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Some new possibilities of determining the gaussian distribution of Curie-
Weiss temperatures and relaxation times in relaxors and in ferroelectrics
with a diffused phase transition are presented in this paper. The method
of determining the width of gaussian distribution of Curie-Weiss tempera-
tures with the use of the reciprocal of dielectric permittivity on normalized
plots is applied to solid solution Ba(Ti1−xSnx)O3. The method of estimating
the gauss-logarithmic distribution of relaxation times based on normalized
plots is proposed for relaxors. It is shown that the Vogel-Fulcher behaviour
of real and imaginary parts of the dielectric permittivity in PMN is caused
by gauss-logarithmic distribution of relaxation times and by its temperature
dependence.
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1. Introduction

Ferroelectrics with a diffused phase transition (DPT) were discovered in nineteen
fifties [1–3]. There is a big practical importance of such materials because their prop-
erties weakly depend on temperature. The main properties of relaxor ferroelectrics
are as follows:

• diffused and dispersive phase transition,

• Curie-Weiss law is not fulfilled above Tc,

• mean square of polarization is not equal to zero up to 200–300 K above Tc,

• temperatures of transition estimated by various methods are different.
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Figure 1. Normalized plots log(1/ǫ− 1/ǫmax) = f(T − Tm) for BaTiO3 obtained
as a result of numerical integrating of local dielectric permittivity with Gauss
function: a) linear scale of temperatures; b) logarithmic scale.

Diffused phase transitions are observed, for example, in the fine grained ceramics
(even if a sharp phase transition is always observed in single crystals). For example,
Moreira and Lobo [4] investigated diffused phase transitions in the fine grained
BaTiO3 ceramics obtained by sol-gel method and estimated the width of gaussian
distribution of local Curie temperatures using the normalized plots.

The main aim of this paper is to present some new possibilities and the results
of determining the width of gaussian distribution of Curie-Weiss temperatures and
relaxation times in relaxors and in ferroelectrics with a diffused phase transition.

2. The width of gaussian distribution of Curie-Weiss
temperatures

Assuming that:

ε(T ) =

∞
∫

0

εa(T, θ)g(θ)dθ, (1)

where εa(T, θ) – local dielectric permittivity, g(θ) – Gauss distribution of local Curie-
Weiss (C-W) temperatures (θ). In practice, we want to determine the width of the
Gauss curve having experimental ε(T) data. Recently Moreira [4] has presented
the method of determining the width of the Gauss curve using a special graphical
presentation. Earlier, Clarke [5] generalized the so called quadratic Curie-Weiss law
for the case 1 < γ < 2:

1

ε
=

1

εmax
+ A(T − Tm)

γ

, (2)

where εmax – maximum value of dielectric permittivity, Tm – temperature in which
the maximum of dielectric permittivity is observed, A – constant (for γ = 1 – C-W
constant), γ – exponent (from range 1-2). For different values of σ, the transition
from γ = 2 to γ = 1 takes place at various temperatures – TL. Moreira stated that
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in BaTiO3 TL = Tm + 4σ. The results of calculations for BaTiO3 are presented in
figure 1.

Figure 2. Dependencies α (x), β (x) and
γ (x) used in calculations.

Similar calculations made by the
author for PbTiO3 have shown that
in this case the dependency TL =
Tm + 4σ is also valid. So it is possi-
ble to calculate the dependency σ(x)
for various compounds, for example, for
Ba(Ti1−xSnx)O3 solid solutions. The di-
electric properties of this solid solution
are well known (for example [6,7]).

Rolov and Yurkevich [8,9] devel-
oped the Landau-Ginsburg-Devonshire
(LGD) theory concerning the case of
solid solution ( but without taking into
account the diffusion of the phase tran-
sition).

The author made many trials which
showed that to obtain a relatively good
agreement with the experimental data
for various compositions we must as-
sume that all parameters i.e. α, β and γ
depend on x. All three dependences have
been obtained by fitting to the litera-
ture experimental data ([15]) for various
compositions. Dependency αo(x) can be
described by the function:

αo(x) = αo(0) exp(−Bx), (3)

where αo(0) = 0.9 · 106 [m/FK] (value
for BaTiO3 ceramics), B = 2.

The values of β2/γ have been calculated for every composition from (well known
from LGD theory) the relation:

Tc = T0 +
3β2

16α0γ
, (4)

β parameter has been calculated from P (T ). α0(x), β(x) and γ (x) dependencies
which give a good fitting to experimental data, and are presented in figure 2.

Calculations have shown that for the increasing x, the difference between Tc and
To streams to zero and as a result the phase transition gradually streams to the
second order. Curie-Weiss temperatures for every composition have been calculated
from the relation:

T0(x) = T0(0)− ax, (5)
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Figure 3. Normalized plots of (1/ε − 1/εmax) = f(T − Tm) for Ba(Ti1−xSnx)O3

solid solutions (experimental data from [7]).

where T0(0)=381.8 K (value for BaTiO3 ceramics), a=745 K.

Next, we can calculate Ps(T ) for various x:

Po(T, x) =











√

(β(x)2−4α(T,x)γ(x))
2γ(x)

, T < Tc(x),

0 T > Tc(x).
(6)

Substituting the obtained P0(T, x) into the formula ε−1 = α + 3βP 2 + 5γP 4 it is
possible to obtain dependencies ε(T, x) but without taking into account the diffusion
of a phase transition. To introduce the diffusion we must know the width of gaussian
distribution of C-W temperatures for every composition. It can be obtained using
the method described above. Normalized plots of (1/ε − 1/εmax) vs. (T − Tm) for
Ba(Ti1−xSnx)O3 (BTS) are presented in figure 3.

The obtained σ(x) dependency is presented in figure 4.

The results presented in figure 4 can be fitted to a function:

σ(x) = 5.58 exp(6.27x). (7)

Dependence (7) can be introduced into the Gauss function for every x and as a
result it is possible to obtain Ps(T, x) =

∫

P (T, x, θ)dθ (presented in figure 5).

In the next step we can calculate ε(T, x) by numerical integrating with Gauss
function for every x. Results are presented in figure 6.
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Figure 4. Dependency σ(x) obtained as a result of calculations described in the
text (symbols) and the plot of equation (7) – solid line.

Figure 5. Curves Ps(T) for Ba(Ti1−xSnx)O3 obtained as a result of calculations
based on the formulas (4–7) (thick lines) compared with the literature experi-
mental data from [16] (thin lines).
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Figure 6. Dependencies ε(T) for Ba(Ti1−xSnx)O3 obtained as a result of calcu-
lations based on the formulas (4)–(7) (thick lines) and experimental data from
[7] (thin lines).

3. The method of estimating the width of gaussian-logarithmic
distribution of relaxation times

Obviously, in the relaxors, the shift of the range of dielectric dispersion into
low frequencies is observed. It is related with the dependence of relaxation time on
temperature. For the majority of the materials this dependency is of Arrhenius type
(equation (8)):

1

τ
=

1

τ0
e

−E0
kT or ln

(

1

τ

)

= ln
(

1

τo

)

− Eo

kT
. (8)

But in some cases this dependency is of Vogel-Fulcher (V-F) type (equation (9)):

1

τ
=

1

τo
e

−E0

k(T−Tf) or ln
(

1

τ

)

= ln
(

1

τ0

)

− E0

k (T − Tf )
, (9)

where τ – relaxation time at a given temperature T , τo – relaxation time at T →
∞, E0 – activation energy, Tf – freezing temperature at which τ → ∞. Some authors
conclude that V-F relation for relaxation times leads to V-F dependence of Tm

on frequency ω [10,11]. However V-F type relation between Tm temperature and
frequency ω should not be a consequence of V-F relation between relaxation time
and temperature.It may be a result of the widening of distribution of the relaxation
times with the decreasing temperature. Such a suggestion has been presented in
the work of Tagantsev [12] and supported by analytical relations, but the numerical
calculations for real materials have not been done. Numerical calculations for PMN
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and SBN presented below confirm the suggestion that V-F relation between Tm and
ω is caused by the widening of gaussian-logarithmic distribution of relaxation times.
Details of numerical calculations are published in [17] and here only the main results
are presented.

Assuming that distribution (in logarithmic scale) of relaxation times takes place,
we must calculate the integral:

ε∗(T ) =

∞
∫

−∞

ε∗(T, τ)y(τ(T ))dτ, (10)

where ε∗(T, τ) is the temperature dependent complex dielectric permittivity, y(τ(T ))
is the temperature dependent distribution function of relaxation times. ε∗(T, τ) is
given by Debay’s relation with a single relaxation time depending on temperature

ε∗(T, τ) =
εs(T ) + ε∞(T )iωτo(T )

1 + iωτo(T )
. (11)

Gaussian (in logarithmic scale) distribution of relaxation times is given by a function:

y(τ(T )) =
1√

2πσ(T )
e

−[ln(τ)−ln(τo)]
2

[2σ(T )]2 , (12)

where τ0 is the value around which the distribution takes place, σ(T ) is the temper-
ature dependent half-width of the Gauss distribution. So, it is necessary to estimate
this half-width from the experimental data. The method of estimating the width
of gaussian-logarithmic distribution of relaxation times was based on the diagrams
ε′−ε∞
εs−ε∞

vs. log(ωτo). The τo value has been taken from the frequency at which the

expression ε′−ε∞
εs−ε∞

is equal to 0.5. It is well known (it is the general conclusion from
Debay’s theory) that such a diagram would be identical for all materials. But, in
real cases, as a rule, the deviation from such a theoretical curve is observed which
can be related with the distribution of relaxation times. So, the magnitude of this
deviation may be used as a measure of the width of the distribution. In the first
step, trial calculations have been made by the author for various τo, ε∞, εs which
showed that the shapes of the curves depend only on σ. To estimate the width of
distribution, the procedure based on comparing the experimental curves of ε′−ε∞

εs−ε∞
vs.

log(ωτo) with the theoretical ones, can be used. For every σ, the value of log(ωτ)
was estimated at which ε′−ε∞

εs−ε∞
=0.3 (this value was chosen arbitrarily). The obtained

dependency between log(ωτ) and σ was linear which permits us to determine the
dependency σ(T ) for real materials as well. It has been done for PMN and SBN.

In the case of PMN using εs(T ) dependency (introducing data from [13] to C-W
law) and constant value ε∞ = 0, the value of expression ε′−ε∞

εs−ε∞
has been calculated

at various temperatures. As a result, it was possible to obtain the values of the
frequency at which the expression ε′−ε∞

εs−ε∞
was equal to 0.5. Next, we can obtain the

dependency of the logarithm of the mean relaxation time at the temperature. It was
stated that the dependency ln(τ) = f(1/T ) can be described by the equation (8)
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Figure 7. Dependences ε′ (ω, T ) and ε′′ (ω, T ) obtained as a result of numerical
calculations (thick lines) compared with the experimental data from [13].

(i.e. Arrhenius type) with ln
(

1
τo

)

= 27.44 and Eo

k
= 5500 (τo = 1.21 · 10−12s and

Eo = 7.59 · 10−20J).

As a result, the construction of the diagram ε′−ε∞
εs−ε∞

= f(log(ωτo)) for PMN be-
came possible. Next, we can find σ(T ) dependency using the procedure described
above. The obtained relation can be expressed as:

σ(T ) =
σo

(T − T∞)n
(13)

with σo = 2.69 · 103, T∞ = 194 K, n = 1.61. It means that at temperature 194 K,
the width of Gauss curve streams to infinity (not relaxation time). Next, we can
calculate ε′ (T ) and ε′′ (T ) for PMN at various frequencies (presented in figure 7).

From figure 7 we can find the dependency Tm (ω) and fit it to equation (8) or (9).
As a result, it was stated that the obtained Tm (ω) dependency can be fitted to V-F
equation in spite of the fact that the dependency τ(T ) is of Arrhenius type.

Similar calculations for Ba1.25Sr3.75Nb10O30 – SBN – 75 showed that σ(T ) de-
pendency in this case can be fitted to the equation:

σ(T ) = a+ bT + cT 2 (14)

with a = 16.76, b = −0.087 K−1, c = 1.15 ·10−4 K−2. Experimental data for SBN-75
were taken from [14]. Equation (14) is different in its nature from the dependency
obtained for PMN (equation (13)). In the case of SBN, σ(T) does not stream to
infinity at any finite temperature. Finally, taking ε s(T), ε∞(T) from Cole-Cole plots
in [14] and having σ(T), we can calculate ε′ (T )) and ε′′ (T ) (as earlier for PMN).
Results are presented in figure 8.

Also, in this case, the dependency Tm(ω) obtained from έ(ω, T ) is of V-F type
(Tf= 118.4 K, Ea= 6.4·10−20 J, ωo= 39.6·1014 Hz) in spite of the fact that τ(T )
dependency is of Arrhenius type and σ(T ) does not stream to infinity at any finite
temperature.
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Figure 8. a) Dependencies ε(T ) obtained as a result of numerical calculations for
SBN-75.

4. Conclusions

Some new possibilities of determining the gaussian distribution of Curie-Weiss
temperatures and relaxation times are presented for relaxors and ferroelectrics with
a diffused phase transition:

• the method of determining the width of gaussian distribution of Curie-Weiss
temperatures using the normalized plots of the reciprocal of dielectric per-
mittivity has been applied to BTS solid solutions with DPT. The results of
calculations for BTS have shown that it is possible to describe the dependences
observed in the experiment;

• the method of estimating the gauss-logarithmic distribution of relaxation times
in relaxors based on normalized plots (applied for relaxors PMN and SBN) was
suggested;

• the Vogel-Fulcher behaviour of real and imaginary parts of the dielectric per-
mittivity in PMN and SBN can be caused by the Arrhenius type dependency
of relaxation times on the temperature and widening the gauss-logarithmic
distribution of relaxation times.

All the results have been obtained using numerical methods and experimental data
from literature.
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Визначення ширини гаусового розподілу

температур Кюрі-Вейса і часів релаксації

Р.Скульскі

Сілезський університет, кафедра матеріалознавства,

Польща, 41–200 Сосновєц, вул. Снєжна, 2

Отримано 9 вересня 1998 р., в остаточному вигляді –

14 грудня 1999 р.

У цій роботі представлено деякі нові можливості щодо визначен-

ня гаусового розподілу температур Кюрі-Вейса і часів релаксації у

релаксорах і сегнетоелектриках з розмитим фазовим переходом.

До твердого розчину Ba(Ti1−xSnx)O3 застосовано метод визначення

ширини гаусового розподілу температур Кюрі-Вейса з використан-

ням графіків оберненої діелектричної проникності. Запропонований

графічний метод оцінки гаус-логарифмічного розподілу часів релак-

сації для релаксорів. Показано, що фогель-фульчерівська поведінка

дійсної та уявної частин діелектричної проникності PMN є наслідком

гаус-логарифмічного розподілу часів релаксації і його температур-

ної залежності.

Ключові слова: сегнетоелектрики, релаксори, розмитий фазовий

перехід, час релаксації

PACS: 77.80
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