiting ourselves by quadratic terms in fluctuations of dynamic variables,
we write down kinetic equations for one-particle distribution functions and two par-
ticle correlation functions in the following matrix form:

∂

∂t
〈δf〉t = M

(1)
ff (t) · 〈δf〉t + MfḠ(t) ·

(

δg(t) + 〈δf〉t ⊗ 〈δf〉t
)

, (5.4)

∂

∂t
δg(t) = MḠf(t) · 〈δf〉

t + M
(1)

ḠḠ
(t) · 〈δf〉t ⊗ 〈δf〉t − M

(1)
ff (t) ⊗ 〈δf〉t · 〈δf〉t

+ M
(2)

ḠḠ
(t) · δg(t), (5.5)

where we denoted the scalar product of matrixes by symbol · and direct product
by symbol ⊗. The other notations in equations (5.4)–(5.5) are as follows:

MfḠ(t) = Ω
(1)

fḠ
−

t
∫

−∞

eε(t′−t)φ
(1)

fḠ
(t, t′)dt′, (5.6)

MḠf(t) = Ω
(2)

Ḡf
−

t
∫

−∞

eε(t′−t)φ
(2)

Ḡf
(t, t′)dt′, (5.7)

M
(1)
ff (t) = Ω

(1)
ff −

t
∫

−∞

eε(t′−t)φ
(1)
ff (t, t′)dt′, (5.8)
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M
(1)

ḠḠ
(t) = Ω

(1)

ḠḠ
−

t
∫

−∞

eε(t′−t)φ
(1)

ḠḠ
(t, t′)dt′, (5.9)

M
(2)

ḠḠ
(t) = Ω

(2)

ḠḠ
−

t
∫

−∞

eε(t′−t)φ
(2)

ḠḠ
(t, t′)dt′. (5.10)

In equations (5.6)–(5.10) we used the Markovian approximation for kinetic kernels
[17]. We suppose the character evolution times of φ(t, t′) are much smaller than
those for distribution functions which allows us to take 〈δf〉t, δg(t) out from the
integrals, though relaxation times for various kernels are different: decay of ker-
nels (3.21)–(3.23) is much faster than that of (3.20) constructed exceptionally on
one-particle distribution functions. Explicit expressions for renormalized Ω and φ
functions entering the equations (5.6)–(5.10) could be found in appendix.

We constructed the closed system of kinetic equations for fluctuations of one-
particle distribution function and two-particle correlation function. The next natural
step is to solve it. However, because of its nonlinear structure, usual methods of linear
kinetics like Laplace transformation [18] are not helpful. Formally one can carry the
last term of equation (5.5) to its left hand side and find a solution for correlation

function δg(t) in an operator form with respect to [∂/∂t−M
(2)

ḠḠ
(t)]−1. This procedure

again leads to the appearance of higher order fluctuations in 〈δf〉t; therefore, we
consider a steady state for the correlation function, when ∂

∂t
δg(t) = 0. In that case

the solutions for fluctuations of the correlation function could be substituted to
the first equation of the chain (5.4)–(5.5) and after some algebra the equations for
one-particle functions take the form:

∂

∂t
〈δf〉t = −

t
∫

−∞

eε(t′−t)ϕ̂ff(t, t
′)dt′ ·〈δf〉t+Σ̂ff (t) ·〈δf〉

t−K(t) ·〈δf〉t⊗〈δf〉t, (5.11)

where
Σ̂ff (t) = Ω

(1)
ff − ΩfḠ(t) ·

[

Ω
(2)

ḠḠ
(t)
]−1

· ΩḠf (t), (5.12)

and similar expression for the first term in (5.11) with substitution

Ω → −

t
∫

−∞

eε(t′−t)φ(t, t′)dt′,

K(t) = MfḠ(t) ·

(

[

M
(2)

ḠḠ
(t)
]−1

· M
(1)

ḠḠ
(t) −

[

M
(2)

ḠḠ
(t)
]−1

· M
(1)
ff (t) ⊗ I + I

)

. (5.13)

Thus, we obtained a nonlinear kinetic equation for fluctuations of one-particle dis-
tribution functions of the atoms adsorbed on the surface of substrate. In equation
(5.11) we separated a term dealing with transport kernel ϕ̂ff , which forms diffu-
sion coefficients of adsorbed atoms. It has a usual renormalized form [18] being
expressed via higher kinetic kernels in Markovian approximation. Such renormal-
ization takes into account many-particle correlations on the lattice sites (up to the
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four-particle correlation in the present case). Functions Σ̂ff (t) describe coherent
(non-dissipative) motion of the adsorbate on the lattice sites and are related to stat-
ic correlation functions of higher order, being expressed through matrix elements
of the initial Hamiltonian (including chemical reactions) and structural distribution
functions. Factor K(t) in the last term of equation (5.11) is related to constant rates
of chemical reactions.

The system (5.11) looks very similar to reaction-diffusion type equations [5] but
in fact it is just a starting point to obtain them. All the time we call this system “a
chain of kinetic equations” to stress the fact that we deal with essentially kinetic
stage of evolution. All static correlation functions as well as kinetic kernels were
dependent on the number of adsorbing site s and vibrational states of the particle
i (we can neglect spin label σ because there is not any spin-site interaction in the
initial Hamiltonian). In such a way we supply the dynamics of the “adsorbate-metal
surface” system with some extra information, not relevant if one is going to describe
chemical kinetics. One of the ways of passing to the chemical kinetic level consists in
the averaging of all Ω and φ over all lattice sites s and states i. Then diffusion coef-
ficients, functions Ω that describe a coherent motion of the adsorbate and values K
associated with constant rates become only time-dependent; summing fluctuations
of one-particle distribution functions over s and i one passes to number density
(remind that nα =

∑

fiσ fαfiσ). The other way was proposed in reference [12] when
diffusion coefficients were calculated as square mean displacements of gas particles in
the nearest neighbour approximation. Here we face another kind of averaging typical
of random walks processes. In any case, the question how to calculate dissipative and
non-dissipative counterparts of kinetic equation (5.11) in a definite approximation
remains open and has to be the subject of further investigations.

6. Conclusions

Using the effective Hubbard model within the framework of NSO method we
obtained the equations of chemical kinetics for the description of reaction-diffusion
processes of the atoms adsorbed on metallic surface. We started from the initial chain
of equations for one- and two-particle distribution functions in weakly nonequilibri-
um form. The obtained kinetic equations consist of the terms responsible for coherent
(non-dissipative) motion of adsorbate as well as incoherent summands dealing with
diffusion of the particles on substrate sites. It was shown that in such a model there
are contributions due to adsorbate-substrate interaction and chemical reactions into
the formation of kinetic kernels.

The next step in our study was to pass from the weakly nonequilibrium case to
nonlinear dynamics. We performed this step by introducing two-particle correlation
functions and neglecting fluctuations higher than cubic. The obtained system of
equations consists of the drift terms and kernels renormalized due to many-particle
interactions. One can consider the obtained kinetic equations as a starting point for
chemical kinetics.
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To proceed further one has to get rid of redundant information connected with
site-state dependence of kinetic kernels, averaging them over all sites of the surface.
In practice it means that we have to evaluate non-dissipative and dissipative terms
in a certain approximation neglecting extra information related to quantum states
of every particle. In such a way one goes from the kinetic level of description of the
processes on the surface to chemical kinetics equations. Though it is not the same
as the ordinary transfer from kinetics to hydrodynamics [19], the main idea rests on
excluding some additional “degrees of freedoms” (quantum number dependency of
the kernels) from consideration. As a result one could obtain the system of equations
where the only fluctuation of number densities (or concentrations) would be involved.

In any case, a natural question about evaluation of the drift terms and transport
kernels arises every time one is going to perform a numerical analysis of chemical
kinetics equations. However, we left aside the answer to this question considering it
as a part of future studies.

Appendix

In appendix we present the renormalized correlation functions Ω and kinetic
kernels φ which form the system of kinetic equations (5.4)–(5.5). As we have already
said, permutation of quantum indexes related to Fermi statistics in the expressions
for matrixes (5.6)–(5.10) is neglected. We can write down the following expressions
for M :

M
(1)
ff (t) = Mff (t) + MfḠ(t) · 〈f〉0 − MfḠ(t) · χGf , (A.1)

M
(2)

Ḡf
(t) = M

(1)

Ḡf
(t) − M

(1)
ff (t) ⊗ 〈f〉0 + χGf · M

(1)
ff (t), (A.2)

at that

M
(1)

Ḡf
(t) = MḠf (t) + MḠḠ(t) · 〈f〉0 − MḠḠ(t) · χGf , (A.3)

M
(1)

ḠḠ
(t) = MḠḠ(t) − M

(1)
ff (t)I ⊗ I − MfḠ(t) ⊗ 〈f〉0 + χGf · MfḠ(t), (A.4)

M
(2)

ḠḠ
(t) = MḠḠ(t) − MfḠ(t) ⊗ 〈f〉0 + χGf · MfḠ. (A.5)

In the expressions presented above we used Markovian approximation for kinetic
kernels writing the sum of Ω and φ in the form

MAB(t) = ΩAB −

t
∫

−∞

eε(t′−t)φAB(t, t′)dt′, {A, B} = {f, Ḡ}. (A.6)
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Хімічні реакції на адсорбуючій поверхні: кінетичний

рівень опису
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Отримано 24 червня 2003 р.

На основі ефективної моделі Хаббарда запропоновано статистич-
ний опис реакційно-дифузійних процесів для бімолекулярних хіміч-
них реакцій між частинками газу, адсорбованими на металічній по-
верхні. Отримано систему рівнянь переносу, що описують як дифу-
зію частинок, так і хімічні реакції між ними. Проаналізовано вклади

усіх фізичних процесів в формування коефіцієнтів дифузії та конс-
тант реакцій.

Ключові слова: реакційно-дифузійні процеси, адсорбція,
кінетичний опис
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