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Recent results in theory and simulation of star-polymer–colloid mixtures
are reviewed. We present the effective interaction between hard, colloidal
particles and star polymers in a good solvent derived by monomer-resolved
Molecular Dynamics simulations and theoretical arguments. The relevant
parameters are the size ratio q between the stars and the colloids, as well
as the number of polymeric arms f (functionality) attached to the com-
mon center of the star. By covering a wide range of q ’s ranging from zero
(star against a flat wall) up to about 0.5, we establish analytical forms for
the star-colloid interaction which are in excellent agreement with simula-
tion results. By employing this cross interaction and the effective interac-
tions between stars and colloids themselves, a demixing transition in the
fluid phase is observed and systematically investigated for different arm
numbers and size ratios. The demixing binodals are compared with experi-
mental observations and found to be consistent. Furthermore, we map the
full two-component system on an effective one-component description for
the colloids, by inverting the two-component Ornstein-Zernike equations.
Some recent results for the depletion interaction and freezing transitions
are shown.
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1. Introduction

Typical soft matter systems, such as polymers and colloids, almost always oc-
cur in the form of mixtures. It is the central goal of soft matter physics to offer
insights into the generic phase behaviour of such systems that does not depend on
the detailed chemical structure of their constituents. In this respect, the study of
mixtures of hard colloidal particles and non-adsorbing polymer chains has received
a great deal of recent attention, both experimentally [1–3] and theoretically [3–6].
The theoretical approaches to the study of colloid-polymer mixtures were largely
based on the Asakura-Oosawa (AO) model, in which the chains are envisaged as
non-interacting spheres experiencing a hard-sphere repulsion with the colloids. This
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model is most pertinent for Θ-like solvent conditions for the polymer. It can be
mapped onto an effective one-component fluid featuring the so-called depletion in-
teraction between the colloids, mediated by the ideal chains [3,4] and leading to
fluid-fluid separation at polymer-colloid size ratios exceeding the value q c

∼= 0.30.
Though the AO model provides an excellent benchmark for such systems, recent
theoretical studies [5,6] and comparisons with experiments [2] indicate that the as-
sumption of non-interacting chains leads to quantitative discrepancies between the
two. Hence, a systematic effort to derive more realistic chain-chain [7] as well as
chain-colloid [6,8] interactions has already been undertaken.

On the opposite end of the polymer-colloid mixture lies the binary hard sphere
(BHS) mixture of large and small colloidal particles. Here, no fluid-fluid separation
takes place [9]. It is therefore desirable to consider the systems that interpolate
between the AO and the BHS models, in order to systematically investigate the
evolution of the phase behaviour as we move from one extreme case to the other.
Mixtures of colloids and nonadsorbing star polymers in a good solvent are such a
natural bridge. A simple way to explore the thermodynamics of such mixtures is the
use of pairwise interactions of the two mesoscopic components, having integrated out
the monomer and solvent degrees of freedom. In binary mixtures three pair potentials
are used as inputs for calculating structural quantities and phase behaviour with
simulation or theory. In this work we give a review about the derivation of the
star-colloid interaction and the main features of the phase behaviour of star-colloid
mixtures.

The paper is organized as follows: in section 2.1 we present the general theoretical
approach to the cross pair potential and derive analytic expressions for the star-wall
interaction and for the star-colloid interaction for small size ratios. In section 2.2
we compare those with the results of monomer-resolved Molecular Dynamics sim-
ulations and determine the free parameters in order to achieve agreement between
theory and simulation results. In section 3 we present the ensuing phase diagrams in
the fluid phase by solving the full two-component system with fluid-integral equa-
tions. In section 4 we discuss some recent results for the depletion interaction and
freezing transition of an effective one-component description of star-polymer–colloid
mixtures. We conclude in section 5.

2. Interactions

2.1. Theory

Let us first define the system under consideration and its relevant parameters.
We consider a collection of star polymers with functionality f and hard, spherical
colloidal particles, the interaction between the latter species being modeled through
the hard sphere (HS) potential:

Vcc(r) =

{

∞, r 6 2Rc

0, else.
(1)
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The colloids have a radius Rc, which is a well-defined length scale. The stars,
on the other hand, are soft, hairy balls without a sharply defined boundary and
this leads some freedom in defining length scales characterizing their spatial extent.
The experimentally measurable length scale that naturally arises from small-angle
neutron- or X-ray-scattering experiments (SANS or SAXS) is the radius of gyration
Rg of the stars and the associated diameter of gyration σg = 2Rg. For the theoretical
investigations on the subject, however, another length scale turns out to be more
convenient, namely the so-called corona radius Rs of the star or the associated
corona diameter σs = 2Rs. The corona radius arises naturally in the blob model for
the conformation of isolated stars, introduced by Daoud and Cotton [10]. According
to the Daoud-Cotton picture, the bulk of the interior of a star in good solvent
conditions (and for sufficiently long arm chains), consists of a region in which the
monomer density profile c(s) follows a powerlaw as a function of the distance s from
the star center, namely:

c(s) ∝ a−3
(s

a

)−4/3

v̄−1/3f 2/3, (2)

with the monomer length a, the excluded volume parameter v and the reduced
excluded volume parameter v̄ ≡ v/a3. Outside this scaling region, there exists a
diffuse layer of almost freely fluctuating rest chains, in which the scaling behaviour
of the monomer profile is no longer valid. We define the corona radius Rs of the star
as the distance from the center up to which the scaling behaviour of the monomer
density given by equation (2) above holds true. In what follows, we define the size

ratio q between the stars and the colloids as:

q ≡ Rg

Rc

. (3)

In addition, the interior of the star forms a semidilute polymer solution in which
scaling theory [11] predicts that the osmotic pressure Π scales with the concentration
c as Π(c) ∝ c9/4. Combining the latter with equation (2) above, we obtain for the
radial dependence of the osmotic pressure of the star within the scaling regime the
relation:

Π(s) ∝ kBT f 3/2s−3 (s 6 Rs). (4)

In order to obtain a relation for the osmotic pressure Π(s) for the diffuse region
s > Rs we examine the simplest case, in which a star center is brought within a
distance z from a hard, flat wall, as depicted in figure 1.

Going back to an idea put forward some ten years ago by Pincus [12], we can
calculate the force Fsw(z) acting between the polymer and the wall by integrating the
normal component of the osmotic pressure Π(s) along the area of contact between
the star and the wall. In the geometry shown in figure 1, this takes the form:

Fsw(z) = 2π

∫ y=∞

y=0

Π(s) cosϑ ydy. (5)
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Figure 1. Star polymer (black-shadowed
particle) interacting with a flat wall. The
star polymer consists of an inner core re-
gion, where the scaling behaviour is domi-
nant, whereas the outer regime is shadowed
and indicates the exponential decay of the
osmotic pressure.

Using z = s cosϑ and y = z tanϑ we
can transform equation (5) into:

Fsw(z) = 2πz

∫ ∞

z

Π(s)ds. (6)

Equation (6) above implies immedi-
ately that, if the functional form for
the force Fsw(z) were to be known,
then the corresponding functional
form for the osmotic pressure Π(z)
could be obtained through:

Π(z) ∝ − d

dz

(

Fsw(z)

z

)

. (7)

To this end, we now refer to the
known, exact results regarding the
force acting between a flat wall and a
single, ideal chain one end of which is
held at a distance z from a flat wall
[13]. There, it has been established

that the force F
(id)
sw (z) is given by the

relation:

F (id)
sw (z) = kBT

∂

∂z
ln
[

erf
( z

L

)]

, (8)

where erf(x) = 2/
√
π
∫ x

0
e−t2dt denotes the error function and L is some length scale

of the order of the radius of gyration of the polymer. Carrying out the derivative
and setting erf (x ) ∼= 1 or x ≫ 1, we obtain a Gaussian form for the chain-wall force
at large separations:

F (id)
sw (z) ∼=

kBT

L
e−z2/L2

(z ≫ L). (9)

We now imagine a star composed of ideal chains. As the latter do not interact with
each other (“ghost chains”), the result of equation (9) holds for the star as well.
Going now to self-avoiding chains, we assert that, as the main effect giving rise to
the star-wall force is the volume which the wall excludes to the chains, rather than
the excluded volume interactions between the chains themselves, a relation of the
form (9) must also hold for the force Fsw(z) between a wall and a real star, but
with the length scale L replaced by the radius of gyration or the corona radius of
the latter and with an additional, f -dependent prefactor for taking into account the
stretching effects of the f grafted polymeric chains. From equations (7) and (9) it
now follows that

Π(s) ∝ kBT

L

(

1

s2
+

2

L2

)

e−s2/L2

(s ≫ L). (10)
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The full expression for Π(s) now follows by combining equation (4), valid for s 6 R s,
with equation (10), valid for s ≫ L ∼= Rs, and matching them at s = Rs. The local
osmotic pressure Π(s) in the interior of a star polymer, as a function of the distance
s from its center has hence the functional form:

Π(s) = Λf 3/2kBT

{

s−3 for s 6 Rs
(

1
s2
+ 2κ2

)

ξ
Rs
e−κ2(s2−R2

s) for s > Rs,
(11)

where Λ and κ = L−1 are free parameters; it is to be expected that κ = O(R−1
g ), as

we will verify shortly. On the other hand, ξ must be chosen to guarantee that Π(s)
is continuous at s = Rs, resulting in the value:

ξ =
1

1 + 2κ2R2
s

. (12)

Equation (11) above concerns the radial distribution of the osmotic pressure of
an isolated star. The question therefore arises, whether this functional form for
the osmotic pressure can be used in order to calculate the force between a star
and a flat wall also in situations where the star-wall separation is smaller than
the radius of gyration of the star, in which case it is intuitively expected that the
presence of the wall will seriously disturb the monomer distribution around the
center and hence also the osmotic pressure. In fact, one intuitively expects that
the osmotic pressure is a function of both the star-wall separation z and the radial
distance s, whereas in what follows we are going to be using equation (6) together
with equation (11), in which Π(s) has no z-dependence. However, it turns out that
this is an excellent approximation. On the one hand, it is physically plausible for
large star-wall separations, where the presence of the wall has little effect on the
segment density profile around the star center and the ensuing osmotic pressure
profile. On the other hand, also at very small star-wall separations, the scaling form
Π(s) ∝ s−3 continues to be valid. This claim can be corroborated by exact results for
an ideal chain grafted on a hard wall [14], and scaling arguments [17]. One additional
argument is the following:

Bringing a star with f arms at a small distance to a flat wall, creates a confor-
mation which is very similar to the one of an isolated star with 2f -arms, as shown in
figure 2. Hence, it is not surprising that at small star-wall separations, one recovers
for the radial dependence osmotic pressure the scaling laws pertinent to an isolat-
ed star. In addition, by inserting equation (11) into equation (6) and carrying out
the integration, we find that for small star-wall distances, z ≪ Rs, the force scales
as Fsw(z) ∝ (kBT )/z, thus giving rise to a logarithmic effective star-wall potential
Vsw(z) ∝ −kBT ln(z/Rs). The latter is indeed in full agreement with predictions
from scaling arguments arising in polymer theory [12,15,16]. This is an universal
result, in the sense that it also holds for single chains, be they real or ideal. It can
also be read off from the exact result, equation (8), using the property erf (x) ∝ x for
x → 0. Thus, the proposed functional form for the osmotic pressure, equation (11),
combined with equation (6) for the calculation of the effective force, has the fol-
lowing remarkable property: it yields the correct result both at small and at large
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Figure 2. Snapshot of a simulation showing a star polymer interacting with a
flat wall, at a small center-to-surface distance. The mirror-reflected image of the
star, on the right, helps demonstrate that the configuration is similar to that of
an isolated star with twice as many arms.

star-wall distances and therefore appears to be a reliable analytical tool for the cal-
culation of the effective force at all star-wall distances. At the same time, it contains
two free parameters, Λ and κ which allow some fine tuning when the predictions
of the theory are to be compared with simulation results, as we will do below. Yet,
we emphasize that this freedom is not unlimited: on physical grounds, κ must be of
the order of R−1

g and Λ must be a number of order unity for all functionalities f , as

the dominant f 3/2-dependence of the osmotic pressure prefactor has already been
explicitly taken into account in equation (11).

We are now in a position to write down the full expression for the star-wall force,
by using equations (6) and (11). The result reads as:

RsFsw(z)

kBT
= Λf 3/2

{

Rs

z
+ z

Rs
(2ξ − 1) for z 6 Rs

2ξ exp[−κ2(z2 − R2
s )] for z > Rs.

(13)

Note the dominant ∝ 1/z-dependence for z → 0. Accordingly, the effective interac-
tion potential Vsw(z) between a star and a flat, hard wall held at a center-to-surface
distance z from each other reads as:

βVsw(z) = Λf 3/2

{

− ln( z
Rs
)− ( z2

R2
s

− 1)(ξ − 1
2
) + ζ for z 6 Rs

ζ erfc(κz)/erfc(κRs) for z > Rs,
(14)
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with the inverse temperature β = (kBT )
−1, the additional constant

ζ =

√
πξ

κRs
erfc(κRs) e

κ2R2
s (15)

and the complementary error function erfc(x) = 1− erf(x). This completes our the-
oretical analysis of the star polymer-wall force and the ensuing effective interaction
potential. The comparison with simulation data and the determination of the free
parameters in the theory will be discussed in section 2.2.

Figure 3. Star polymer (black-shadowed particle) interacting with a colloidal
particle (grey sphere). The dark and shadowed regions of the star have the same
meaning as in figure 1.

We now proceed with the calculation of the effective force between a star and
a spherical hard particle, where effects of the colloid curvature become important.
We apply the same idea as for the case of the hard wall: the effective force acting
at the center of the objects is obtained by integrating the osmotic pressure exerted
by the polymer on the surface of the colloid. In figure 3, the geometrical situation
is displayed: within the corona radius of the star polymer Rs = σs/2, the osmotic
pressure is determined by scaling laws; the outer regime is shadowed and signifies
the Gaussian decay of the osmotic pressure. At center-to-surface distance z (center-
to-center distance r = z+Rc), the integration of the osmotic pressure is carried out
over the contact surface between star and colloid. Taking into account the symmetry
of the problem, e.g., its independence of the azimuthal angle, we obtain the force
Fsc(z) between the star and the colloid as:

Fsc(z) = 2πR2
c

∫ θmax

0

dθ sin θΠ(s) cosϑ, (16)

where ϑ and θ are polar angles emanating from the center of the star polymer
and the colloid, respectively. The geometrical situation is shown in figure 3. The

291



J.Dzubiella, A.Jusufi

maximum integration angle θmax is related to the maximum integration distance
smax [17]. By introducing equation (11) into equation (16), an analytical expression
for the effective force can be calculated, see [17]. It should be noted that, as in the
flat-wall case, the force scales as well as Fsc(z) ∝ (kBT )/z for small distances.

Furthermore, in the case of small size ratios q = Rg/Rc, the interaction range
is small compared to the colloid radius Rc, and smax can be set infinity. Then an
analytical calculation of the effective star polymer-colloid potential V ∞

sc (z) is possible
and yields [17,18]:

βV ∞
sc (z) = Λf 3/2

(

Rc

z +Rc

)

×
{

− ln( z
Rs

)− ( z2

R2
s

− 1)(ξ − 1
2
) + ζ for z 6 Rs

ζ erfc(κz)/erfc(κRs) for z > Rs

(17)

with the constant ζ given by equation (15). Clearly, in the limit R c → ∞ (q → 0),
corresponding to a flat wall, equation (17) reduces to the previously derived result,
equation (14). It is a remarkable feature that all effects of curvature are taken into
account by the simple geometrical prefactor Rc/(z + Rc), for sufficiently small size
ratios q. In this respect, the above result bears close similarity to the well-known
Derjaguin approximation [19].

Finally, we note that for the effective interaction between the stars applied in
section 3 and 4 we take the expression proposed by Likos et al. [20] for arm numbers
f & 10, confirmed by computer simulations in [21]. The pair potential is modeled by
an interaction which is also logarithmic for an inner core and shows a Yukawa-type
exponential decay at larger distances [20,22]:

Vss(r) =
5

18
kBTf

3

2

{

− ln( r
σs
) + 1

1+
√
f/2

r 6 σs

σs/r

1+
√
f/2

exp(−
√
f

2σs

(r − σs)) else.
(18)

For the case of small arm numbers f . 10, a slightly modified pair potential proposed
in [21] is employed, where the Yukawa decay is replaced by a Gaussian decay:

Vss(r) =
5

18
kBTf

3

2

{

− ln( r
σs

) + 1
2τ2σ2

s

r 6 σs

1
2τ2σ2

s

exp (−τ 2(r2 − σ2
s )) else,

(19)

where τ(f) is a free parameter of the order of 1/Rg and is obtained by fitting to
computer simulation results, see [17,18]. More features of the pure one-component
star polymer system are reviewed in this issue by C.N.Likos and H.M.Harreis.

2.2. Simulation

In order to check the theoretical prediction of the forces between stars and hard
surfaces, we performed a monomer-resolved Molecular Dynamics (MD) simulation
and calculated the mean force at the center of the star polymer to compare the data
with theory. The model is based on the ideas of simulation methods applied to linear
polymers and to a single star [23,24]. The main features are described in [17]. We
have carried out simulations for a variety of arm numbers f and size ratios q, allowing

292



Star-polymer–colloid mixtures

us to make systematic predictions for the f - and q-dependencies of all theoretical
parameters. In attempting to compare the simulation results with the theoretical
predictions, one last obstacle must be removed: in theory, the fundamental length
scale characterizing the star is the corona radius Rs. The latter, however, is not
directly measurable in a simulation in which, instead, we can only assess the radius
of gyration Rg. However, we have previously found that the ratio between the two
remains fixed for all considered arm numbers f , having the value R s/Rg ≃ 0.66 [21].
We now proceed with the presentation of our MD results.

We consider at first a star polymer near a hard wall. The theoretical prediction
of the effective interaction force is given in equation (13). First, we consider the
limit of small separations, z → 0, which allows us on the one hand to test the
theoretical prediction Fsw(z) ∼= kBTΛf

3/2/z and on the other hand to fix the value
of the prefactor Λ, which is expected to have in general a weak f -dependence. For
this prefactor, some semi-quantitative theoretical predictions already exist [25,26].
Numerical values for the exponents are known from renormalization group theory
and simulation [27,28] and yield Λ(f = 1) ≈ 0.83 and Λ(f = 2) ≈ 0.60. On the
other hand, for very large functionalities, f ≫ 1, one can make an analogy between
a star at distance z from a wall and two star polymers the centers of which are kept
at distance r = 2z from each other [12]. Indeed, for very large f , the conformations
assumed by two stars brought close to each other show that the chains of each star
retract to the half-space where the center of the star lies, a situation very similar to
the star-wall case, as can be seen in figure 2. Then, one can make the approximation
Fsw(z) ∼= Fss(2z), where Fss denotes the star-star force. For the latter, it is known
[20] that it has the form:

Fss(r) =
5

18
f 3/2 1

r
(r → 0), (20)

implying for the coefficient Λ the asymptotic behaviour:

lim
f→∞

Λ(f) ≡ Λ∞ =
5

36
∼= 0.14. (21)

Since there is no theory concerning the values of Λ in the intermediate regime of f , Λ
is used as fit parameter. Its value can be obtained by comparing the force according
to equation (17) to the simulation results. An accurate estimation can be found by
plotting the inverse force versus small distances z, where the 1/z-behaviour holds.
The values for Λ(f) can be immediately read off from the slope of the curves [17],
and they are summarized in table 1. There we see that Λ is indeed a decreasing
function of f but the asymptotic value Λ∞ = 5/36 is still not achieved at arm
numbers as high as f = 100. The decay parameter κ is fixed by looking at the force
at larger separations and the obtained results are also summarized in table 1. As
expected, κ is of the order R−1

g . A monotonic increase of κ with the arm number f is
observed, consistent with the view that for large f stars form compact objects with a
decreasing diffuse layer beyond their coronae [20]. A comparison between simulation
results and the star polymer-wall force for the whole range of the interaction using
the fit parameters determined earlier are shown in figure 4.
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Table 1. The fit parameters arising from the comparison between theory and
simulation for the star-wall and star-colloid interaction. Λ is the overall prefactor
and κ is the inverse Gaussian decay length, both used in equation (17). σs =
2Rs = 0.66σg denotes the corona diameter of the stars, as measured during the
simulation.

f Λ κRs

2 0.46 0.58
5 0.35 0.68
10 0.30 0.74
15 0.28 0.76
18 0.27 0.77
30 0.24 0.83
40 0.24 0.85
50 0.23 0.86
80 0.22 0.88
100 0.22 0.89

0 0.2 0.4 0.6 0.8 1
(z−Rd)/σg

 0

 2

 4

 6

F
σ g 

/(
k B

T
f 3

/2
)

f = 2
f = 6
f = 16
f = 32

Figure 4. Effective force between a star polymer and a hard flat wall plotted
against the distance z between the star center and the surface of the wall. The-
oretical curves from equation (13) were compared to computer simulation data
(symbols). For better comparison we divided the force by f 3/2. Rd is a small finite
core size of the star in the simulation [17].
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(c)
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σ g
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T
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(d)

Figure 5. Comparison between simulation (symbols) and theoretical (lines) re-
sults for the effective force between a star polymer and a colloidal particle for
different size ratios q, as a function of the center-to-surface separation z. The arm
number here is f = 18. The solid lines in (a) and (b) show the force according
to equation (17). In (c)-(d) the curves derived by means of this approximation
are shown dashed and they increasingly deviate from the simulation results as q
grows. Therefore, a finite upper integration limit has to be introduced (see the
text), producing the curves denoted by the solid lines in (c)-(d) and bringing
about excellent agreement with simulation. Rd is a small finite core size of the
star in the simulation [17].

With parameters Λ and κ once and for all fixed from the star-wall case, we
now turn our attention to the interaction of a star polymer at a hard sphere of
finite radius Rc, equivalently size ratios q 6= 0. Here, the force is given by the full
expressions calculated in [17]. For small enough size ratios q, the approximation
κsmax → ∞ gives rise to a simplified expression for the force and to the analytical
formula, equation (17) for the effective star-colloid potential. We show representative
results for fixed arm number f = 18 and varying q in figure 5; results for different
f -values are similar. It can be seen that the simplified result arising from allowing
smax → ∞ yields excellent results up to size ratios q . 0.3, see figures 5(a) and (b).
However, above this value, the approximation of integrating the osmotic pressure
up to infinitely large distances breaks down, as it produces effective forces that are
larger than the simulation results, especially at distances z of the order of the ra-
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0 0.5 1
(z−Rd)/σg

0

5
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20

F
σ g

/(
k B

T
f3/

2 )

f=5
f=10
f=18
f=30
f=40
f=50

Figure 6. The effective force between a star polymer and a colloid for different
arm numbers f and a size ratio q = 0.33 plotted against z, the distance of the star
center to the surface of the colloid. The lines are the theoretical results while the
symbols are the simulation ones. For clarity, the data have been shifted upwards
by constants: f = 10 : 1, f = 18 : 2, f = 30 : 3, f = 40 : 4, f = 50 : 5. Rd is a
small finite core size of the star in the simulation [17].

dius of gyration Rg; these are the dashed lines shown in figures 5(c) and (d). The
overestimation of the force is not surprising: as can be seen from figure 3 and equa-
tion (16), we are integrating a positive quantity beyond the physically allowed limits
and this will inadvertently enhance the resulting force. Hence, we have to impose a
finite upper limit smax for size ratios q > 0.3 in order to truncate the contribution
of the Gaussian tail in the integral of the osmotic pressure in equation (16).

We finally turn our attention to the f -dependence of the forces for a fixed value
of the size ratio, q = 0.33. In figure 6 we show the simulation results compared
with theory for a wide range of arm numbers, 5 6 f 6 50. For the theoretical fits,
the values of Λ and κ from table 1 were used, whereas the value of the maximum
integration angle was kept fixed at θmax = 30◦ for all f -values. The agreement
between theory and simulation is very satisfactory.

3. Fluid phase behaviour

To access the fluid phase behaviour of the star polymer–colloid mixture on the
level of effective pair potentials, we solve the Ornstein-Zernike equation for binary
systems [29] closed with the Rogers-Young (RY) scheme [30]. Inputs are the pair
potential for the colloids (1) and the analytical expression (17) for the star-colloid
interaction. For the star polymers themselves, interactions (18) and (19) are applied.
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The RY-closure is reliable for the one component star polymer system [31] and shows
spinodal instability in highly asymmetric hard sphere mixtures [32]. Monte Carlo
simulations using the above mentioned interactions and measuring the structure
factors at selected thermodynamics points yield excellent agreement with RY. The
thermodynamic consistency of the RY closure is enforced with a single adjustable
parameter. Relevant thermodynamical parameters are the particle numbers N c of
the colloids and Ns of the stars leading to the total particle number N = Nc +Ns,
and the packing fractions ηc =

Nc

V
π
6
σ3
c of the colloids and ηs =

Ns

V
π
6
σ3
g of the stars in

the volume V .
The structure of binary mixtures is described by three partial static structure

factors Sαβ(k), with α, β = c, s, obtained from RY. We find loci of points in the
(ηc, ηs)-plane at which the long wavelength limit k → 0 of all structure factors
diverges. This occurrence is an indication of a bulk instability and signals a demixing
transition. The divergence of the structure factors is marking the spinodal line of the
system. It is more convenient to consider the concentration structure factor Scon(k) =
x2
sScc(k) + x2

cSss(k) − 2xcxsScs(k), with the concentrations xα = Ni/N, (α = c, s),
which provides the approach to thermodynamics through [32,33]:

lim
k→0

Scon(k) = kBT

[

∂2g(xc, P, T )

∂x2
c

]−1

, (22)

where g(xc, P, T ) is the Gibbs free energy G(xc, N, P, T ) per particle and P denotes
the pressure of the mixture. If g(xc) has concave parts, the system phase-separates.
The boundaries are calculated by the common tangent construction on the g(xc) vs.
xc curves at constant pressure. The results obtained are shown in figures 7 and 8.

Inside the spinodal line, the limits Sα,β(k → 0) attain unphysical, negative val-
ues associated with the physical instability of the mixture against phase separation.
Consequently, a solution of the integral equations is not possible there, and above
the critical pressure P ∗, Scon(xc, k = 0) is unknown in some interval ∆xc(P ). Thus,
it is necessary to interpolate Scon(xc, k = 0) in order to perform the integration of
equation (22). In the vicinity of the critical point η ∗

c ≃ 0.3 the missing interval ∆xc

is very small and the interpolation is reliable. Here the binodals should be accurate,
while for higher pressures (packing fractions ηc < η∗c and ηc > η∗c ) the binodals
are rather approximate but show reasonable behaviour. For highly asymmetric sys-
tems (q . 0.18) it becomes more and more difficult to get solutions of the integral
equations in the vicinity of the spinodal line and the calculation of binodals is not
possible.

The theoretical investigations were accompanied with experiments performed
on commonly used star-polymer–colloid mixtures of varying composition [18]. The
experimental samples were prepared by mixing polymethylmethacrylate (PMMA)
suspensions and polybutadiene (PB) star polymer stock solutions. Each sample was
homogenized by prolonged tumbling and allowed to equilibrate and observed by eye
at room temperature T = 25 ◦C. In all cases, demixing started within several hours,
while crystallization started within two days. The comparison focuses only on the
demixing transition.
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Figure 7. Binodals for the mixing-demixing transition in star polymer-colloid
mixtures for different arm numbers f = 2, 6, 16, 32 (from top to bottom) and size
ratio q ≈ 0.49. Symbols mark experimental results compared with theory (lines)
for q = 0.50. The thin straight lines are tielines connecting coexisting phases.

0 0.1 0.2 0.3 0.4 0.5
ηc

0

0.1

0.2

0.3

ηs

q = 0.50
q = 0.30
q = 0.18
q 
q 

~ 0.18~
~ 0.49~

Figure 8. Same as in figure 7 for an arm number f = 32 and different size ratios q.
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Comparison between theory and experimental are shown in figure 7 and 8. The
good agreement is brought about without the use of any free parameters in the
former that would allow for a rescaling of sizes or densities. In particular, the same
trends are found as functions of the system parameters f and q. By increasing f
at fixed q (figure 7), the demixing transition moves to lower star packing fractions
ηs and the curves become flat. The most important observation from the results
shown in figure 7 is that the f = 2 and f = 32 mixtures show qualitatively the
same phase behaviour, namely a phase diagram with gas-liquid coexistence. From
this point of view, a colloid + 32-arm star mixture still resembles a simple colloid
polymer mixture rather than BHS. However, it is surprising that the phase boundary
drops with increasing star functionality. Apparently, therefore, 32-arm stars are more
efficient depletants than linear polymers.

When q is decreased but f remains fixed (figure 8), again a motion of the binodals
to lower ηs is observed. This trend is opposite to the one predicted by the AO model
(see figures 2(e)-(f) in [1].) The phase separation is not a simple hybrid between the
AO and hard sphere mixtures but show a novel behaviour which one could trace
back to non-additivity. A careful mapping of the current system into a nonadditive
mixture would therefore be of interest. Yet, in view of the fact that the star-star
and the cross interactions display soft tails, such a mapping is not straightforward
and attempts in this direction are the subject of current investigations.

The absolute thermodynamic stability of the liquid phase will be influenced by
the competing crystal phases that may preempt the demixing transition. Here, the
exciting possibility opens up, that for size ratios q & 0.5 and f > 32, colloid-star su-
perlattices similar to those seen in the BHS may be stable, whereas for smaller size ra-
tios and/or functionalities the crystals would be of the ‘sublattice-melt’ type. In this
context, it may be significant that stars crystallize only when f > 34 [22]. However,
for size ratios q . 0.5 and f < 32, which lies below the critical arm number f c = 34
which is at least needed to freeze pure star solutions, it is to be expected that only
the colloids will undergo crystallization. It is the competition between the demixing
binodals against this freezing transition that we examine in the following section.

4. Effective one-component description

The calculation of the freezing transition for binary mixtures takes much com-
putational effort. At the same time, theoretical approaches going beyond the binary
hard sphere mixture are still lacking. To deal with this difficulty, a mapping onto
an effective one-component system is useful. Here, a so-called depletion potential
featuring attractive parts caused by the polymer component is acting between the
colloids. The free energy can then be calculated by simple hard-sphere perturba-
tion theory or thermodynamical integration. Effective one-component calculations
were performed for the binary hard-sphere mixtures [4] and for the AO-potential
[9], modelling colloid-polymer mixtures. Remarkably good agreement was found for
the phase boundaries for all densities and size ratios comparing the one- and two-
component descriptions.
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Figure 9. Depletion potentials Vdepl for different arm numbers f = 2, 6, 32. The
shown reservoir packing fractions ηrs are at the vicinity of the critical points of
the gas-liquid transition, see figure 10. The size ratio is q = 0.5.

Neglecting higher body terms, one possible way to calculate the effective pair
potential between the hard spheres is to solve the two-component OZ-equations in
the low-density limit. Here the relation between pair correlation and pair potential
is well known [29]:

βVeff(r) = − lim
ρc→0

ln[gcc(r; ρc)], (23)

where the radial distribution function gcc(r) of the colloids has evaluated at the low
density limit. The effective potential depends additionally on the reservoir packing
fraction ηrs describing the packing fraction of a reservoir of star polymers in contact
with the colloids in low density limit. In [34] the effective force corresponding to
(23) is compared to direct Monte-Carlo computer simulation results and excellent
agreement is attained. The effective potential Veff(r) splits up into the hard-sphere
interaction (1) and the depletion potential Vdepl(r):

Veff(r) = Vcc(r) + Vdepl(r). (24)

Vdepl(r) is set to zero for distances r < σc. Some examples of Vdepl are shown in
figure 9 for different arm numbers f and reservoir packing fractions η r

s near the crit-
ical point of the gas-liquid phase separation. The size ratio is q = 0.5. For distances
σc 6 r 6 σc+σg depletion of the star polymers between the colloids gives rise to an
effective attraction. While for f = 2 the interaction is purely attractive, the deple-
tion interaction becomes oscillatory for increasing arm number. The oscillations are
caused by increasingly strong star-star correlation effects as the star-star interaction
becomes stiffer with increasing f , and are akin to those seen in BHS [4].
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In order to determine the coexistence curves, the Helmholtz free energy F =
F (Nc, V, η

r
s) is needed. An accurate but computationally expensive way is to perform

thermodynamical integration by MC simulation, using the hard-sphere system as
reference. For a detailed description, see [4,9]. The free energy can be integrated by

F (Nc, V, η
r
s) = F0(Nc, V, η

r
s = 0) +

∫ 1

0

dλ

〈

Ns
∑

i<j

Vdep(r)

〉

Nc,V,ηrs ,λ

, (25)

while using an auxiliary effective interaction V λ
eff(r) between the star-polymers and

colloids in the simulation:

V λ
eff(r) = Vcc(r) + λVdep(r). (26)

Here, 0 6 λ 6 1 is a dimensionless coupling parameter, allowing an interpolation
between the hard sphere reference interaction (λ = 0) and the effective potential
Veff(r) (λ = 1) . For the free energy of the hard sphere reference system F0(Nc, V, η

r
s =

0) we use the Carnahan-Starling expressions [35] for the fluid, and the equation of
state proposed by Hall [36] for the solid phase. The calculation for every point of
the free energy curve was performed with Ns = 108 particles starting with a face-
centered-cubic configuration. After fitting polynomials to f = F/V , the common
tangent construction was employed to obtain the coexistence points. For more details
we refer the reader to [9].

One can also obtain an upper bound for the sought-for free energy by employing
a perturbation of the hard sphere interaction and then apply standard perturba-
tion theory using the hard sphere system as reference system. In this approach
the Helmholtz free energy of the perturbed system is obtained through the Gibbs-
Bogolyubov inequality used as an equality and is given in first order by [29]

βF

N
=

βF0

N
+

1

2
βρ

∫

d3r g0(r) Vdep(r). (27)

Here, F0 and g0(r) are the free energy and radial pair correlation function of the
reference system and ρ is the number density. Barker and Henderson developed a
second order term including two-body correlations [37], refining the free energy to

βF

N
=

βF0

N
+

1

2
βρ

∫

dr g0(r)Vdep(r)−
(

∂ρ

∂p

)

0

1

4
βρ

∫

dr g0(r)V
2
dep(r). (28)

In equation (28) above (∂ρ/∂p)0 is the compressibility of the reference system. For
the reference free energy F0 we use the expressions of Carnahan-Starling and Hall,
for the fluid and solid phases, respectively. The pair distribution functions g0(r) are
provided by Verlet and Weis [38] for the fluid phase and by Kincaid and Weis [39] for
the solid. Free energy calculations using equation (28) were performed by Dijkstra
et al. for the effective Asakura-Oosawa pair potential, modelling colloid-polymer
mixtures [4], and for the effective one-component binary hard sphere system [9].
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Figure 10. Phase diagram for a fixed size ratio q = 0.5 and different arm numbers
f = 2, 6, 32 calculated with the effective one-component description. Reservoir
packing fraction of the stars ηrs is plotted versus the colloid packing fraction
ηc. For f = 2 the system shows a stable gas (G) – liquid (L) transition, while
for increasing arm number the gas-liquid transition becomes metastable (dashed
lines) and decreases to lower reservoir densities η r

s. The fluid (F) – solid (S)
coexistence is broadening by increasing the arm number.

With this approach they found excellent agreement for the fluid-solid boundaries
compared to thermodynamical integration results.

The comparison of the Helmholtz free energy calculated from the two different
approaches described above, shows excellent agreement for the solid branch. For the
fluid branch only the low density range of the perturbation approach coincides with
the simulation results, whereas for larger densities the free energy is always too high.
The reason is that the pair correlation function gcc(r) of the colloids is extremely
different compared to g0(r) of the reference hard sphere system in the fluid phase.
Hence, for the calculation of the fluid phase behaviour the perturbation approach is
not useful. We expect that a pure calculation with perturbation theory should give
a good estimate of the freezing demixing transition, in agreement with Dijkstra et

al. [4,9].

Therefore, the fluid branch is taken from thermodynamical integration and the
solid branch from perturbation theory to reduce computational effort. Some resulting
coexistence lines for fixed size ratio q = 0.5 and arm numbers f = 2, 6, 32 are plotted
in figure 10. For the shown parameters only the f = 2 limit shows a stable gas-liquid
coexistence. For increasing arm number, the demixing transition becomes metastable
and occurs for lower reservoir packing fractions. Reaching the hard sphere limit
f → ∞ this transition should vanish. For every fixed size ratio q, a critical arm
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number f ∗ should appear at which the stable gas-liquid transition occurs. We see
that for our case 2 < f ∗ < 6. The behaviour for different size ratios will be discussed
in [40], where a comparison between the one- and two-component results will be
presented as well.

5. Summary and concluding remarks

In conclusion we have presented analytical results for the force between a colloid
and a star polymer in a good solvent, accompanied with an analytical expression
for the corresponding pair potential which is valid for small size ratios. The validity
of these expressions was established by direct comparison with Molecular Dynamics
simulations. It should be noted that our theoretical approach is in principle gener-
alizable to arbitrary geometrical shapes for the hard particle, thus opening up the
possibility for studying effective forces between stars and hard ellipsoids, platelets
etc. Using the derived interaction in fluid-integral equations we showed that the sys-
tem demixes in the fluid phase and we calculated the demixing binodals for different
arm numbers and size ratios. The binodals are in good agreement with experimental
results. In order to determine the freezing transition, the full two-component system
is mapped onto an effective one-component description by inversing fluid-integral
equations in the low density limit. The results show that for a fixed size ratio a
critical arm number occurs, at which the gas-liquid transition becomes metastable
with respect to freezing.

One of the most useful features of star polymers is their hybrid character between
polymers and colloids, through their tunable functionality f that allows a physical
interpolation between chain behaviour (f = 1, 2) and colloid behaviour (f ≫ 1). We
have seen in this work how their hybrid character can be exploited for constructing
depletants of variable quality in a HS system. The behaviour for different size ra-
tios is investigated in [40]. Here, a critical size ratio appears at which the gas-liquid
transition becomes metastable. Other interesting issues are a comparison with es-
tablished models like the BHS mixture or the AO-model or a detailed study of the
behavior of the depletion potential while changing the funcionality of the stars.
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Суміші зіркових полімерів і колоїдних частинок

Й.Дзубєлла, A.Юсуфі

Інститут теоретичної фізики II, Університет Гайнріха Гайне,
Універзітетштрассе 1, D-40225 Дюссельдорф, Німеччина

Отримано 9 жовтня 2001 р.

Зроблено огляд недавніх робіт про теорію та чисельне моделювання
сумішей зіркових полімерів і колоїдних частинок. Приведено потенці-
ал ефективної взаємодії між твердими колоїдними частинками і зір-
ковими полімерами в доброму розчиннику, отриманий з комп’ютер-
ного моделювання мономерів методами молекулярної динаміки та з
теоретичних аргументів. Суттєвими параметрами потенціалу є спів-
відношення розмірів зірок і колоїдів q , а також кількість полімерних
гілок (функціональність) f , приєднаних до спільного центра зірки.
Знайдено аналітичну форму потенціалу взаємодії зірка-колоїд у ши-
рокій ділянці зміни q від нуля (зірка навпроти плоскої стінки) до вели-
чини порядку 0.5. Знайдена функція чудово узгоджується з резуль-
татами комп’ютерного моделювання. Використовуючи цей потенці-
ал взаємодії, а також потеціали взаємодії між самими зірками і ко-
лоїдами, спостережено перехід розшарування в плинній фазі і про-
ведено його систематичне дослідження для різної кількості ланцюгів
і співвідношення розмірів. Бінодалі розшарування порівняно з екс-
периментальними спостереженнями і виявлено взаємне узгоджен-
ня. Більше того, ми зображуємо повну двокомпонентну систему як
ефективну однокомпонентну для колоїдів, перетворюючи двокомпо-
нентні рівняння Орнштайна-Церніке. Показано деякі недавні резуль-
тати для взаємодії збіднення (depletion interaction) і фазових перехо-
дів в заморожений стан.

Ключові слова: полімери, колоїди, ефективна взаємодія, бінарна

суміш, фазове розділення, потенціал збіднення

PACS: 82.70.Dd, 61.20.Gy, 64.70.-p
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