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Unbinding of surface topological defects in the presence of the defect-
selective adsorption is investigated using a coupled Coulomb Gas — Lat-
tice Gas model. The unbinding temperature increases with the increasing
selectivity (and coverage) for both, sign-dependent and sign-independent
adsorption. In the latter case, the adsorbates tend to increase the num-
ber density of defects. The stability requirement implies that the adsorbate
cluster size must be coherent with the screening length of free defects.
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1. Introduction

It is a great pleasure for me to contribute this paper to the special issue dedicated
to the 60-th anniversary of Professor M.F.Holovko.

Surface defects (such as steps, vacancies, dislocations, disclinations, etc) are
known to play an important role in controlling the mechanical properties of sur-
faces as well as their roughening and melting temperatures [1]. Modification of the
electronic density around defects leads to different adsorption sites in comparison
with the rest of the surface lattice. This aspect has recently raised considerable in-
terest in connection with nanoscale patterns [2,3] and ultrathin heteroepitaxial films
[4].

Usually the binding energy at the defect sites is much larger than that at the
regular sites [5], because the defects tend to restore broken bonds by means of
adsorption. Thus, one may expect a preferential occupation of the defect sites when
the surface is in contact with an adsorbate. In this case a defect-defect interaction
should be modified by the adparticles [6]. In our previous studies [7,8] we have
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demonstrated that such an assumption allows one to recover the experimental results
on HCl-ice interfaces. Therefore, a defect-selective adsorption could be a promising
tool for a fabrication of a new type of protective coverages and a modification of
surface properties.

The objective of this paper is to investigate how the interaction between the
surface topological defects and their number density is modified due to the defect-
selective adsorption. The latter means that the adparticles reside preferentially at
the defect sites (e.g., at dislocation or disclination core). This induces additional
interactions between the defects affecting their unbinding temperature.

2. The model

Quite often the defects (dislocations [2,3], or disclinations [9]) form regular net-
works, or even periodic patterns at metal surfaces. For simplicity we ignore the
nonideality of real defect patterns and model the network of surface topological de-
fects as a square lattice. Scalar “charge” variables s; are associated with each site
(s; = 0 — regular site; s; = £1 — defect site). Thus, the defect subsystem is described
by a general type Coulomb gas (CG) Hamiltonian [10,11]

Hd = —JZID(RU‘/RO)SZ‘S]‘ + Ec Z 5127 (1)
ij {

where Ry is the core radius and E is the core energy of a defect. The latter quantity
determines the number density of defects through their chemical potential g = —E..
The electroneutrality condition

D si=0 (2)

is imposed on the system. The logarithmic interaction is directly applicable either to
Coulomb gas or to disclinations in the hexatic phase [12]. It is chosen as a prototype
which gives a Kosterlitz-Thouless (KT) transition [13] from a “dielectric” (bound
+— pairs) to a “conducting” (free charges) state. For a dilute system (pq = 0) the
transition occurs at the temperature T = kT../J = 1/4. The unbinding temperature
decreases with the increasing jq. Following Kosterlitz and Thouless [13] we construct

the approximation
1 1 Hd

which gives a satisfactory description at low defect densities.

Modifying the logarithmic interaction as appropriate for dislocations or discli-
nations, we could treat the surface melting transition [12]. Performing the duality
transformation [14], we can describe the roughening transition. Nevertheless, the
KT nature of these transitions is not sensitive to the modifications of the potential.

The adsorbate is described by the lattice gas (LG) Hamiltonian with a charge-
dependent chemical potential.

Ha = % tht] - ZM(S/L)tZ’ (4)
ij i
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p(si) = po+0opu(sq), (5)

where iy corresponds to the adsorption at regular sites, while du(s;) determines
the selectivity (that is, an additional adsorption potential due to defects). Here W
is a coupling between the adsorbates at the nearest neighbor sites, the occupation
numbers t; = 0,1 control a distribution of adsorbates at the lattice sites. For con-
creteness, the pair-wise interaction in the adsorbate is assumed to be attractive
(W <0).

Therefore, we deal with a coupled CG-LG system, which is in the same univer-
sality class as the XY-Ising model [15]. A dual model was extensively investigated
[16] by means of Monte Carlo simulation.

3. Perturbation theory

We are mainly interested to determine the effect of the selectivity on the defect
unbinding. For this purpose the adsorbate Hamiltonian is split into two parts

H,=H, — Z op(si)ti (6)

where H? describes the adsorption without any preferences (regular sites). Treating
the selectivity term as a perturbation, we adopt the scheme developed previously
[17,18]. The free energy BF is given by

e BEFE-F)) _ /(dRi)e_:@Hd <e_ﬂ216li(5i)ti>t. : (7)

where 5 = 1/kT is the Boltzmann thermal factor. The average (F(t;)):, should be
calculated with the reference Hamiltonian

—BHY (4.

(F(t:)), = Dy © F(t;)
7 i _ 0
Dy e

Performing the cumulant expansion and restricting ourselves to the first two cumu-
lants, we get an effective Hamiltonian for the defects.

Hat = Hy = 5 S x(Ri)ou(s:)d(s,) — Y 06u(s) (®)

Thus, we have an additional (adsorbate-induced) interaction governed by the adsor-
bate correlation function x(R;;), which can be approximated by its mean-field value

19)
X(Ry) = (tit5) = {t){t3) = \/RZ/5 Q)

In addition we have the one-body term that couples the selectivity to the coverage.
Here © = (), t;) is the coverage and & is the correlation length for the adsorbate.
Effects induced by these interactions depend on a choice of the selectivity term

op(si)-
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3.1. Sign-dependent adsorption

When only the same sign defects are preferable for the adsorbates, we choose

op(si) = ps; - (10)
Then the Hamiltonian becomes
Hy = _Z‘/ef(Rz‘j)SiSj -I—ECZS?, (11)
ij i
ValR) = i (R/E) + Py (m) (12)

The term ;10 ). s; = 0 according to the electroneutrality condition (2). Following
the standard scheme [13], we develop a mean-field approach for the screened poten-
tial U(R) = V(R)/e(R) and focus on the behavior of the dielectric function e(R).
Namely, the number density n(R) of +— pairs with separation R can be estimated
from

n(R) = C(Ro)e’ﬁU(R) - C’(RO)e*ﬁVef(R)/e(R)’ (13)

where C'(Rp) is a constant. On the other hand, the dielectric function e(R) differs
from unity because the bounded pairs are polarized.

R
e(R) =1+ / dR'P(R)n(R). (14)

The polarization function P(R) can be approximated by its value for noninteracting
dipoles with separation R. Therefore, these two relations can be used for elimination
of n(R) obtaining a nonlinear differential equation for e(R). Based on this we deter-
mine the unbinding temperature 7. (at which € = £(c0) jumps from finite values to
infinity) as a function of the selectivity parameter ;. As expected, T, grows with
the increasing selectivity, since the attractive adsorbate-induced interaction tends
to pin the defects of a given sign. Then the opposite sign defects are also partially
immobilized.

3.2. Sign-independent adsorption

If there is no defect sign preference, then we have

Ou(si) = pas; (15)
and (1) gives
Hy = H, d—%ZX R;; 3??—,@@2 ) (16)

Thus, in contrast to the 81gn—dependent case, we have an additional charge-inde-
pendent interaction (attractive for all the defects). For this reason we have to take
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into account the charge and density fluctuations [20]. The chemical potential is also
changed
fta = 1120 — E; (17)

such that the defect number density changes with the coverage.

To determine the role of this additional interaction we first analyze a case of
small E. and pq = 0, such that the defect number density is fixed. Our main focus
is on the inverse dielectric function €(q). The linear response theory gives

L g(a)
r

where g(q) is the Fourier transform of the charge-density correlation function g(R) =
2[g++(R) — g+—(R)]. Hence, we deal with the so-called linearly screened potential
[10]

(18)

2r  _ 2m g(q))
1(a) 2e(q)  q Q? (19)
what behaves as 5
T
Ur(aq) = Erae a4 0. (20)

Here A is the temperature-dependent screening length, such that A = oo in the
low-temperature dielectric phase, and A # oo in the high-temperature conducting
phase.
Following [10], we may represent g(R) as a combination of effective potentials
Uit (R) and Uy (R)
g(R) = Q[e—ﬁU++(R) _ e_ﬂU‘F*(R)]' (21)

Since the adsorbate-induced interaction is sign-independent, it should additively
contribute to the effective potentials

Un(R) = U8R - P2y (m), 22
U, (R) = Uﬂ(R)—%M%X(R), (23)

where U?, (R) and U?_(R) correspond to the purely logarithmic interaction (no
adsorption), when g(R) = go(R) according to equation (21).
In the presence of adsorption we obtain the defect correlation function
5

o) = o) go(r) 1+ 22 () (24)

which can be represented as a convolution in the Fourier space

523
2

9(q) = go(q) + go(k — q) * x(k), (25)
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where a large-k cutoff L ~ 27 /Ry should be introduced. The Fourier transforms of
the clean surface and the adsorbate correlation functions are given by

2

9(@) = alB)y oy (26)
@) = o 0

Calculating the convolution we obtain the following small ¢ behavior

9(q) = go(q) + e1(X, &) + ©2 (X, €)@, (28)

where ¢1(\,€) and ¢o(\, €) are given functions of the screening and correlation
length. The g-independent term (A, §) violates the thermodynamic stability, as it
follows from equation (18) at ¢ — 0 (in that case 1/¢(0) — —o0). Thus, we have to
require (A, £) = 0. This imposes a constraint on A and &.

In the dielectric phase (A — o0) our requirement is satisfied automatically:
©1(A, &) — 0 as A — oo. In this case £ is not restricted. In particular, we may have
¢ — oo (for example, due to a nucleation of adsorbates around the defect sites [18]).
Then, the defect-adsorbate coupling should facilitate the defect nucleation [21].

Near the conducting phase boundary (finite \) the numerical solution gives a
discrete set of £ for a given A. Qualitatively this can be expressed as follows

e=r(2) o

where n and m are specific integers with n < m. Therefore we have an infinite
(but discrete) set of £, with & < A. The adsorbate-induced interaction tends to form
defect clusters with their average size of the order of £. Therefore, the adsorbate
cluster size cannot exceed the defect screening length.

It is known [10] that A is related to the number density n¢ of free defects:
A2 = 1/b(T)ns. Thus, for a given ng we have a discrete set of adsorbate cluster
sizes €2 = (n?/m?)/(b(T)n¢), compatible with the thermodynamic stability of the
system. Since the adsorbate diffusion coefficient D is inversely proportional to the
squared correlation length £, D oc ©(1 — ©)/£2, then it is easily seen that D is
proportional to the density of free defects D oc m?/n?*0(1 — ©)b(T)n;. Near the
unbinding temperature we can expect a sharp change in n¢ and, consequently, in the
adsorbate diffusion flux.

Having determined the conditions for ¢1(\,£) = 0, we obtain the correlation
function

o) =ao) (1+ [12] ) (30)

The unbinding temperature 7T, is determined from the condition[10] 27 5g(q)/q* = 1,
as ¢ — 0. This gives

T.=T° (1 + [“—jff?/Tf) . (31)

546



Unbinding of surface defects. ..

Solving this equation we obtain the unbinding temperature T, = T.(ug = 0) as a
function of the selectivity po/J. For small ps/J the critical temperature T, grows
monotonically, since the adsorbate-induced interaction favors the binding of the
defects.

Nevertheless, according to (17), the selectivity parameter us changes the chemical
potential pq. In that case we solve (3) to obtain

—Hd
Te(pa) = Te(pa = 0) m——, 32
() = i1t = 05772 (32)
where W (a) is the so-called Lambert function which is a solution of equation z/a =

exp(—x).

The unbinding temperature is a nonmonotonic function of the selectivity. An ini-
tial increase of T is due to the adsorbate-induced binding of the defects. A decrease
(at larger uy/J) is caused by the increasing defect number density. A competition be-
tween these effects induces a reentrant unbinding (with respect to ps/J). A general
tendency to expand the “dielectric” phase is observed, especially, with the increasing

of €.

4. Conclusion

The defect-selective adsorption is shown to favor the binding between the topo-
logical defects, increasing the thermal stability of the surface. This is manifested
by a remarkable increase of the unbinding temperature with the coverage and the
selectivity. The CG-LG model is dual to the discrete Gaussian-LG model, discussed
[17] in application to the adsorbate-induced roughening [22]. Therefore, the increase
of the unbinding temperature, found here, is consistent with the decrease of the
roughening temperature [17] in the dual model.

The results, obtained here, suggest a possibility for a reentrant unbinding transi-
tion (of KT type). The reentrance results from a competition between the adsorbate-
induced attractive interaction (which enhances the defect pairing) and the selectivity
dependent binding energy, that increases the defect number density. The effect is
well pronounced at relatively low selectivity us/J < 1/2, provided that the adsor-
bate pairwise coupling W is strong enough to result in a nonzero . This could serve
as a criterium for a selection of appropriate adspecies. The concentration of defects
(e.g., dislocations) is related to a strength of the surface, while the unbinding can
be associated with the surface melting. Thus, the mechanism described here, could
be an efficient practical tool for controlling the surface properties.

In the bounded (dielectric) state there is no limitation on the adsorbate cluster
size, and adsorption is essentially similar to that occurring at usual crystalline lat-
tices. Nevertheless, when the defect lattice is not rigid, we can expect an adsorbate-
induced patterning, similar to that reported earlier [6] for regular surfaces. Near the
conducting phase boundary only a particular set of adsorbate cluster sizes and de-
fect screening lengths is compatible with the thermodynamic stability. This implies
a correlation between the number density of free defects and the adsorbate cluster
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size. Such a specific size effect modifies the thermodynamic and kinetic properties.
In particular, the adsorbate diffusion coefficient is proportional to the density of free
defects.

Since the only key ingredients are the selectivity and the KT type transition for
the defects, our results are quite general and applicable (with slight modifications)
to a broad class of adsorbate-crystal systems (adsorbate-metal interfaces, surface
alloys, etc.). Also, the approach, developed here, elucidates some aspects of the two-
dimensional Coulombic criticality in the presence of specific interactions (charge and
density fluctuations).
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BuBinbHeHHs noBepxHeBux aAedekTiB npu
AedeKTHO-CeNneKTUBHIN aacopouil

E.B.BakapiH 2

JlabopaTtopis enekTpoximii Ta aHaniTUYHOI ximii, Buia HauioHanbHa
wkona ximii B Mapwuxi — YHiBepcutet [Mepa i Mapii Kiopi,

®paHuis, Mapwx, Byn. Mepa i Mapii Kiopi, 11

IHCTUTYT i3nkn KoHaeHcoBaHuX cuctem HAH Ykpainu,

79011 JibBiB, Byn. CBEHUiUbKOTrO, 1

OTtpumaHo 23 kBiTHA 2003 p.

JocnioxyeTbCcs BUBINbHEHHA NOBEPXHEBUX AedeKTiB Npu aedekTHO-Cce-
NeKTUBHIM aacopbuii, BUKOPUCTOBYIOUM KOMBiHALi0 Moaenei rrpaTtkoBo-
ro ragy i KynoHiBCbKOro rady. Temneparypa BUBifIbHEHHA 3pOCTa€E 3 POC-
TOM CENEKTUBHOCTI 1K A1 3HAKO-3aNeXHOoi, Tak i A5 3HaKO-He3anexHoi
ancop6uii. B octaHHbOMY BUNaaky aacopobart 30inbLUye ryctuHy aedek-
TiB. Bumora ctabinbHOCTI BKa3ye Ha Te, WO pO3Mip KiacTepa B aacop-
6aTi Mae ByTn CNiBMIPHUM 3 LLOBXMHO €KpaHyBaHHS BilbHUX AedEKTIB.

Knio4oBi cnoBa: agcopbuisi, cenekTuBHICTb, AepekTn

PACS: 68.45.-v
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