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We present a general approach to the problem of a ferromagnetic phase
transition in diluted magnetic semiconductors. The Curie temperature of
ferromagnetic transition is calculated in the mean field approximation. It is
shown that the Curie temperature is determined by an integrated coupling
between magnetic impurities.
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1. Introduction

The study of the ferromagnetic ordering generated by carriers in doped semi-
conductors has been pioneered by experiments on PbMnSnTe compounds [1-3].
Recently this problem attracted much attention [4-10] in connection with possible
applications of ferromagnetic semiconductors in spin electronics [11,12]. The most
promising seems to be the GaMnAs semiconductor alloy with Curie temperature
about 110 K [14]. This material has been proved to be an efficient injector of spin-
polarized electrons with a long-time spin polarization.

The theory of ferromagnetism in diluted magnetic semiconductors has been pre-
sented by several groups. The main idea is that the ferromagnetic ordering is caused
by the exchange interaction between magnetic impurities mediated by free electrons
or holes [4,15]. This mechanism is commonly accepted now even though it does not
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explain the ferromagnetism at low density of carriers [10]. On the other hand, the
theory of Dietl [4,12] exploits a simplified model of the exchange interaction, the
Zener model [16], which does not take into account the oscillating character of the
RKKY interaction between magnetic impurities [17].

In a recent series of theoretical works, Konig et al. presented a mean field the-
ory [9,18], which starts from a system of free carriers interacting with magnetic
impurities. Such an approach accounts for the effective exchange interaction at all
distances, which is important for oscillating and/or long-range interactions. It also
automatically incorporates three, four, etc. impurity couplings.

In the present work we develop a mean field theory, which is close to works
[9,18] but differs from it in several aspects. First, we treat the impurity magnetic
moments classically, which is quite a good approximation for the impurities with a
large moment. It permits to avoid the Holstein-Primakoff bosons, which make the
problem nonlinear. The linearization within the description based on the Holstein-
Primakoff bosons was not justified in [9].

Here we develop a functional integral approach to the problem. Our approach
can be a good starting point for a theory more sophisticated than a mean field ap-
proximation. It also permits to consider the disorder effects, which has been recently
discussed in papers [19,20].

2. Model and general approach

We start with the Hamiltonian of a free electron interacting with magnetic im-
purities

h? V2

Come

H =

—Jsta~Mi5(r—Ri), (1)

where Jgq is the s-d coupling constant, M, is the magnetic moment of the i-th mag-
netic impurity, R, is its position, o = (0,, 0y, 0), and o, are the Pauli spin matrices.
Here, the first term is the Hamiltonian of free electrons in a semiconductor near the
bottom of the conductivity band (and m* is the corresponding electron effective
mass), and the second term describes the exchange interaction between an electron
and the impurities. We assume that magnetic impurities are distributed randomly.
The magnetic moments of the impurities M; can be oriented arbitrarily, and our task
is to find the thermodynamically favourable distribution of orientations of localized
moments together with the magnetization of the electron gas. The Hamiltonian (1)
acts on spinor wavefunctions of the electrons. The average concentration of magnetic
impurities is denoted by c.

The Hamiltonian (1) can be rewritten in a second quantization form describing
the electron gas in a degenerate semiconductor. We use the formalism for T # 0:

H = [drvier) (‘an —u> V(r, 7)
Y [dr vl ) o M v )8 (e~ Ry), 2)
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where t(r,7) is the spinor operator field in Heisenberg representation, 7 is the
imaginary (thermodynamic) time [21], and p is the chemical potential. It permits
to treat the problem with a many-particle Hamiltonian and to use such methods as
Feynman diagrams or the functional integration techniques.

We consider the partition function of the system to be a functional integral [21]
over Fermi fields ¢ (r,7) and over all possible orientations of vector fields M; (we
assume the fixed absolute value |M;| = M)

7 — / Dyt Dy T[] DM; &5, (3)
where S is the action
S = /de3er(r,7') ((% + H) W(r,T), (4)

and the Hamiltonian H is taken in the first quantization form of equation (1).
It should be noted that the integration over Fermi fields implies that the ¢, '
can be viewed as anticommuting (Grassmann) variables, for which the functional
integration techniques has been developed [22].

3. Free energy functional

The direct averaging over the orientations of localized M-fields, equation (3),
makes the problem nonlinear in Fermi fields. To avoid this complication, we intro-
duce some auxiliary fields. We can write the partition function using an additional
integration over a vector field m(r)

Z:/DMD@Z) [1DM; Dm 6 |m(r) — S M; 6 (r — Ry)| e (5)

with the following constraint equation

m(r) — ZMZ d(r—R;) =0, (6)

imposed by the d-function in equation (5).

The field m(r) has the meaning of the local magnetization field. In contrast to
the M;-field, m(r) is defined at each point of space r and can fluctuate in both
orientation and magnitude. The latter permits to avoid the hidden nonlinearity of
M;-fields related to the constraint M? = const.

As a next step, we use the Lagrange multiplier formalism to account for the
constraint of equation (6). To this end, we integrate over an auxiliary vector field
A(r)

Z = /DwT Dy [[ DM; Dm DX exp {—Se + /d3r A(r) - m(r)

— Zi:/d‘gr A(r) - M; 6 <r— Rzﬂ , (7)
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where the electron part of the action is

3, = / dr &r i (r, 1) (a% _EV: Joam(r) - 0'> b(r, 7). 8)

As follows from equation (7), the field A(r) can be associated with the local magnetic
induction in the semiconductor.

The integration over fermion fields ' and 7 can be performed using the rules
of Gaussian integration with the Grassmann numbers [22]

/ Dt Dip ¥14% — det A, 9)

where A is an arbitrary Hermitian matrix.
We can also average over the directions of the classical moments M;. Hereafter
we obtain

7z = /Dm DX e 0F, (10)
where

~BF = [ &r [Trzn: In G~ (—iep; x,r) + Ar) -m(r) + ¢ In (Wﬂ ’

Ar) M
(11)

the electron Green function G(—ie,; r,r’) in the magnetization field m(r) obeys the
following equation

n*v?
(—ign — — Jsa m(r) - a‘) G (g r,r)=0(r—1'), (12)
2m*

¢ is the concentration of magnetic impurities, and § = 1/T" (here we measure 7" in the
energy units, kg = 1). In equations (11) and (12) we used the Fourier transform from
the thermodynamic time 7 to the discrete Matsubara frequencies €, = (2n + 1)nT
for the Fermi fields [23].

We call F' the free energy functional in view of the analogy between the quantum
field formulation of equations (10) and (11), and the conventional statistical theory.

4. Saddle point equations

The saddle point equations for the fields m(r) and A(r), corresponding to an
extremum of the free energy functional F' in equation (11), are found by calculating
the variation of F' with respect to these fields

oF OF
= = 0. 1

These equations acquire the following form

—Jua > o G(—iey; r,1) + A(r) =0, (14)

n
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m(r) + ¢ M coth [M A(r)] — ﬁ = 0. (15)
Note that the latter equation relates absolute values of vector fields A(r) and m(r)
whereas their directions are the same.

In the limit of m(r) — 0, we obtain from equations (14) and (15)

2cM? J
m(r) - % ngr, GO _lgna r I') (I',) GO(_lgn’ I'/, I') (16)
and 3 m(r)
mi\r

where Go(—ep; r,1’) is the electron Green function for zero magnetization field in
the Matsubara techniques.

Equation (16) can be solved by Fourier transformation over the coordinates, and
we obtain

Ilo(q) m(q), (18)

where d3k
_QTZ/ ( ie,, k+ ) Go (—ien,k—%) (19)

is the polarization operator of the electron gas [23].
The equations (17) and (18) correspond to a vicinity of the phase transition
point, in which some nonzero magnetization m(r) appears.

5. Mean field approximation

Now we consider the possibility of realization of a nonzero uniform solution for
both m(r) and A(r) fields. This corresponds to the ferromagnetic ordering.
Assuming m to be constant, we obtain from equation (18) the condition of a
ferromagnetic transition
_cMPTZ
3T
For the degenerate electron gas we can ignore the weak temperature dependence of
the polarization operator, and take it for 7' = 0 [23]

4 Iy(q = 0) = 1. (20)

Mo(q) = —2i ;;(;il)‘ Go( k + )Go(sk ‘21) (21)

Then, from equation (20) we obtain the critical temperature of the ferromagnetic

phase transition
M?J?
T, = 5~ To(q=0), (22)

which is positive (Curie temperature) provided that IIo(q = 0) < 0.
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The function Ily(q) corresponds to a loop diagram of the electron gas [23] and
is related to the static nonlocal susceptibility of electrons yo(q) by the following
equation

(@ = - (222) 1), (23)

where g is the Landé factor of electrons and ug is the Bohr magneton. For q — 0
the function —Ily(q) tends to the electron density of states vg at the Fermi level,

m* kp

= T T 5792
m2h?

(24)

where kp is the Fermi momentum. In equation (24) we take the density of states for
the three-dimensional system.

6. Ferromagnetic transition and RKKY interaction

The self-consistency equation for magnetic polarization (16) can be analyzed in
terms of RKKY interaction between the magnetic impurities. The interaction energy
of two magnetic impurities with moments M1 and M® | located at a distance r,
can be presented as [17]

Eint(r) - JSZd fuo(ll)lwéf) ”@3(1‘)7 (25)
where
de &®k  d3q q q
W =—1Tr | — T k+ = k—=1]. (2
aslr) =T o o i ¢ O (5’ + 2) % Go (5’ 2) (26)

Using equations (25) and (26), we obtain the interaction energy of two impurities
with equal moments M) = M®) = M oriented ferromagnetically,

Erer(r) = M? T3 Tlo(r), (27)

where the function IIy(r) is the Fourier transform of IIy(q) defined by equation (21).
In terms of the pair interaction function E¥.,(r) we can rewrite equation (16) as

m(r) = — — / &P’ B (r — r') m(r'). (28)
3T
Then, assuming the uniform order, we obtain the critical temperature
¢ 3
T.=—3 / &Br B (v). (29)

In view of (29), the critical temperature is defined by the integral of RKKY
exchange interaction over all distances.
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7. Quantum fluctuations

The expansion of functional F' up to the second order in m(r) gives us the
spectrum of fluctuations
cM? J?

F = Fy +ma(q) Td Io(q) — 1| ma(—q), (30)

where Fj is a constant part, m(q) is the Fourier transform of magnetization field
m(r), and the summation over vector components « is implied in equation (30).

Equation (30) holds for temperatures T' > T, when the constant part of magneti-
zation is zero. Then we obtain a finite gap in the spectrum of magnetic fluctuations.
It should be noted that the higher order terms of the expansion of free energy, de-
scribing the interaction of fluctuating fields, can significantly affect the mean field
result. This effect should be more pronounced for low-dimensional systems.

8. Discussion

We have proposed a field theory approach to the problem of ferromagnetism in
diluted magnetic semiconductors. It permits to analyze the ferromagnetic transition
in terms of fluctuating magnetization fields. The mean field limit of the theory gives
the critical temperature of ferromagnetic transition. This temperature, given by
equation (29), coincides with the results obtained by other methods [4,8]. However,
we can expect that the real ferromagnetic transition temperature is lower due to
the strong disorder of real impurity systems as well as due to the interaction of
fluctuations typical of the phase transitions within the critical region. The latter
effect can be enhanced by the disorder.

We also analyzed a connection between the RKKY interaction of magnetic im-
purities and the mean field approximation in the framework of our formalism. The
result is that an averaging over randomly distributed magnetic impurities reduces
the RKKY interaction function Fi(r) to a spatial integral of this function. This
results in a coupling proportional to IIy(q = 0).

In our formalism, the saddle point equations (14) and (15), as shown in section 4,
lead to the mean field result of works [4,8], which also coincides with the integrated
RKKY interaction approximation [24]. It should be noted, however, that a contro-
versy exists about using the notion “mean field approximation” In particular, the
approach of articles [25,26] takes into account an additional mechanism of the in-
terband coupling arising in a model of multiband electron energy spectrum. In the
model of one electronic band, equation (1), the additional effect of indirect coupling
is absent.

The possibility of a non-uniform magnetic ordering in magnetically doped semi-
conductor structures has been pointed out by Dietl et al. [27]. It was essentially
imposed by a non-uniformity of the system under consideration. It should be em-
phasized that the phase transition in a uniform system can be also associated with
a spontaneous non-uniformity of the order parameter (like the creation of striped
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structures in the case of high-T, superconductors [28]). We can expect a tendency
for a non-uniform ordering in low-dimensional systems because it is closely relat-
ed (see equation 30) to the known properties of the polarization operator I1y(q) in
dimensions D =1, 2, 3.
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depomarHiTHe BNOPAAKYBaHHS B JIErOBaHUX MarHiTHUX
HaniBNpoBigHMKaXx

A.l.Cno6oacekuin 123 | B.K.Oyraes '*, M.Biennpa*

[HCTUTYT Npobnem maTepiano3HaBCTRA,
HauioHanbHa Akagemis Hayk YkpaiHu,

58001 YepHiBuj, Byn. |I. Binbpge, 5

[HCTUTYT @i3ukn, Monbcbka AkafeMis Hayk,
Monbwa 02-668 Bapluaea, an. JIboTHiKyB, 32/46

®dianyHnin iHCcTUTYT, YHiBepcuTeT Biopubypr, XybnaHa,
HimeyunHa, 97074 Bropudypr

dakynbTeT eNEeKTPOHIKM Ta 3BA3KY,
Buwa iHxeHepHa wwkonay JlicaboHi,
MopTyranis, 1949-014 JlicaboH

Otpumano 22 nuctonaga 2001 p., B OCTaTOYHOMY BUTNSAI —
25 yepBHa 2002 p.

3anponoHOBaHO 3aranbHU Niaxia ao npodnemmn pepomarHiTHoro gaso-
BOro Nepexoay B IerOBaHUX MarHiTHUX HaniBnNnpoBigHukax. Temnepartypy
Kiopi pepomarHiTHoro nepexony 064MCcneHo B HabNMXEHHI cepeaHboro
nons. NokasaHo, Wwo Temnepatypa Kiopi BU3HaA4aeTbCa Yepes iHTerpan
BiJ, NapHOi B3aeMOA|T MiXX MarHiTHAMK JOMILLKaMW.

Knio4oBi cnoBa: marHitHi HaniBnpoBiAHUKWN, MarHiTHi JOMILLKY,
pepomarHeTnam

PACS: 75.30.-m, 75.50.Dd, 75.50.Pp
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