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Some new possibilities of determining the gaussian distribution of Curie-
Weiss temperatures and relaxation times in relaxors and in ferroelectrics
with a diffused phase transition are presented in this paper. The method
of determining the width of gaussian distribution of Curie-Weiss tempera-
tures with the use of the reciprocal of dielectric permittivity on normalized
plots is applied to solid solution Ba(Ti; _,Sn,)Os. The method of estimating
the gauss-logarithmic distribution of relaxation times based on normalized
plots is proposed for relaxors. It is shown that the Vogel-Fulcher behaviour
of real and imaginary parts of the dielectric permittivity in PMN is caused
by gauss-logarithmic distribution of relaxation times and by its temperature
dependence.
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1. Introduction
Ferroelectrics with a diffused phase transition (DPT) were discovered in nineteen
fifties [1-3]. There is a big practical importance of such materials because their prop-

erties weakly depend on temperature. The main properties of relaxor ferroelectrics
are as follows:

e diffused and dispersive phase transition,
e Curie-Weiss law is not fulfilled above T,
e mean square of polarization is not equal to zero up to 200-300 K above T,

e temperatures of transition estimated by various methods are different.
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Figure 1. Normalized plots log(1/e — 1/emax) = f(T'— T1y) for BaTiO3 obtained
as a result of numerical integrating of local dielectric permittivity with Gauss
function: a) linear scale of temperatures; b) logarithmic scale.

Diffused phase transitions are observed, for example, in the fine grained ceramics
(even if a sharp phase transition is always observed in single crystals). For example,
Moreira and Lobo [4] investigated diffused phase transitions in the fine grained
BaTiO3 ceramics obtained by sol-gel method and estimated the width of gaussian
distribution of local Curie temperatures using the normalized plots.

The main aim of this paper is to present some new possibilities and the results
of determining the width of gaussian distribution of Curie-Weiss temperatures and
relaxation times in relaxors and in ferroelectrics with a diffused phase transition.

2. The width of gaussian distribution of Curie-Weiss
temperatures

Assuming that:

[e.o]

(T) = [ alT.0)9(6)d0, (1)

0

where €,(T, ) — local dielectric permittivity, g(6) — Gauss distribution of local Curie-
Weiss (C-W) temperatures (). In practice, we want to determine the width of the
Gauss curve having experimental (T) data. Recently Moreira [4] has presented
the method of determining the width of the Gauss curve using a special graphical
presentation. Earlier, Clarke [5] generalized the so called quadratic Curie-Weiss law
for the case 1 < v < 2:

1 v
where &e,,, — maximum value of dielectric permittivity, T, — temperature in which
the maximum of dielectric permittivity is observed, A — constant (for y =1 - C-W
constant), 7 — exponent (from range 1-2). For different values of o, the transition
from v = 2 to v = 1 takes place at various temperatures — T7,. Moreira stated that

€ emax
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in BaTiO3 T}, = T,, + 40. The results of calculations for BaTiO3 are presented in
figure 1.

Similar calculations made by the

950x10° author for PbTiOsz have shown that

200101 in this case the dependency Ty, =

Tw + 40 is also valid. So it is possi-

850x10° 1

m  800x10°

%o FK 7soxi00 | ble to calculate the dependency o(z)
700x10° | for various compounds, for example, for
650x10° | Ba(Ti;_,Sn, )O3 solid solutions. The di-

600x10° 1

. ‘ ‘ | | electric properties of this solid solution
00 005 ot o015 o0z 0z gre well known (for example [6,7]).
: Rolov and Yurkevich [8,9] devel-

_mxmf: oped the Landau-Ginsburg-Devonshire
;2o (LGD) theory concerning the case of
L solid solution ( but without taking into
40106 | account the diffusion of the phase tran-
-50x10° | sition).
e The author made many trials which
-70)(1090.00 0.05 0.10 0.5 0.20 0.25 showed that to obtain a relatively gOOd
Toxto X agreement with the experimental data
60x10" | for various compositions we must as-
50107 | sume that all parameters i.e. a;, 8 and v
| 40x10° | depend on z. All three dependences have
Ve been obtained by fitting to the litera-
20x10"2 . .
o ture experimental data ([15]) for various
ol compositions. Dependency a,(x) can be
- ‘ ‘ ‘ ‘ described by the function:
0.00 0.05 0.10 0.15 0.20 0.25

" ao(7) = ao(0) exp(—Bz),  (3)
Figure 2. Dependencies « (), 5 (z) and
7 (z) used in calculations. where a,(0) = 0.9 - 10° [m/FK] (value
for BaTiOj3 ceramics), B = 2.
The values of 32/~ have been calculated for every composition from (well known

from LGD theory) the relation:

332
160y’

T.=Ty+ (4)

f parameter has been calculated from P(T). ag(z), f(x) and v (x) dependencies
which give a good fitting to experimental data, and are presented in figure 2.
Calculations have shown that for the increasing x, the difference between T\ and
T, streams to zero and as a result the phase transition gradually streams to the
second order. Curie-Weiss temperatures for every composition have been calculated
from the relation:
To(x) = To(0) — ax, (5)
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Figure 3. Normalized plots of (1/¢ — 1/emax) = f(T — Ty) for Ba(Ti;_,Sn,;)03
solid solutions (experimental data from [7]).

where T((0)=381.8 K (value for BaTiO3 ceramics), a=745 K.

Next, we can calculate Py(T") for various x:

(EP—tallan@) 7 o 7.y
pra - | VTG (@) (©)
0 T > Ti(x).

Substituting the obtained Py(T,x) into the formula ¢! = a + 38P? + 5yP* it is
possible to obtain dependencies (T, ) but without taking into account the diffusion
of a phase transition. To introduce the diffusion we must know the width of gaussian
distribution of C-W temperatures for every composition. It can be obtained using
the method described above. Normalized plots of (1/e — 1/emax) vs. (I' — Ty,) for

Ba(Ti;—,Sn, )O3 (BTS) are presented in figure 3.
The obtained o(x) dependency is presented in figure 4.
The results presented in figure 4 can be fitted to a function:

o(x) = 5.58exp(6.27x). (7)

Dependence (7) can be introduced into the Gauss function for every z and as a
result it is possible to obtain Ps(T,z) = [ P(T,x,0)df (presented in figure 5).

In the next step we can calculate (7', z) by numerical integrating with Gauss
function for every z. Results are presented in figure 6.

664



Determining the gaussian distribution width ...
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Figure 4. Dependency o(z) obtained as a result of calculations described in the
text (symbols) and the plot of equation (7) — solid line.
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Figure 5. Curves P4(T) for Ba(Ti;_,Sn;)O3 obtained as a result of calculations
based on the formulas (4-7) (thick lines) compared with the literature experi-
mental data from [16] (thin lines).
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Figure 6. Dependencies ¢(T) for Ba(Ti;—,Sn, )O3 obtained as a result of calcu-
lations based on the formulas (4)—(7) (thick lines) and experimental data from
[7] (thin lines).

3. The method of estimating the width of gaussian-logarithmic
distribution of relaxation times

Obviously, in the relaxors, the shift of the range of dielectric dispersion into
low frequencies is observed. It is related with the dependence of relaxation time on
temperature. For the majority of the materials this dependency is of Arrhenius type
(equation (8)):

11 -n 1 1\ E,
— = —eFT In({—)=n({—)—-—.
T 7'06 ' o n(T) n(TO) kT ®)
But in some cases this dependency is of Vogel-Fulcher (V-F) type (equation (9)):
1 1 k(%;—) 1 1 E,
S k(e (=) =n(=)- =22 9
T Toe or H(T) H(TQ) k(T —Ty)’ 9)

where 7 — relaxation time at a given temperature 7', 7, — relaxation time at 7" —
00, Fjy — activation energy, T — freezing temperature at which 7 — co. Some authors
conclude that V-F relation for relaxation times leads to V-F dependence of T},
on frequency w [10,11]. However V-F type relation between T}, temperature and
frequency w should not be a consequence of V-F relation between relaxation time
and temperature.It may be a result of the widening of distribution of the relaxation
times with the decreasing temperature. Such a suggestion has been presented in
the work of Tagantsev [12] and supported by analytical relations, but the numerical
calculations for real materials have not been done. Numerical calculations for PMN
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and SBN presented below confirm the suggestion that V-F relation between T}, and
w is caused by the widening of gaussian-logarithmic distribution of relaxation times.
Details of numerical calculations are published in [17] and here only the main results
are presented.

Assuming that distribution (in logarithmic scale) of relaxation times takes place,
we must calculate the integral:

[e.e]

(1) = [ & (T r)y(r(T))dr, (10)

—00

where €*(T, 7) is the temperature dependent complex dielectric permittivity, y(7(7"))
is the temperature dependent distribution function of relaxation times. e*(7, 1) is
given by Debay’s relation with a single relaxation time depending on temperature

gs(T') + oo (T)iwTo(T) .

(T _
e(T.7) 1+ iwT(T)

(11)

Gaussian (in logarithmic scale) distribution of relaxation times is given by a function:

( (T)) 1 —[lnm—ln({on? (12)
T = & [20(7) ,
Y 570 (T)

where 7y is the value around which the distribution takes place, o(T') is the temper-
ature dependent half-width of the Gauss distribution. So, it is necessary to estimate
this half-width from the experimental data. The method of estimating the width
of gaussian-logarithmic distribution of relaxation times was based on the diagrams
z;:—i:) vs. log(wt,). The 7, value has been taken from the frequency at which the
expression ;—iz is equal to 0.5. It is well known (it is the general conclusion from
Debay’s theory) that such a diagram would be identical for all materials. But, in
real cases, as a rule, the deviation from such a theoretical curve is observed which
can be related with the distribution of relaxation times. So, the magnitude of this
deviation may be used as a measure of the width of the distribution. In the first
step, trial calculations have been made by the author for various 7,, €4, &s which
showed that the shapes of the curves depend only on . To estimate the width of
distribution, the procedure based on comparing the experimental curves of Z:—iz Vs.
log(wT,) with the theoretical ones, can be used. For every o, the value of log(wT)
was estimated at which £=22=0.3 (this value was chosen arbitrarily). The obtained
dependency between log(wt) and o was linear which permits us to determine the
dependency o(7T) for real materials as well. It has been done for PMN and SBN.
In the case of PMN using £4(7") dependency (introducing data from [13] to C-W
law) and constant value o, = 0, the value of expression ;’:—zz has been calculated
at various temperatures. As a result, it was possible to obtain the values of the
frequency at which the expression ;’:—Z‘; was equal to 0.5. Next, we can obtain the
dependency of the logarithm of the mean relaxation time at the temperature. It was

stated that the dependency In(7) = f(1/7) can be described by the equation (8)
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Figure 7. Dependences ¢’ (w,T) and €” (w,T) obtained as a result of numerical
calculations (thick lines) compared with the experimental data from [13].

(i.e. Arrhenius type) with In (T—lo) = 27.44 and £o = 5500 (7, = 1.21 - 10~"%s and
B, =17.59-10"2J).
As a result, the construction of the diagram === = f(log(w,)) for PMN be-

came possible. Next, we can find ¢(7") dependency using the procedure described
above. The obtained relation can be expressed as:

Oo

"= Ty

(13)

with 0, = 2.69- 103, T,c = 194 K, n = 1.61. It means that at temperature 194 K,
the width of Gauss curve streams to infinity (not relaxation time). Next, we can
calculate €’ (T') and &” (T') for PMN at various frequencies (presented in figure 7).

From figure 7 we can find the dependency T, (w) and fit it to equation (8) or (9).
As a result, it was stated that the obtained T, (w) dependency can be fitted to V-F
equation in spite of the fact that the dependency 7(T") is of Arrhenius type.

Similar calculations for Baj o55r375Nb1gO30 — SBN — 75 showed that o(7") de-
pendency in this case can be fitted to the equation:

o(T) = a+ bT + cT? (14)

with a = 16.76, b = —0.087 K~ !, ¢ = 1.15-10~* K~2. Experimental data for SBN-75
were taken from [14]. Equation (14) is different in its nature from the dependency
obtained for PMN (equation (13)). In the case of SBN, o(T) does not stream to
infinity at any finite temperature. Finally, taking £(T), e.(T) from Cole-Cole plots
in [14] and having o(T), we can calculate &’ (T')) and &” (T') (as earlier for PMN).
Results are presented in figure 8.

Also, in this case, the dependency Ti,(w) obtained from £{w,T) is of V-F type
(Ty= 1184 K, E,= 6.4-107% J, w,= 39.6-10'* Hz) in spite of the fact that 7(T')
dependency is of Arrhenius type and o(7") does not stream to infinity at any finite
temperature.
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Figure 8. a) Dependencies €(T") obtained as a result of numerical calculations for

SBN-75.

4. Conclusions

Some new possibilities of determining the gaussian distribution of Curie-Weiss
temperatures and relaxation times are presented for relaxors and ferroelectrics with
a diffused phase transition:

e the method of determining the width of gaussian distribution of Curie-Weiss
temperatures using the normalized plots of the reciprocal of dielectric per-
mittivity has been applied to BTS solid solutions with DPT. The results of
calculations for BTS have shown that it is possible to describe the dependences
observed in the experiment;

e the method of estimating the gauss-logarithmic distribution of relaxation times
in relaxors based on normalized plots (applied for relaxors PMN and SBN) was
suggested;

e the Vogel-Fulcher behaviour of real and imaginary parts of the dielectric per-
mittivity in PMN and SBN can be caused by the Arrhenius type dependency
of relaxation times on the temperature and widening the gauss-logarithmic
distribution of relaxation times.

All the results have been obtained using numerical methods and experimental data
from literature.
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Bu3Ha4yeHHSs LWWMPUHM rayCoOBOro po3noainy
Temnepartyp Kiopi-Benca i yacis penakcauir

P.Ckynbcki

Cinescbkuin yHiBepcUTET, kadeapa maTepiano3HaBCTBa,
Monbwa, 41-200 CocHoBgew, Byn. CHEXHA, 2

OtpumaHo 9 BepecHa 1998 p., B ocTato4HOMY BUMNAaI —
14 rpygHsa 1999 p.

Y uin poboTi NpeacTaBneHo Aeski HOBI MOXJIMBOCTI LLOAO BU3HAYEH-
HS raycoBoro posnoainy temnepatyp Kiopi-Belica i yacis penakcadii y
penakcopax i CerHeToenekTpmkax 3 po3MnuTumMm ¢GasoBUM NEPEXOAOM.
[o TBepporo po3unHy Ba(Ti;—,Sn, )O3 3aCTOCOBAHO METOA BUSHAYEHHS
LUMPUHM raycoBOro poanoginy tTemnepatyp Kiopi-Benca 3 BukopucrtaH-
HAM rpadikiB 06epHEHOI AienekTPMYHOI NPOHMKHOCTI. 3anponoHoBaHUi
rpadiyHnin MeTOA, OLHKK rayc-norapm@miyHOro po3noiny 4yacis penak-
cauii ona penakcopis. lNokasaHo, Wwo ¢orenb-pynbYepiBCbKa NoBediHka
OINCHOI Ta YFBHOI YaCcTUH aienekTpuyHoi npoHnkHocTi PMN € Hacnigkom
rayc-norapudmiyHOro po3noisy 4Yacis penakcadii i 1oro Temneparyp-
HOI 3a1eXHOCTiI.

Knio4oBi cnoBa: CerHeToenekTpuku, peaakcopu, PO3MUTIY pa3oBuii
nepexia, H4ac penakcadii

PACS: 77.80
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