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Energy states in superlattices
connected with incommensurate phase
presence
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The electron behavior in incommensurate phase in Sn2P2Se6 has been
considered as the motion in the Mathieu potential. A simple model of ef-
fective potential change under a transition incommensurate – domain-like
structure has been proposed. A behavior of the obtained localized levels
system versus the model parameters has been investigated.
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1. Introduction

The modulated structures have attracted a lot of attention of the investigators in
recent decades due to the variety and uncommonness of their physical properties. It
has been found that such structures can appear, in particular, in ferroelectrics [1–3]
being in the so-called incommensurate phase. This phase is connected with a recur-
rent change in the order parameter along some preferential direction. The period
of the modulation wave is incommensurate with the magnitude of lattice parame-
ter. So, for instance, in well investigated Sn2P2Se6 ferroelectrics, the parameters of
which were used for our modulation (see table 1), the modulation with the wave
vector q takes place over the temperature range T = 193−221 K. With good accura-
cy it should be considered that this vector is directed along [001] and its magnitude
corresponds to the wave with the period which makes up 12–14 unit cell periods [4].

The existence of the preferential direction results in the reduction of the dimen-
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Table 1. Parameters of Sn2P2Se6 used in the modelling.

m∗/m0 V , eV L/c, Å c, Å
c-band 0.1 0.1–0.2 12–14 6.85
v-band 0.8

sionality of the problem that allows one to consider the carrier flow as the motion
in the corresponding one-dimensional potential. It should also be noted that the
Sn2P2Se6 ferroelectrics have a comparatively wide energy gap (Eg0 ∼ 1.85 eV [5]).
Thus, the investigated herein transport properties are mainly related to the pho-
toexcited nonequilibrium charge carriers.

Let us consider the next peculiarity of the problem. The incommensurability
between the periods of the lattice and the modulation wave results in the loss of
the translation invariance of the system. This does not make it possible to treat the
energy structure of this system by usual methods. Many works devoted to physical
and mathematical investigations of the given problem have appeared [6–8] (see also
references in [2]). In [7], the loss of the translation invariance is compensated by
involving the additional dimension that leads to the complex clusterized structure
of the energy spectrum [8]. In such a method based on the symmetrical approach of
the modulation the potential magnitude is not taken into consideration. However, the
estimation of this quantity based on the known values of the deformation potentials
and the amplitude of the oscillations of the order parameter for Sn2P2Se6 shows
that in comparison with the magnitude of the lattice field the modulating potential
can be considered as a small perturbation (4V ∼ 0.5 eV). Generally speaking, the
electron properties can be predicted or interpreted correctly if the complete energy
structure of the current carriers is known. But, because of a low level of the carrier
occupation, it is possible to take into account only the vicinities of the spectrum
extrema points instead of accounting the complete band structure. Therefore, the
definite conclusions concerning the carrier motion can be made within the framework
of the effective mass approximation. This approximation can be used in case of a
weak change in the perturbation potential amplitude within the unit cell of the
initial crystal similarly to the case under consideration.

2. Model

At a further modelling, we will take into account the modulation magnitude of
the band edges (V ) being the same both for electrons and for holes (see figure 1)

In the employed approximation the motion of the charge carriers is determined
by the following one-particle Schrödinger equation:

{

−
h̄2

2m∗

∂2
z +W + 2V cos

(

2πz

L

)

}

ψ(z) = Eψ(z), (1)
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Figure 1. Sketch of the modulated edges of the c- and v-bands.

where L is the length of the modulation wave, m∗ is the effective mass of the carriers
in the band under consideration and W indicates the c- and v-bands edges without
the modulation (We = Eg0 − 2V , Wh = −2V ). This equation with the harmonic
potential can be reduced to a well known equation for the functions of the elliptical
cylinder, also referred to as Mathieu functions [9]. For this purpose, we will introduce
a new variable ξ = πz/L

{

−
h̄2

2m∗

π2

L2
∂2

ξ +W + 2V cos(2ξ)

}

ψ(ξ) = Eψ(ξ). (2)

Then, we will divide (2) by the coefficient at the derivative. It gives:

{

∂2
ξ +

2L2m∗

π2h̄2 (E −W ) − 2
2L2m∗

π2h̄2 V cos(2ξ)

}

ψ(ξ) = 0. (3)

Introducing the parameters

ε =
2L2m∗

π2h̄2 (E −W ), q =
2L2m∗

π2h̄2 V, (4)

we reduce (3) to the following form

{∂2
ξ + ε− 2q cos(2ξ)}ψ(ξ) = 0, (5)

which exactly coincides with the above mentioned equation for the Mathieu func-
tions. Since the space period of the potential in the equation (1) is equal to L, we
will be interested only in π-periodical solutions of the equation (5). It should also be
noted that because of the invariance of the expression in the brackets under space
inversion, the solutions will possess the definite parity.
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Table 2. Energies of several first levels obtained for electrons (Ee) and holes (Eh)
in the cosine-like potential with parameters of Sn2P2Se6 (L = 12c, V = 0.1 eV).

S1 A1 S2 A2

Ee, eV –0.204 0.169 0.366 0.922
Eh, eV –0.327 –0.184 –0.049 0.076
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Figure 2. Calculated dependence of the energy gap Eg versus the modulation
wavelength in Sn2P2Se6 .

Several first values of the energy obtained for even (S) and odd (A) states of the
electrons and holes for the parameters of Sn2P2Se6 are presented in table 2.

Since the amplitude of the wave vector of the modulation with the change of
temperature varies at the invariable direction of this vector (see figure 1.7 in [4]),
the dependence of the energies of the dimensional quantization levels versus the
modulation wave period can be obtained.

The energy gap dependence of modulation wavelength calculated within the
framework of the described model is presented in figure 2. Here, under Eg we
understand the minimal distance between localized levels of electrons and holes
(Eg = Ee − Eh + Eg0).

However, it should be noted that the approximation used does not take into
account the admixing of the higher-order modes to the simple periodical potential
from (1). These modes can essentially distort the profile of the potential in the
vicinity of the phase transition temperature with the tendency to form wide potential
barriers, corresponding to the domains which are separated by narrow wells i.e.
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Table 3. Boundary values of parameters used in the modelling of transition from
modulated to domain-like structure.

f1 f2

λ/c 12 5
Λ/c 0 105

V , eV 0.8 0.1
W , eV 0.4 0.1

domain walls. Therefore, it is of interest to study the dynamics of the above obtained
localized levels at the transition into the ferroelectric phase. For this purpose one can
use the model permitting to obtain a smooth transition of the modulated potentials
with the temperature decrease. The similarity between the problem under study
and that of determining the miniband spectrum of the superlattices allows one
to employ the matrix formalism of the envelope function method. The essence of
this method is formulated as follows. The two row vector-solution including the
envelope function and its first derivative has been considered. By using the so-
called transfer and interface matrix [10], the solution is transferred through the
period of the investigated system and then Bloch theorem is taken into account.
This makes it possible to determine the carrier dispersion. It should be noted that
this method was initially formulated for the piecewise-constant potential used in the
well-known Kronig-Penney model. But, by way of several modifications [11], one can
make it suitable for the arbitrary smooth potential. Turning to the modelling of the
transition from a harmonic profile of the potential to the potential in the form of
narrow wells separated by wide barriers one can propose the following model:

Uθ (z) =







V (θ) cos
(

2πz
λ(θ)

)

+W (θ) , z ∈ [0, λ (θ)] ;

V (θ) +W (θ) , z ∈ [λ (θ) , λ (θ) + Λ (θ)] ,
(6)

where the magnitude θ ∈ [0, 1] is the parameter of the transition, the values λ,Λ, V
and W which determine the widths of the wells, barriers and their depth and height,
accordingly, are chosen in the form of the linear in θ functions:

f = f1 + θ(f2 − f1). (7)

Here, fi denotes the boundary values of the f = λ,Λ, V,W ; i = 1 corresponds to
the modulated structures and i = 2 corresponds to the domain structure.

The schematic profile of the potential (6) for the parameters presented in table 3
is shown in figure 3.

3. Discussion

Returning to the proposed model let us emphasize that θ = 0 corresponds to
the modulated structure while θ = 1 corresponds to the domain structure. From the
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Figure 3. The illustration to the potential transformation of the change in θ

parameter.
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Figure 4. Eg versus θ for the parameters whose boundary values are presented
in table 3.
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obtained dependencies (see figure 4) of the energy gap versus the introduced param-
eter one can see that localized states become shallow at approaching the domain-like
potential. This fact can be easily explained from the general quantum-mechanical
point of view. Indeed, the θ value increase leads to such a transformation of the
potential under which the wells become narrow and separated one from another by
wide barriers. This obviously results in the levels lift. However, we have to note that
there is a converse tendency in our model. Namely, the behavior of the energy shift
W (θ) can produce the lowering of the localized levels system obtained. Taking into
account the presence of these two opposite tendencies we can explain the maxima in
the calculated dependencies Eg(θ). Such a peculiarity possibly appears due to the
choice of the linear in θ behavior adopted for all considered parameters. Nevertheless,
one can state that the proposed model is capable of quite good qualitative descrip-
tion of the considered transition and can be used as the first step approximation of
electron subsystem behavior in modulated structures.

The quantum effects obtained can lead to an unusual behavior of several ki-
netic and optical properties, namely to the realization of the dark conductivity
according to Mott’s law in Sn2P2S6, the memory effect in incommensurate phase in
the Sn2P2Se6 crystal [12], the phenomenon of a long-time photoconductivity relax-
ation [13], an unusual behavior of the optical absorption edge in the ferroelectric
and incommensurate phase. Really, the redistribution of the charge carriers on the
created energy levels and the abrupt growth of the density of electron states that
lead to the intensification of the electron inhomogeneity are possible. The similar
situation is realized in the system with electron-phonon interaction in the quantizing
magnetic field [14].
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Енергетичні стани у надґратках пов’язані з

наявністю несумірної фази
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Отримано 24 жовтня 2002 р., в остаточному вигляді –
16 квітня 2003 р.

Розглянуто поведінку електронів у несумірній фазі Sn2P2Se6 як рух у

Мат’є потенціалі. Запропоновано просту модель зміни ефективного

потенціалу при переході від несумірної до доменоподібної структу-
ри. Отримано систему локалізованих рівнів та досліджено її пове-
дінку в залежності від параметрів моделі.

Ключові слова: модульовані структури, Мат’є кристал,
несумірність, сегнетоелектрики

PACS: 64.70.Rh
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