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The problem of the functional representation for systems containing groups
of atoms with a non-compensated spin momentum (magnetic clusters) is
discussed. For representation of the functional of partition function a ver-
sion of the collective variables method with the “reference system” as a
zero-order approximation is used. A set of all isolated clusters are choosen
as a reference system. Intracluster interactions are described by exchange
Heisenberg-type Hamiltonian, the form of intercluster interactions depend
on the structure of the system investigated. Due to the use of the recent-
ly introduced generalized transition operators (like well-known Hubbard-
Stasyuk operators) an explicit form of the functional of partition function is
found.
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1. Introduction

Among different kinds of physical systems, in which the processes of structural
elements ordering play an essential role, a cluster system accupies a special place. In
a crystalline (or amorphous) cluster system, due to its internal structure or peculiar-
ities of interparticle interactions, there are physically distinguished groups of parti-
cles. So, the correlations between the particles from different groups are much weak-
er as compared with analogous correlations of the particles belonging to the same
group. One may divide magnetic cluster systems into two classes. To the first class
there belong natural pure compounds, for example [Cr3(CH3COO)g(OH),]Cl-8H50,
[Fe3(CH3COO)6(OH)3]NO3 - 6HyO (three-particle clusters), Cuy(CH3COO), - 2H50

© N.A.Korynevskii 391



N.A.Korynevskii

(two-particle clusters). The second class is formed of artificially prepared specimen,
for example a solid mixture of a magnetic compound MnO in a diamagnetic ma-
trix MgO (large set of isolated ions, two-, three- and more particles clusters) [1].
It should be noted that the cluster structure is a characteristic feature for different
ferroelectric compounds: DMAAS and DMAGaS [2], SASD and SASeD [3] and some
others.

The theoretical investigations of the magnetic cluster systems known at the
present time are devoted only to the description of statistic properties and ther-
modynamic functions of isolated small clusters (two-, three- or four particles) on
the Heisenberg model basis. The intercluster interactions in this descriptions are ne-
glected but they play an essential role in the cluster system behaviour at the phase
transition point neighbourhood.

As far as a magnetic moment in all the mentioned cluster systems is of a spin
nature, the usage of the Heisenberg-type Hamiltonian for exchange interaction de-
scription is quite adequate. But exchange interactions are essential only for the
particles belonging to the same cluster (due to a small distance between particles).
Besides the exchange interaction in magnets, there exist dipole-dipole magnetic in-
terparticle interactions and interactions of magnetic atoms with crystalline lattice
electric field. Due to its relativistic nature, the last two interactions are 1-2 or-
ders weaker than the exchange interactions. But their role is very essential because
they are responsible for the formation of the axes of magnetization and possess a
large radius of action [4]. Therefore, it is nessesary to take into account magnetic
dipole-dipole interactions for a correct description of the intercluster correlations.

The main purpose of this paper is to get a functional representation for a partition
function of the interacting magnetic cluster system. The intracluster interactions are
described by quantum Heisenberg-type Hamiltonian. The intercluster correlations
appear due to taking into account the dipole-dipole pair interactions between par-
ticles. The general approach to the calculation is based on the collective variables
method [5] and on the usage of the generalized transition operators [6]. The obtained
representation will be used for a rigorous description of the ferromagnetic cluster
systems behaviour in the phase transition point neighbourhood.

2. Hamiltonian. Reference system

Three-dimensional crystalline lattice, containing f, spin particles (atoms with
non-compensated spin momentum, or electrons) at each of the N cells is considered.
In the spin operators representation such a system is described by the following
Hamiltonian:

N o N
H = =SS h(R)si(R) —23 Z Vi S (B,)50(B,)
q=1 f=1 q=1 f,f'=1

- %Z Z Z 77 (Ry, By)SF(Ry)SH(Ry). (2.1)

o g,q'=1ff=1
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—

Here S?(Rq) is the a-component of the f-th spin particle situated in the ¢ cell, Vi
is the exchange integral, J¢7 (éq, éq/) is a coefficient of the magnetic dipole-dipole

interaction between o components of spins from different cells, h f(ﬁq) is the external
magnetic field.

Two first terms in (2.1) belong to the particles situated at the same cell (in the
cluster) and Vyp > J§§ (R, Ry). It is natural to consider such groups of particles
in (2.1) as a reference system. Putting V;; =V (topologically it corresponds to the

clusters of 2,3 or 4 particles only) and h(R,;) = h (a uniform external field), one
obtains the expression for reference system Hamiltonian:

N fo N fo
Hy=—h>» Y Sj(R)—2V Y Y Si(R)Sp(R,). (2.2)
¢=1 f=1 ¢=1 f,f'=1

Taking into account the relation for a finite sum of spin operators products:

fo fo
—2 Y SpSp=> "8 (5), (2.3)
f<f'=1 =1

where S is a total spin of fy spin particles, one can easily get a formula for an energy

spectrum of fo-particles cluster, which is described by the Hamiltonian (2.2):
E=VI[f,S(S+1)—S5'(S"+1)] — Mh, (2.4)
S '=0,1,2,3,..., foS when f,is even,

135
S = 373 5,...,f05 when fy is odd,
M=-5 -5+1,-5+2,...,8-2,8-1,9,

are possible eigenvalues of the total spin and its projection on the z-axis for S = %
Therefore, for clusters:

fo=4 %:31/, %:V+h, %:v, %ZV—h, %:—3v+2h,
%:—3v+h, %:—3\/, %:—3\/—}1, %:—W—Qh.

(2.5)

So, the formula (2.4) gives exact values for energy levels of the cluster. But some
levels remain degenerate (starting from fy = 3), because the total number of states
is equal to

n =2/,
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The problem of complete determination of quantum states and corresponding energy
levels may be solved using a clusterization method by means of the generalized
transition operators. This enables one to calculate the partition function of the
reference system. The main purpose of the method of clusterization developed in [6,7]
was to obtain a diagonal and symmetrized form for de Gennes-type Hamiltonian.
This becomes possible due to the use of the generalized transition operators

Ya(Ry) = D U, XY(R,), (2.6)

where Hubbard-Stasyuk operators X% (ﬁq) 8,9] were constructed on the operators of
z-component of a total spin of cluster, so, for Hy Hamiltonian the next representation

took place
N 2/o

Hy=> Y aX"(R,) (2.7)

q=1 i=1

(a; are energy levels of the cluster).

In the present paper X ij(]%q) operators must be built on the complete set of x,
y and z-components of S. The general form of (2.6) remains unchanged.

For fy particle cluster, the reference system Hamiltonian (2.2) is defined in the
2fo_component quasispinor basis. The generalized Pauli matrices in this case may
be introduced as follows [7]:

o =8"xIxIx...xI, oy =1 xS xIx...xI,

of =1 xIx...xS8"xI, op =Ix1Tx...xIxS8% (2.8)

where [ is a 2 X 2 unit matrix and X is a tensor product symbol.

Applying a unitary transformation W (W~'o¢W = &%) one can reduce (2.2)
into a diagonal form. Then it is convenient to expand 7% in a finite series in 2fo_
component Hubbard-Stasyuk operators X* [6]

22/0
GY(Ry) =Y ALIXMR,). (2.9)
pn=1

Here Aflf ) are matrix elements of o operators in the (2.8) representation, p enu-

merates the transitions between i-th and j-th cluster states, p = 27(i — 1) + j
(i,j = 1,2,...2%). The U matrix may be found as a solution of the following set of
secular equations:

220 fo
3 {55 S R ALt s @

wp'=1 Lf,f'=1 «
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As a result, in the generalized transition operators (2.6) representation, one gets
a total cluster system Hamiltonian (2.1) in the diagonal in A form:

H= Z {ZAAYA — = Z ®,(R,, Ry)YA(R, )YA(ﬁq/)}. (2.11)

Here
2fo

Ay = Z a;Uiix
=1

is the energy of the A-th state of the cluster (nominally transformed levels a;),
O, (R1, Ry) is the A-th eigenvalue of the intercluster interaction matrix.
Generalized transition operators (2.6) satisfy the commutation relation:

VA(R), YalRy)| = ZWM,YA Saat

W = AUraaUsx = UsaUrax} Uni, (2.12)

r,8,t

r,s,t are ordinary indices and A,y are double indices.

As it was mentioned in the Introduction, in the present paper two types of
long ranging interparticle potentials will be regarded. The first one is the Ising-type
potential:

a 5 Jee (R, Ry), a=z
J(Ry, Ry) = § i\t )s ’ 2.13
i ) = { U R0 =2 213)
and the second one is the Heisenberg-type potential:
TSRy, Ry) = J35(Ry, Ry), a=w,y,2 (2.14)

The herein proposed method of clusterization of the (2.1) Hamiltonian into the
form (2.11) can be easily applied also to the potentials J?fﬂ/(ﬁq, ﬁq/) with other pos-
sible relations between their «, § components. The central point in such a procedure
is the problem of (2.10) secular equations solution.

One can be easily convinced in the fact, that for a usual Heisenberg model (only
one spin in a cell, i.e. fo =1, V = 0) the representation (2.2) is equivalent to (2.11)
where:

1 1 1
Y - Xll X22 - Y - X12 X21 — 25123
1 \/5( + ) \/57 2 \/5( + ) \/_ ’
1 1
Y = — (X2 4+ X2 =iv25Y Y, = — (X" + X??) =125 (2.15
g ﬂ( + X)) =iv2sY, Y, ﬁ( +X%) =V25%, (2.15)

and besides
(Sa:)Z "‘ (54)2 + (Sz)2 —

XU X2 =1, (V)2 + (Y22 + (Y3)2 + (Ya)? = 1. (2.16)
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The advantages of Y, operators representation will be demonstared when using them
for nontrivial clusters (fy > 2). As a real cluster system, a complete investigation of
which will be performed in future, we shall regard a system with f, = 2, that is the
one adequate to the Cuy(CH3COO)4- 2H, 0 crystal. @, (R, R') matrices for Ising and
Heisenberg types of interactions in the two-particle cluster system are presented in
appendix A. Corresponding U matrices are presented in appendix B. The nonzero
coefficients of (2.11) Hamiltonian are:

\%4 3V V
, A _ A = -, A = —\/ih,
\/5 6 11 9 16

O = Ji1 — Jig, D5 = Ji1 + Ji2 (2.17)

Alz—

for long-range interaction of the Ising type and

1% 3 1%
A= ~ % Ao==V2h,  Au=3V.  As=-o,
Dy =Py = —Dy; = Jy; + Jio,
Oy =P7 = —Dyg = Jy; — Ji2 (2.18)

for long range interaction of the Heisenberg type.

The algorithm of clusterization procedure does not depend on the size of clusters,
so it can be also performed for the systems with fy = 3,4, ... in a similar way. Our
future task is to investigate the thermodynamic properties of the reference system
and to build the functional of partition function for the total system. The latter is
necessary for the calculation of thermodynamic functions in the neighbourhood of
the phase transition point.

3. Thermodynamics of the reference two-particle system

One can see, that Hamiltonian in the form of the reference system, presented by
the first term of (2.11)

Hy=> Y MYi(R,) (3.1)

is not a diagonal one. The reason is that only combinations of Ay ((2.17) or (2.18))
are true levels of cluster energy. Really, the diagonal is the Hamiltonian:

N

HO = Z{% (H(éq) + 5/16(}?(10 + A6Y6(ﬁq) + All}/ll(ﬁq)
+ 2R () - vie(R)) (32

where A, are taken from (2.17) (for (2.18) case a simple substitution: A; — Aj,
A6 — A14, A11 — A15, A16 — A2 must be made).
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The partition function Zy = Tr{e 7} is equal to

Zy = 7},
A A
Zo1 = 2¢~%V% cosh @ 4+ e Pl 4 o FAl
V2
= 2677 cosh Bh + e 2%V te. (3.3)

It is easy now to calculate the average values of Y7, Yg, Yi1, Yig operators, using

(3.3).

0
YV)o=—==—InZ
(Ya)o BIIW n Zo1,
A
\/56_721 cosh 8216 e~ B
(Yi)o = L Y= ——
Z01 ZOl
BAy
e BAn V2e” V2 sinh &\/%6
Vo= —,  (Vieho= —— . (3.4)
01 01

Here § = 1/kT, k is the Boltzmann constant, 7" is the absolute temperature.
Thermodynamic functions of the reference system are calculated based on the
free energy:

1 N _38V. BV
FO——BIDZO——Eln{e +e (1+2005hﬁh)}. (3.5)

For entropy (5), internal energy (U), heat capacity (C,), magnetic moment (M)
and magnetic susceptibility (x) per one cell, one can obtain the following formulae:

T
38V — BVe?V (1 + 2 cosh Bh) — 4Bhe**V sinh Bh
2[1 + eV (1 4 2 cosh Bh)] ’

3V — Ve?V (1 + 2 cosh 8h) — 4hsinh Sh
2[1 + 28V (1 4 2 cosh Bh)] ’
- (@) NP {v2(1 +2cosh Bh) + 5hV sinh Bh + 2h? sinh Bh
ar ), 1 4 eV (1 + 2 cosh Bh)
[3V — V(1 + 2 cosh Bh)e??V — 4he?V sinh Bh][V (1 + 2 cosh Bh) — hsinh (h)]
- [1+ e?h(1 + 2 cosh BV)]? }’

S = — (8F0) = Nkln {e*ifv —|—e%(1+2(:oshﬂh)}
h

+N

U=F+TS=N

M= 1 oFy\ 2e%0V sinh 3h
~ N\ 0h /), 1+e*V(1+2coshph)’
1 *F, _5 2e8V cosh 3h B 228V sinh Bh 2
X=N or o 1+ eV (1 + 2 cosh Bh) 1+ €2V (1 + 2 cosh Bh) '

(3.6)
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The total magnetic moment of one cluster, from another point of view, is deter-
mined by the average value of z-component of both spins. In accordance with (2.7)
and with appendix B.1, one can get:

M(Ry) = (05 (Ry) + 03(R,)) = V2(Yis(R,)). (3.7)

Thus, only one component of generalized transition operators, namely Yig, is respon-
sible for the formation of the total magnetic moment of the cluster. This component
may be called the “active” one is the phase transition process. A similar defini-
tion was first introduced in [7]. If (Yig(R,)) did not depend on the number of a
cell g, then(3.7) describes a uniform order in crystal, i.e. a ferromagnetic state. All
other possible arrangements of clusters (antiferromagnetic, ferrimagnetic, spiral, in-
commensurate and so on) are completely determined by the spatial distribution of

—

(Yi6(R,)). It must be noted, that after averaging in (3.7) with the Hy, Hamiltonian,

—

the obtained M(R) coinsides with M from (3.6).

Taking into account that at low temperature region the internal effective field
proportional to magnetization appears, so h — h

- D16(0
h=h+ 162( I, (3.8)
and the expression for M (3.6) transforms into equation
2sinh 3 <h—|— (b%(o)]\/o
M = : (3.9)
1+ e 20V 4 2cosh 3 (h + cI>%(O)]W)
one may find the asymptotic behaviour of thermodynamic functions:
limS=0, limC,=0, limy=0, (3.10)
T—0 T—0 T—0
IimM=1 (V>0), limMx~1 (V<O0).
T—0 T—0

It may be tested that the first line of the expressions (3.10) did not depend on
the sign of V' (attractive, or repulsive interaction between particles in the cluster).
So, the thermodynamic stability of the investigated cluster reference system is not
violated.

For a consistent solution of the problem of thermodynamics of the total cluster
system (2.11) it is necessary to use the methods, which are effective in the phase
transition point neighbourhood. In the present paper a modified method of collec-
tive variables, which takes into account a structural peculiarity and interparticle
interaction potential properties of the investigated system, is used. The first step in
this way is the construction of the functional of the partition function.
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4. Functional of the partition function

The general approach to the construction of the functional of the partition func-
tion for cluster systems was developed in [6,7]. Since those systems possess quantum
properties, to calculate the statistical operator e ## it was necessary to use the inter-
action representation with respect to a reference system Hamiltonian. So, collective
variables and all coefficients of the functional became dependent on Matsubara’s
frequecies.

Because the physical system considered in the present paper is described by a
quantum Heisenberg-like Hamiltonian, the main features of its functional of the
partition function are similar to the ones obtained in [7,10]. The principal difference
in the form of functional coefficients is determined by the properties of the reference
system. The latter one determines the values of cumulant averages of generalized
transition operators products which form the above mentioned coefficients. The
calculation of those cumulants is now a central point of consideration.

In the collective variables representation, the total functional of partition func-
tion of the interacting cluster system is [10, 11]:

Z:Z/dp)\kry HHHJp,\,k:I/

A kLB v

xexp{ﬁzzzq)k )oa(k, V) pa(—F, V)} (4.1)

A kLB v

Here pA(E, v) is a collective variable corresponding to the generalized transition
operator (operator of a cluster state) in the frequency-momentum representation:

g 1 p sl N / — / D
pak,v) = — / dp'e N " e oy, (Ry)e ettt (4.2)
Vi p
Pa(k) = Z@)\ e (43)

is a Fourier transform of the A-th eigenvalue of the intercluster interaction potential,
v is the Matsubara’s frequency.
The transition Jacobian from the set of generalized transition operators py(k, v)

to the collective variables py(k, /)

J(pa(k,v)) = Tr T 6(pa(k, v) = pa(k,v)), (4.4)

as it usually takes place in the collective variables method [5], we present in the
exponential form:

Hon ) = [@aE)en{iny Y SadErnE)

A kLB v
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xexp{i _127T Z Z M)q An k171/17-.-7kn7 n)
n=1

A1,k1,01 Anykn,vn

% wy, (k1,01 -« wr, (B, yn)}. (4.5)

Cumulants M, . )\n(Ela Viyoo., En, v,) must be calculated as functional derivations
[11]):

—

M,\l...,\n(El, T Vn) =

ot ) )
— - _ In ( T exp wa(k, v)pxr(k, v) , (4.6)
0wy, (k1,v1) ... 0wy, (kn, vp) < {;; 0

where w,\(lg, v) is a variable conjugated to p,\(lg, v), T is a symbol for “time” arrange-
ment with respect to the inverse temperature (3, Z; is the (3.3) expressions,

(.)o="Tr[...e” o] {Tr [eFH] }71 : (4.7)

Hj being determined by (3.1).

The functional integrals (4.1) (4.5) contain all powers of collective variables
pa(k, ). Therefore, it is impossible to integrate (4.1) over py(k,v) analitically in
an obvious form. Usually, for analitic or computer calculations, the limit expres-
sions, which include only the second, the fourth or some higher powers of p,\(l;, V)
are used. The only requirement must be satisfied: all the expressions obtained after
the integration remain undivergent at any temperature and at arbitrary values of
parameters of the Hamiltonian. Such a distribution is called a basic one. In general,
it has not been proved that the use of more complicated distributions (taking into
account additional higher powers of p(k) in the exponent form of (4.5)) leads to a
better mathematical convergence of the obtained physical results. Most probably,
the choise of a concrete form of basic distribution determines a definite statistical
model. As regards the physical system in a phase transition point neighbourhood,
the simplest basic distribution is a quartic distribution. Such functionals are usually
called the Ginzburg-Landau functionals. In the present paper only Ginzburg-Landau
functionals will be regarded. It must be noted that due to the external field h exis-
tence, the quartic basic distribution containes all powers of collective variables (even
and odd ones) to the fourth inclusive. The basic distribution determines the basic
measure density of collective variables near the phase transition point. Cumulants
(4.5) are the coeflicients of this measure density form.

It should be also noted that an additional problem, concerning the functional
integrals convergence, is the infinite number of collective variables p )\(IZ, v) due to k
and v quasi-continuous nature. But taking into account that in the phase transition
point neighbourhood only the variables with small k (large distancies of correlations)
and small v (a finite rather large T, for real ferromagnets) play an essential role,
from the physical consideration one may suppose the role of large k and lange v to
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be negligibly small. So, for physical models of ferromagnetic phase transitions, the
regarded functional integrals (4.1), (4.2) or (4.4) are finite.

To obtain a cumulant average value of a product of the arbitrary numbers of
generalized transition operators, the expressions (2.6), (4.6) and appendix B will be
used. Because collective variables describe only the long-range part of interaction
(short-range part of interaction is completely included into Hy), among all possible
cumulant average quantities we are interested in those for which ® ,\(éq, ]%q/ # 0),
i.e. A\ = 7,16 for intercluster interactions of the Ising type (see (2.17)) and A =
2,4,5,7,10,11 for intercluster interactions of the Heisenberg type (see (2.18)). In
the interaction representation, the Hubbard operator

XU(R,, ) = e P Ho X (R, )e Mo (4.8)
satisfies a very important relation [6]:
RoX"(R,, ) = e P XU(R,, B')Ry, (4.9)
where
Ry = e PHo (4.10)
is a statistical operator of the reference system, and
Nij =B — B} (4.11)

is a distance between energy levels of the cluster. When executing a cyclic commuta-
tion of the X% (R,, 3') operator under the Tr symbol and taking into account (4.9),
one can prove:

<XZU1( Q1>B )XZQJQ( qyﬁ )XZMB( qyﬁfﬂ) > (4'12)

at )\iljl —+ )\igjg -+ )\igjg Ce # 0.

This relation simplifies the procedure of calculation because it shows the expres-
sions which are identically equal to zero.

Based on the (2.6), (4.6) and (4.2) for n-th order cumulant one obtains a formula:

M)q)xg...)\n(k:h , k:27 Vo, ... kna Vn) =

1 T L
= e Z exp {—1 [k:qul +koRg, + ...+ ann]}
q1,92,---qgn=1
/ a5 / as,.. / A8, exp {3 [Buvs + Bovs + - + Buva]}
0

Ulljl)\l UZ2]2)\2 s Uinjnkn

11,J1,82 J2 AnyJn
X (X (R, B) X (R f) ... X000 (R, 5005 (4.13)
Here (...)§ means a cumulant average. To calculate this cumulant average quantity,
the Block-Wick-Dominicis theorem [12] in the form [13] may be used. It must be
noted that all the operators X% (R,) in (4.13) are of Bose type because the total
member of particles in every cell is constant.
Since for Ising and Heisenberg types of intercluster interactions, the complete
sets of cumulants are different, those sets will be presented separately.
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4.1. Ising-type intercluster interactions

For generalized transition operators

L 23 32
= —[X +X ]7

V2
1

V2
the total set of nonzero cumulant averages to the fourth order inclusive is as follows.
For the first-order cumulants:

Y7

Yig = —=[ X' — X% (4.14)

MIsmg( 7 ): O,

V2e8 ¥ sinh Gh
Zo

M (k,v) = 3(k)3(v); (4.15)

for the second-order cumulants:

4Ve=P% sinh A%
BAV2 4+ 12)Z,
8% cosh ﬁh 2¢%V sinh? Bh

MIsmg(k,l’ v, E% 1/2) (5(]{31 + kg)é(yl + 1/2)7

Ising /77 7
M1616g(k17 , k27 V2) =

5(k1 + kg)é( i),

Z Zg
lefgg(%la v, ko, va) = 0; (4.16)
for the third-order cumulants:
Mis;?g(lgla U, E27 Vs, E:s, VB) =0,
%% sinh Bh

Misénfﬁ 16(Ela vy, Eza Va, Ez«:, v3) = (5(/€1 + kg + k‘g)é( :)

V27,

3v/2e8V cosh Bhsinh Bh _,~ - - 4\/_625‘/ sinh® h -
0
sine /7 - - 44/2V sinh BV sinh 3h
X (k1 + Fa)(ks)d (11 + 12)5(vs),
MR 16k, 11, ko, v, s, vs) = 0; (4.17)

for the fourth-order cumulants:

MI????(EM b, E% V2, E:s, Vs, 754, vy) =
_ 4AVer A% sinh 1%
©28(4V2 +12)Z,

48V WV sinh? gV
32(4V2 4+ 12)272

5(k1 + ]i]z + ]i]g + k4)5(V1 + v+ 3+ V4)

(5(]{31 + k?g)é(lgg + E4)(5(V1 + 1/2)5(V3 + V4),
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8% cosh Gh

7 5(k1+k2+k3+k4)5( i)

Ising
M16 16 16 16(k17 Vi, k27 Vs, k37 V3, /f47 V4)

4eﬂv sinh? 5h
ZQ
365‘/ cosh? gh
ZZ
24e38% cosh Bhsinh? 5h
+ 3
2y
24e?%V sinh* sh
Z
MI7$7iil6g16(El7 Vi, EQa Vs, E37 Vs, E47 1/4) =
_ 4V'sinh BV cosh Sh -
= 5(4‘/2 )22 5(l€1 + k’g)(S(k?g + V3)5(V1 + V2)5(V3)5(V4)
8Ved s sinh BV sinh? Bh
COEETRY:
all the rest cumulants of this order are equal to zero.
One may verify that at h = 0 (external field is absent) all odd-order cumulants in
(4.15)—(4.18) are equal to zero. Other interesting properties of the obtained cumu-

S (K + kz + k3)d (k1)8 (v;)

§(Ky + ka)d (ks + kb)0 (1)

S(ky + k2)0(k3)d(k4)o (1)

8 (k:)d(vs),

(k1 + 12)8(F3)8(k1)d(vy + 12)8(v3)0(vy),  (4.18)

lants must be noted. Only cumulants built on the ﬁ7(E, v) operators are dependent
on Matsubara’s frequencies. But all the cumulants built solely on the ﬁlG(E, V) op-
erators, are independent on v. Let’s remind that collective variables [)16(15, V) are
responsible for the appearance of a long-range order in the physical cluster system
because (p16(0,0)) ~ (Yig(R,)) (see (2.17), (3.4) and (3.7)) determines a total spin
moment of the cluster and its mean value is proportional to the external magnetic
field intensity. So, it confirms a statement that ferromagnetic ordering (phase tran-
sition) is an essentially classical phenomenon [15]. At the same time, the considered
system possesses quantum properties, which are important at low temperatires when
basic state effects dominate.

The asymptotic behaviour of cumulants at h — 0, V' — 0 are quite different for
v =0 and for v # 0:

. 1 1

Isin, Isin; Isin Isin

v=0 Mz" =M= 1 Mzt = Migiisis = 16

v#0  all cumulants are equal to zero. (4.19)

Taking into account that at V' = 0,h = 0, the partition function of the isolated
cluster is twice bigger than the partition function of one spin, as well as taking into
account the normalizing factors in (4.8), one may pass from the expressions (4.24)
to classical spin cumulants of Ising model (see [4]):

L2 (V2R =1
3

M = Mihe = 2
2. (V2)h - =22 (V2)t= 2. (4.20)

2
1
8 16

Ising Ising o
M7777 - M16161616 -
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4.2. Heisenberg-type intercluster interactions

For generalized transition operators

Ya(fi,) = z[xl?’(Rq) £ XUR,) + XHR,) + X)),

Vi) = S [X*(B,) + Xy

Vig(Ry) = 5[-X"(R,) + X*(Fy) — X¥(R,) + X*(R,),

VialBy) = S[-X(R) + X7 (R) + X5 () - X*(R))  (421)

the mean value of which forms in this case a total set of cumulants, we have:
for the first-order cumulant:

M (R, v) = MEPE(F ), (422
for the second-order cumulants:
Mz (k‘h v, ka, V) = Mllséi%g(gl, v, ka, ),

MEBZ(F 1 Ky vg) = — M2 (B g, 1)
F [@V £ h) (e —eBY) @V = h)(e P — oY)
T 28Zy | @V AhR+2 (2V = h)? 22
x 0(ky + k2)8(11 + 1),

MHalZ (kla vy, E27 ]/2) = —Mll—llallf(lgl, 1, EQ) VQ)
_ &>hsinh ph
-~ B(h? +12)Z,

MHaIZ (kjlaylaEQ)VQ) Mlblng(kla]/h]gQ)VQ); (423)

5(]4]1 + kz)(s(Vl + VQ),

for the third-order cumulants:

Haiz. (7, 7 7 . Ising /7. 7 7
M222 (k’l,]/l,kfg,l/g,k’g,]/?,) _M161616(k1a]/1’k27y27k:37y3)7

MERE (1, 101, oo, v, Ky, 1) = — MBS (K1, 1, o, v, s, )
_Vsinh Bh [2V + h)(e™ —e7?Y) 2V = h)(e”?" —e7*V)
V2322 2V + h)2 + 1?2 2V — h)2 4+ 12
x 0(k1)8(ks + k3)6 (1) (v + v3),
M2H53§Z'(E1a V1, Em Vo, E& v3) = —Mgflffi(%l, Vi, E2, Va, E:s, v3)
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V2e?Vhsinh?ph - -
o ﬁ(h2—|—u2)Z§ 5(k1)5(k2+k3)5(V1)5(V2+V3),

M?%Z.(kla v, k?a Vo, k37 V3) = MI’;’;?Gg(kla v, k27 Va, k37 1/3); (424)
for the fourth-order cumulants:

Haiz. (7, . . 7 _ Ising 7 7 7 "
M (kla V1, kQa Va, k37 Vs, k47 I/4) - M16161616(k17 1, k?a V2, k37 s, k47 1/4)7

2222
M5H5a§§.(gl> Y1, EQ’ V2, E& Vs, E4> V) = lelaff'nn(lgla vy, Em V2, E?n Vs, E4> V4)
SThsinhfh -~ - o
e’z hsin -
:EMM+ﬂM£%+@+%+MWW+W+%+W
3¢®Vh?sinh*Bh - o o o
- (2 +12)2Z8 O(k1 + k2)0(ks + ka)o(vy +12)0(vs + 1),

M4H4ﬁi'(g1, vy, E2, Vg, Eg, V3, E4, V4) = leof(z)iom(lgl, vy, Em vy, Eg, V3, E4, V4)
PT T2V + h)(ePh — e 2YV) 2V — h)(e P — 2V
~ 487, [ 2V + h)? 4 12 2V — h)? + 12 }
x (K1 + ko + ks + k3)5(v1 + va + v3 + 1)
368V [(2V + h)(ePh — e 2V)  (2V — h)(e PP — o720V
42z [ (2V + h)? 4 12 (2V — h)2 4 12 }
x 0(ky + k2)0(ks + k)8 (1 + 10)8(vs + 1),

Haiz. /7 - - - - Ising /7 - - -
M (klaV17k27y27k3ay37k471/4) - M7777(k17V17k271/27k3ay37k471/4)7

T
M (k:h U, k:Qa Va, k3a V3, k:47 V4) - _M221111(k1a vy, k2a Vo, k:37 Vs, k4a V4)

2255
2% sinh Bh L L
Sin ﬁ _ 1:| 5(/€1+]€2—|—]€3—|—]€3+/€4)5<V1+1/2+1/3+V4)

oz
47, {B(hQ + 12)
e¢®'hcoshBhsinhh _ - - - -
TGz O k)lks + ka)00n)()d(vs + 1)
20% % hsinh® Bh oo
B(h?+ v?) 73 (k1)o(k2) (ks + k)0 (v1)0(r2)0 (v + 1),

M (k:h v, k:Qa Va, k3a V3, k:47 V4) - _M221010(k1a vy, k2a Vo, k:37 Vs, k4a V4)

oy [(2\/ +h)(eM —e V) 2V —h)(e Pt —ePV) ewv}
B((2V — h)? + 1?)

17 | BV + )+ 07
X 8(ky + ko + K3 + Ea)0(v1 + va + v + 1)
e cosh Bh [(2V + h)(ePh —e28V)  (2V — h)(e P! — e720V)
2873 { 2V + h)? + 12 (2V —h)? 412 ]
X (k1 + k)0 (ks + Ea)8(1)3(12)0 (vs + 1)
77 sinh? Bh [(2V + h) (e’ —e=28V)  (2V — h)(e Ph — 72V
BZ3 [ (2V 4+ h)2 412 (2V —h)2 4+ 1?2 }
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x 0(k1)8(k)0 (ks + k1)0(11)8(12)d (v + 1),

Haiz. (7. 7 P e
M551111(k:1, v, ko, va, k3, vs, ky, 7/4) =

By . . .
= =0+ o+ B + v+ g + )
0
AVhrsinh*Bh - - - -
* B32(h2 + v2) 22 O(k1 + k2)0(ks + ka)d (1 + 12)0(vs + v4);
Haiz. (7, 7 7 T o Haiz. /7 g - -
Megrr (kv vis ko, vo, ks, v, by, va) = =M T (ks o1, ko, va, ks, vs, Ky, va)
8y . . .
= %5(1431 + ko + ks + kg)0(v1 + vo + 5 + 1y)
0

4V hsinh BV sinh Sh e
- I(k1 + k2)d(ks + ka)d(v1 + 10)0(vs + 14),
B2(4h? + v2)(h? +12) 23 LT R TS T BT T PR T

M?g‘fg-m(l%, V1, Ky, va, ks, vs, kg, va) = — M2 By Ky, v, K, vs, Ky )
A% [ 2hsinh Bh
T4z lﬁ(hQ +02)
eVhsinh B [(2V + h)(ePh — e 28V)  (2V — h)(e Ph — 28V
262(h? +v2) 23 [ (2V 4+ h)? + 12 (2V — h)? 4+ 12 }

x O(ky + k)0 (ks + K)o (w1 + 1v2)8(vs + 1),

- 1} S(k1 + Ey + ks + ka)S(1n + va + vs + 1)

M4H4a7i?(];17 v, E27 Vo, E?n Vs, E47 1/4) = _MI%I?lig.lo(Ela v, EQa Vo, E?n V3, E47 V4)
-V . - -
= e4Z (s(lﬁ + ko + kg + k4)(5(V1 + v+ 13+ V4)
0
__ 2Vsinh BV 2V + h)(ePh —e2V) (2 — h)(e Pt — =2V
PAVELAZZ | VR 2 2V -1+ 12

x 8(k1 + k)8 (ks + k)8 (1 + 19)8 (13 + 1),

Haiz. (7. 7 T g .
Mo (kv va, ko, vo, ks, v, by vy) =

A
= _94Z 5(k1 + ]i]z + kg + k4)5(V1 + vy + U3+ 1/4>
0
VT2V + h)(ePh — e V) (2V — h)(e Pt — e V)
13272 2V +h)2+12 2V —h)2+ 12
x 8(k1 + k)0 (ks + ka)S (1 + 19)8(v3 + 14). (4.25)

All the rest Heisenberg-type cumulants up to the fourth-order inclusive are equal to
Z€ero.

Clearly, the higher-order cumulants for the both types of intercluster interactions
considered here can be also obtained using the formula (4.13). Moreover, this formula
is suitable for other different possible types of interparticle interactions.

So, the complete sets of two-particle cluster system cumulants for two types of
intercluster interactions (Ising’s and Heisenberg’s ones) are found. The functional of

406



On the functional representation of partition function

partition function is completely defined. Its final form is as follows:

7 = ZO/(dpA(E,y))Nexp{z;;gg(z)m(%,u)m(—%,—u)}

X / <dw)\(E, V))Nexp{iQWZZ[p,\(E, V) —M,\(E, V)]w)\(E, V)
Ak

(2)?
2

Z Z MM&(Ev v, _Ev _V>w)\1(lgv V)WAQ(_Ev _V>

Mo ko

i(2m)3 ~ - ~
+ Z Z MA1>\2>\3(I{:17V1’]{:2’V27k:37l/3)

3!
A1,A2,A3 k1,k2,k3
v1,v2,V3

X Wy (Eh Vl)wXQ(E% 1/2)(,())\3(/23, VB)

2m)* - - - -
( ) Z Z M)\1)\2)\3)\4(k1a]/17k:27y2ak3ay3ak47 V4)

4!
/\1)\2,)\3,)\4 k1,k2,k3,kq
l/l,U2,U3,l}4

x wi, (K1, 11)wn, (Ko, va)wn, (K3, v3)wa, (Ka, y4)}. (4.26)

For practical calculation of the expression (4.26), the layer by layer integration over
collective variables p,(k, ), similar to those exploited in [10,14], may be used. This
problem is a subject of another paper.

5. Conclusions

1. The Hamiltonian of the cluster magnetic system (2.1) includes two essential-
ly non-equivalent parts of interparticle interactions. The first one describes
intracluster interactions between spin’s particles and may be represented by
exchange Heisenberg form. The second one is responsible for long-range in-
tercluster interactions of a dipole-dipole type. Depending on of the physical
nature of the investigated systems this part of interaction may be described
by Ising or by Heisenberg types of Hamiltonians.

2. The problem of complete determination of quantum states and correspond-
ing energy levels of a basic cluster system may be solved using generalized
transition operators Y,\(éq). Those operators are similar to the well-known
Hubbard-Stasyuk operators X% (éq), but their form essentially depends on
the structure and on interparticle interaction peculiarity of the system stud-

ied.

3. To construct the functional of the partition function of a quantum magnetic
system, the collective variables method is proposed. The coefficients of this
functional are expressed by the cluster cumulants, which are calculated for
both Ising and Heisenberg types of intercluster interactions. Among different
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sorts of collective variables only certain ones are responsible for ferro-, antifer-
romagnetic or other kinds of the magnetic ordering. It has been shown that
“ferromagnetic-type” collective variables behave like the classical ones (they
don’t depend on Matsubara frequencies). Hence, the corresponding phase tran-
sition may be treated as a classical phenomenon.

408



On the functional representation of partition function

A. Intercluster interaction matrix for two-particle cluster
system

A.1. Ising-type interactions

o, -,
d_ O
o o
-, o,
A.2. Heisenberg-type interactions
o, b,
O —o_
o, o,
o —o_
O O
-0 d_
o, o,
o o
o, o,
—_ d_
o, o,
—b, o,
— — ]_ — —
(Jll(qu Rq’) + Jl?(qu Rq/)) , o= 5 (Jll(qu Rq/) - Jl?(qu Rq’)
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B. Unitary transfornation matrix U for two-particle cluster
system

B.1. Ising-type interactions

T T
V2 V2
1
1
1
1
1
L L
V2 V2
1
1
T _ L
V2 V2
1
1
1
1
1

L _ L
V2 V2

B.2. Heisenberg-type interactions

17T 1
V2| V2
IT1 _I1_1
21 2 2 2
IT1 _I]_ 1
2| 2 2 2
1
IT1I T T1I
21 2 2 2
1
T T
V2| V2
IT_1 _IT1I
2 2 2|1 2
IT1I IT1I
2| 2 2 2
1T
V2| 2
1
IT_1 _I71
2 2 2| 2
1
IT_1 T 11
2 2 2 2
IT—_1 I 11
2 2 2 2
T 1T
V2l V2
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Mpo ¢pyHKuUioHaNbHe 300paXeHHA CTaTUCTUYHOI CYMU
KBaAHTOBOI MarHiTHOI KJlaCTEPHOI CUCTEMM

M.A.KopuHeBcbkuin 12

[HCTUTYT @i3uKn koHOeHCcOoBaHMX cuctem HAH Ykpainu,
79011 JlbBiB, ByN. CBEHLLBKOrO, 1

IHCTUTYT @i3mkm LLLeLiHCbKOro yHiBEpCUTETY,
Monbla, 70451 LWeuiH, Byn. Benbkononbcbka, 15

Otpumano 6 notoro 2002 p., B octatodHOMY BUMSAi — 13 yepBHSA
2002 p.

O6rosoptoeTbes NpobnemMa PyHKLIOHANIbHOrO 300PpaXeHHs A4St CUCTEM,
O MICTATb FPyny aTOMiB 3 HECKOMMEHCOBAHMM CMiIHOBMM MOMEHTOM
(marHiTHi knactepu). na 306paxeHHsa dyHKLUioOHana CTaTUCTUYHOI Cy-
MU BUKOPWUCTAHO BapiaHT METOoAY KONMEKTUBHUX 3MIHHUX 3 BUAINEHOIO
“cncTemMolo Bigniky”, Aka BionoBigae HyNbOBOMY HAOGNMXEHHIO. B sakoc-
Ti CMCTEMU BigJiKy PO3MMSOAETbCA CYKYMHICTb i30/IbOBAHUX KlACTEPIB.
BHyTpiknactepHi B3aemoaii onncytoTbCst OOMiIHHMM ramisibTOHIaHOM rai-
3eHOepriBCbLKOro TUMy, BUMMSA, MiXXKNaCTEPHUX B3AEMOiN BUBHAYAETLCSA
CTPYKTYPOIO CUCTEMMU, LLIO AOCAIAXKYETLCS. 3aBASKM BUKOPUCTAHHIO MO-
nepenHbO BNPOBAOXEHUX y3aralbHEHUX onepaTopiB nepexony (6nm3b-
KVX 0O BigoMux ornepaTopiB Xab6apaa-Cracioka) OTprMaHo sABHY popMy
GYHKLUiOHana CtTaTuCTUYHOT CyMU.

KniouoBi cnoBa: knacrepHa cucrema, QyHKUIOHaN CTatMCTUYHOI CyMu,
cucrtema BigJiky

PACS: 05.60.+W, 05.70.Ln, 05.20.Dd, 52.25.Dg, 52.25.Fi
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