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An extension of the product-reactant Ornstein-Zernike approach (PROZA)
for the fluid of flexible star molecules is proposed and the corresponding
version of the mean spherical approximation (MSA), the so-called polymer
MSA (PMSA), is formulated. Using Baxter-Wertheim factorization tech-
nigue, an analytical solution of the PMSA for the fluid of star molecules
with Yukawa hard-sphere interaction between the molecular segments is
derived and closed form analytical expressions for the Helmholtz free en-
ergy, chemical potential and equation of state are presented. The structure
properties of several different versions of the star fluid model are studied.
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1. Introduction

Over the past two decades there has been considerable progress in the extension
and development of the liquid state integral equation methods for the polymeric
fluids. Most of the recently developed theoretical descriptions are based on the ex-
tension of the integral equation techniques proposed earlier for the fluid of small
interaction-site molecules. These include polymer reference interaction site model
(PRISM) theory (see [1] and references therein), polymer Born-Green-Yvon theory
[2,3], the theory based on Chandler-Silbey-Ladanyi Percus-Yevick (PY) approach
for the site-site fluid [4,5] and the theories grown out from the extensions of the
multidensity Ornstein-Zernike (OZ) equation for associating particles [6-11]. We
call the latter approach as the product-reactant OZ approach (PROZA). However,
the majority of the applications of these theories are restricted to the case of the
linear chain molecules. Only recently PRISM theory and the theory based on the
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multidensity version of the PY approximation [12-14] have been utilized for the
description of the fluid of star polymers with hard-sphere interaction between the
monomeric units.

We gave here an extension of the PROZA developed earlier for the fluid of linear
chain molecules [8-11]. The PROZA is a general statistical-mechanical theory for
the mixture of reacting species with the product and reactant molecules treated on
the same footing. It is represented by the multidensity version of the OZ equation
written in terms of the partial correlation functions, which describe correlations
between the molecules being in different bonding states. In the previous studies
PROZA was formulated for the associating fluid, which in the complete association
limit reduces to the fluid of linear chain molecules. In the present study we propose
the version of the PROZA, which describe the fluid of associating particles forming
star molecules upon association. For the sake of the analytical description the theory
is supplemented with the polymer mean spherical approximation (PMSA) closure
conditions [11,15] and applied to the fluid of star molecules with Yukawa hard-sphere
interaction between the monomeric units. We present an analytical solution of the
PMSA for the model at hands and derive closed form analytical expressions for
its thermodynamical properties. By way of illustration we consider several different
versions of the hard-sphere Yukawa star model.

The paper is organized as follows. In the next section we discuss the details
of the model to be studied, present extension of the PROZA and formulate the
corresponding version of the PMSA. Section 3 contains expressions for the thermo-
dynamic properties of the system and section 4 gives a solution of the PMSA for
Yukawa hard-sphere star fluid model. Numerical results and discussion can be found
in section 5 while in section 6 we collect our conclusions.

2. The model and theory

We consider the model fluid composed of star-like molecules with a number
density p. Each of the molecule is represented by the collection of freely jointed
tangent hard spheres with one central monomer and n, arms, consisting of m hard-
sphere monomers, which form a flexible chain with one end attached to the central
monomer of the molecule. In addition to the hard-sphere interaction all the sites
interact, regardless of whether they belong to the same molecule or to the different
molecules, via the long range spherically symmetric potential @gr)ab(r) of arbitrary
type. The pair potential ®¢*(r) between the monomers of species (a,i) and (b, j) is
of the form

(1) = @7 (1) + (), M)

ij ij
where @E?S)ab(r) is a hard-sphere potential

hs)ab o0, r < }%ZOLb:l R?+Rb
ORI i 2)

ij )
and R} is the hard-sphere diameter. Here the species of the monomers are denoted
using two indices (a, 7), where a takes the values ¢ or p and denote whether the corre-
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sponding monomer represent the central bead (¢) or belong to one of the molecular
arms (p), ¢ denote the species of the p- or c-type of the monomers. It is assumed,
that for the c-type of the bead i takes only one value of ¢« = 1, while for the p-type
of the bead i takes the values of 1,2,...,m.

This model can be seen as a limiting case of complete association of the m + 1-
component mixture of hard spheres with m — 1 components of the p-type of the
particles having two sticky A and B sites, one component of the p-type of the
particles with only one sticky A site and one component of the c-type of the particles
with n, sticky sites A, B, C, ... . All the sites are randomly distributed on the hard-
sphere surface and sticky interaction is present only between the site B of the particles
of species (p, i) and site A of the particles of species (p,i+ 1) and between site A of
the particles of species (p,1) and all n, sites A, B, C, ... of the particles of species
(c,1). In what follows we will denote the set of all sticky sites of a given particle as
I" and subset of sites from the set I" by small Greek letters o, 3,7, .... We assume
also the following relation between the densities p{ of the above m + 1-component
system

i = Napi = Nap-

The present model of associating fluid with the additional long-range interaction
®,;(r) reduces to the original model of the star polymer fluid in the limit of the
infinitely strong sticky interaction, i.e. in the limit of Ky — oo, where K, denotes
the strength of the sticky interaction. Thus, the initial macromolecular system can
be described using the corresponding version of the liquid state theory for associating
fluids.

We start with the multidensity Ornstein-Zernike equation for the associating
system at hand, written in the Fourier k-space

~ab

by (k) = &7 (k) + ) > & (k)pfhif k), (3)
d l

where the so-called ideal network approximation is utilized. Due to the ideal network
approximation, all partial correlation functions, which involve at least one particle
with two or more sites bonded, are neglected. Therefore for the matrices h?, &

C¢
170 i
and p¢, which appear in the OZ equation (3), we have

C?Ajo <k) C?AjA(k> Tt C?AJL
hgﬁ’(k),ég’(k): Ab; Ab; Ab; I
Cingo (k) g (K) Cingp (K)
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where the lower indices K and L are taking the values A, B,C, D, ... and together
with 0 denote the bonded states of the corresponding particles, of is the density
parameter, which is related to the density of a-bonded particles p§

= Z pza'tﬂ,v <4>

v7Ca

and « denotes the subset of sites from the set I". Here the OZ equation (3) is written
in terms of the partial correlation functions, which remain finite in the complete asso-
ciation limit and are related to the original Wertheim’s partial correlation functions
AW (1) and ™% (1) b
talp iajp y
b b W)ab b b b W)ab b
P, (e = ot W5 (1), el (e = ot 5" ()]

ab

Partial correlation functions cf;(r

the regular and singular terms

(o = Gt n, .
hij (r) = Hij (r) + Bij o(r — Rij ),

(r) and h{?(r) can be represented as a sum of

where B?f»’ is the matrix with the elements

BPP. S yiojo

iajs pfpf

ce c Ksyfcj o
B’iajﬁ = 07 szajﬁ - pfp% 05215&‘4 <1 - 550) ip9jr_ 8

and ylo ., 1s the contact value of the cavity correlation function yZO ., (1) defined by

it (r) = hili, (1) + 1 =yl (r) exp { ~B2L(r)}.

The density parameters o follow from the equation (4), where

o=t T €. (6)

|:57_] 1504356140 O +5z]+15aA5ﬁBo- U }7

1A JB !B JA

KCa
and
( 10— 1) ppp}z) 1 .
G, = By, 7FL
UZB
o 2
_ A (BLL) int
14 oP 14140
1p
r (R2) Al
_ 2, pp : .
ig e BZB(Z-H)A’ i Fm;
iA
op \ 2
. 4 (31?1) P}f/)chp
1k oP 1gla -
1p_ g

214



The fluid of flexible hard-sphere Yukawa star molecules

Equation (6) is written under the assumption of the ideal network approximation
¢ =0 for a#K (a#0). (7)

Combining (4) and (6) we have

o =oj (1+c ). (8)

o

KCa

This relation can be used to simplify the density matrix p¢. From (8) we get the
following equations

a a

clo? = o o

ir- 10 iKUK
2
a a a a a
o; (a- ) = 0, o, 0;
i 20 IN—K—L K 'L’

which for the KL elements of the matrix p¢ give

[pi] 5, = pi (1= 0kL) - (9)

The set of the equations (3)—(6) supplemented by the additional relation between

the correlation functions H{!(r) and C¢(r) (closure conditions) form a closed set

of equations, which can be solved at any degree of association. We are interested in

the complete association limit, which can be achieved at Ky — oo. In this limit we
have

lim p! = darpt.
Ks—mopza (o4 pz

The limiting values of the coefficients Bgfjﬁ follow from the relation (8) written in
the form
o _ =0y —dcf ol . (10)

Substituting into (10) expression for ¢{ and taking the limit of Ky — oo we have

pp_ 9aA08B0i;11 8ap0pA0i i1 "
ia 3 o
Js 47rp§ (R%q) 477p§ (Rli),lz‘)Jrl)
ce c 5i150‘A55K
Biajﬁ = 07 Bp (12)

iajp dmpin, (RZ»C)Q'

Finally to close the set of equations (3) we are utilizing the so-called polymer mean
spherical approximation (PMSA)

H®. (r) = —8a0050, r < R,
C;ZJB ( ) _ 50 650 (I)(lr)ab lejb (13)
iaj[s(T) - _6 a0Y80* ;4 (T)v r> ij

The set of OZ equations (3), together with the PMSA closure conditions (13),
relation (5) and expressions for the parameters B{?; , (11) and (12), represent our
polymer mean-spherical ideal network theory for the star polymers with site-site
potential q)%b(r) (1). We note in passing that the extension of the present theory
in the case of the multicomponent star fluid is straightforward and reduces to the
introduction of the additional indices denoting the molecular species. Since this will
make the notation more cumbersome, we restrict the theoretical part of our study

to the one-component case.
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3. Thermodynamics of the polymer mean spherical ideal net-
work approximation

The overall configurational internal energy of the system per unit volume U is
U =5 S5 kel [ ) [-po)] dr, (14
ab ij

where gf‘jb(r) is the monomer-monomer radial distribution function, which is related
to the partial correlation functions h?fjﬂ(r) as follows

gz] _1+Zh2_]3

Expression (14) can be represented in terms of the total and direct partial cor-
relation functions h?i’j (r) and cfb s (T)

—BU = —ZZ [pie(0)p8] o + 5 ZTr{pz [ (0) — ¢ (0)]}

ab ij
—2r Y > (RE) T [Bpbgle (R ] (15)
ab ij

where [...]Joo denotes the 00 element of the matrix inside the brackets, i.e. [M]g =
MOO.

We assume, that excess Helmholtz free energy I = —SAA/V = —B(A—ATD) /v
is of the following form

AR lo-gola),

1 1 N A
EIeTE / {Tr[ep] + Indet [1 — &p]} dk
Lot [ (RO Wp] et [ € wp]) ak ()

where p, ¢(k) and ¢t (k) are the matrices with the elements §;;0,,p¢, €2(k) and

ij
cgef “®(k), A is the total Helmholtz free energy of the system and A®*) is Helmholtz

free energy of the reference system, which is chosen to be a system with <I>(lr)ab( ) =0.
Hereafter the subscript “(ref)” denotes the reference system quantities.
Expression (16) for I can be verified using the thermodynamic relation

—BU = 6_6 (17)

The corresponding expressions for the chemical potential and pressure follow from
the standard relations

ol
_Bp% = p® 18
B 1 pzapg (18)
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and

B(P—PED) =T+8Y pApg. (19)
Using expression (16) for I we have
~Bpi A = sz {oil [eio0) = e 0)| i} - U, (20)

where Ap¢ = p¢ — u"* and

—BU; = prp?pf / g (r) [-B®5(r)] dr.

Let us consider the virial integral for the long-range part of the total potential,
which is defined by

WY SHOrTE )

ab ij
= J+2r) > (RE) Tx [BEplgtt (R pl]
ab ij
Ogl(Rh)
Rab T Bab b 7-72 a 21
+ W%; I pj ar pz ? ( )
where 1
ST I [ Vel ar )
ab  ij r> g

Following the scheme developed by Haye and Stell [16] we have

J:J1+J2—J3, (23)
where
Ji = —ZZTr / rVe(r)pthte (r) p¢ dr
ab 1j
= YT A (0 - )
1 1
— am/{Tr [€p] + Indet [1 — €p]} dk, (24)
1 a aAa
ho= 52X [ ltrveontly dr= =5 35 e Ol . 29
ab ab ij
1 al a a
Jo= Y Ym / VPt
ab  ij r<R
= ST (R T g (R (R ). (26)
ab ij
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Using (15), (24)-(26) and equality J@*0) = 0 the virial integral J can be written in
the following form

J = J—Jth = [€p] + Indet [1 — €p]} dk

—_

2 (2m)3
a a a a\ a (ref)ad a (ref)ba a
- _WZ Z R b |:gl] (R b)p;)ggz (R;)Z> gl] (R b) _] ]z (Rb ) z]

e ah e

ab ij

/{Tr (ref k)p] + Indet [1 — e ( (k)p]} dk + BU

agba (Rba) 8g(ref )ba (Rba)

7

or or

Comparing expressions (27) and (16) one finds

(- S e 0 -] ), -

ab ij

Fon SO () T [ R sl (R ot — sl (R ol ()

ab ij
agb“(Rb“) ag(ref)ba(Rba)
_ =z ab Bab al 9
W% ; R { p] 87, ar pz ( 8)

Combining this result and relation (19) one obtains finally
6 (P . P(ref)) —

a a a ay 0 ref)ab / pa (ref)ba aN _a
= om0 (R T [ R Pl (R0~ Rl ()

ab 1j
p?} : (29)

Yy {m
ab ij

In the case of the models for which an analytical solution of the PMSA is avail-
able, expressions (28) and (29) for the Helmholtz free energy and pressure are much
easier to use than the corresponding expressions (16) and (19).

agba (Rba) ag(ref )ba (Rba)

]t

or or

4. General solution of the multi-Yukawa PMSA for the fluid of
star molecules

Let us consider an analytically solvable case with the long-range part of the
potential represented by the sum of the Yukawa terms

Ir)ab 1 n)ab —4 r
B (r) = = D K e (30)

n
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Recently, general solution of the PMSA for the one-component multi-Yukawa
chain fluid was derived [17]. Here we propose an extension of this previously obtained
solution for the fluid of the multy-Yukawa star molecules. The general scheme of the
present solution is similar to that obtained earlier [17,18]. Therefore, we shall omit
any details and present here only the final expressions, appropriately modified to be
suitable for the system at hand.

The proposed solution is based upon the version of the Baxter-Wertheim fac-
torization technique [19,20] developed by Blum and co-workers [21,22]. We start
presenting the set of the OZ equations (3) in a form suitable for factorization

[1+hwp| [p7 —eth)] =p", (31)

where h(k) and &(k) are the matrices with the elements h“b(k) and & (k). Introduc-
ing the so-called Baxter factorization Q-function Qf; 5(r) it is possible to separate the
initial set of the OZ equations (31) into two sets of equations in which the functions

h?(r) and c{?(r) are decoupled
{ pt—ek) = ( )PQT( k),

1hBp — QO (-] (32)

l_|

where Q(k) is the matrix with the elements Q‘jjb(k) The corresponding set of equa-
tions in the real r-space takes the following form

Sy() = g =Xt / ar' Qe (e [QU( — )] (33)

) = Q)+ 3 / ar' T8 (" — ) QR (), (34)

where

ab 10 ab ab > 1.01,ab ()
S7; (r) :27T/r dr'r (T), J3 (r) :27T/ dr'r’h{; (r'") (35)

T

and the factor function Qf(r) is connected to its Fourier transform Q‘jjb(k) via the
following relation

() = %/ dk {[ e ‘gf(k)}e—ikr. (36)

In equations (33) and (34), v, is the matrix with the elements [a,],5 = 1 — dap +
000050 and dimensionality 3 x 3 for a = p and (n, + 1) X (n, + 1) for a = c.

Ayab . .
) (k), obtained from (32), and using an-

ab
i

Substituting into (36) expression for

alytical properties of the factor function
(13) we have

(k) together with the closure relation

D) = [a@(r) + t&] O(RY — ) + ET ZD(" Jbemmmr >z =

v

(B) - B7).

DO | =

(37)
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where f)l(-;l)ab and E, are the row vectors

i0jo ? i0jA " toiB ?

and f)l(-?)ab satisfies the following set of algebraic equations

27 = n)ab n)ad T
LK = D e QU (iz)] (38)

Zn

with K (mab (K(n)ab 0,0, ) In (37) the function qf}(r) is defined in the range
Aot <7 < R by

qgjb(T) = %EQTAI; (7“ — R?jb) (r — )\ba) +ET T — Rab +Z C (m)ab ( AT — e*Z"R7Jb> )

(39)
Here
~b 27T n)b
A= g log e SN g 41
i = K b+5426j+; i T T ( )
n)ab a TS (n)db ST 1R (n)ab
™" = 3> 4z EJDY” — EIDY (42)
d l
and
s'y?;’(s) = 27rp]G“b( )ab, (43)
~(n)b n)db —z, R4b
e = Zp;ic o ETD e (44)
Mo - Zpgc () BB e R, (45)
G‘g’(s) = / dr'r'gf]b( )e_sr/, (46)
=~ a ad 3 1 1 a ~
cs) = ZZE ~id(s)] efil's (RY)” 1 (Ris) + " <1 + 5sR,) E,, (47)
~ (Ma a 1 R$ ~
Mgy = ZZE [vUk(s)]" e (RY)” sor(—sRY) — *SS LE,,  (48)
o= Z leldEdadtlj (49)
dl
Also
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We note in passing, that hereafter all the row vectors of the type (Ag, Aa, Ap,...)
are denoted as A.

It can be seen that all the coefficients of the factor function qf‘;’(r) are determined
by the set of unknowns D(" and v¢?(z,), which follow from the solution of the set
of equations (38) and the equations obtained by differentiating relation (34) with
respect to r at )\l]’»‘; <r< R?}’ and taking the Laplace transformation of both sides

of the resulting equation. We have

ZZV 20) Qi (i20) = £ (20)/ 20 (50)

where
ab BT | xb | N N
£ (s) = By |Aj(1+gsR ) +Bjs| e
_Z Zn C(n)ab —(s+2zn)R? ij +tab R]b’ (51)
— 5+ 2y Y
A db - 010ay A
Qf;’(ls) = Jb adl—ﬂf;’(s), (52)
Pi
s 3~=7 % 2 ~m=b 1 — e Ris
MO (s) = (RY)ETALH(Rls) + (RY) E§p3].<p1(R;ls)+1;;l;’T
dn fRds —R%s
Z C(n . ! e sy
Zn + S S
—2Zn )\lﬁ’l
+EIDE . (53)
Zn + S

The set of equations (38) and (50) have to be solved numerically. This completes
our solution of the PMSA for the fluid of star-like Yukawa molecules.

5. Numerical results

To illustrate the solution of the PMSA obtained in the previous sections, here
we present the numerical results for the structure of three different versions of the
start fluid model. We consider a one-component star fluid with the number of arms
on each start molecule n, = 4,6 of the length m = 10 (model M1), two-component
solvent-solute mixture with hard-sphere solvent and solute represented by the star
molecules with the number of arms n, = 0,40, 100, 150 each of the length m = 3
(model M2) and infinitely diluted large hard-sphere colloidal particles in the solvent
of star molecules with n, = 0,2,4,6,8 and m = 10 (model M3). Hard-sphere sizes
of the molecular segments were chosen to be the same in the case of the model M1
and M3, while in the case of the model M2 the size of the central bead of the star
molecules was chosen to be 10 times larger than that of the arm beads.

In figure 1 we show our results for the radial distribution function (RDF) be-
tween the central beads of the two star molecules g..(r), represented by the model
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gee(r)

Figure 1. Radial distribution function g..(r) between the central beads of the
two star molecules represented by the model M1 with m = 10 beads per arm
and number of arms n, = 4(1) and n, = 6(2) at n = 0.35, T* = co (solid lines),
T* = 0.4 (dashed lines).

M1. In addition to the hard-sphere repulsion between all the monomer units of
the molecules, we assume here attractive a one-Yukawa interaction with zR.. = 2,
K. = 8 between the central beads. One can see that g..(r) < 1 for r < 2.5, which
reflects the screening effects due to the beads of the molecular arms. With the in-
crease of the number of arms this effect becomes more pronounced. Theory predicts
negative values of the RDF g..(r) at the contact. This is an obvious drawback of the
theory. With the decrease of the temperature, attractive Yukawa interaction reduces
screening effects and the contact values of g..(r) become positive. This feature points
out the possibility of the improvement of the theory using generalized MSA-type of
the closure.

In figures 2 and 3 we show the RDF between the central beads of the model M2.
In all cases studied it is assumed that total packing fraction nr and the packing
fraction of the solvent molecules 7,, are constant, i.e. ny = 0.35 and 7,, = n7/2. For
the version of the model without arms (m = 0), RDF g¢..(r) has high and narrow
first maximum at the contact. This peak appears due to the presence of the hard-
sphere solvent of small size and reflects the so-called “depletion” effects. With the
increase of the number of arms, depletion attraction reduces and due to the screening
effects the contact values of the center-center RDF g¢..(r) become less than one. For
m = 100 and m = 150, g..(c}) takes the negative values. It is interesting to note
that for large number of arms (m = 100, 150) behaviour of the RDF g¢..(r) is very
similar to the behaviour of the RDF of the spherical particles with soft repulsion of
the effective size Rog = 12.5 (figure 3).
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gece(r)

20 22 24

Figure 2. Radial distribution function g..(r) between the central beads of the
two star molecules represented by the model M2 with m = 3 beads per arm and
number of arms n, = 0,40, 100,150 from the top to the bottom at r = 10. Here
nt = 0.35

gee(r)

Figure 3. Radial distribution function g..(r) between the central beads of the
two star molecules represented by the model M2 with m = 3 beads per arm and
number of arms n, = 100(solid line) and n, = 150(dashed line) at np = 0.35.
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1 T T T T

w(n)/KT

10 11 12 13 14 15

Figure 4. Potential of mean force Sw(r) between two infinitely diluted colloidal
particles in a star solvent represented by the model M3 with m = 10 beads per
arm and number of arms n, = 0(1), n, = 4(2), ne = 12(3) at n = 0.35

Finally, in figure 4 we present the mean force potential (MFP) Sw(r) between two
infinitely diluted colloidal particles of the model M3. For the version of the model
without arms (n, = 0), w(r) has deep and narrow attractive well in the vicinity of
the contact and potential barrier at a distance r ~ 10.75. This shape of the MFP
is defined by the presence of depletion effects, which are typical for the colloidal
systems. With the increase of the number of arms, the depth of the potential well
remains unchanged, while the height of the MFP barrier decreases and its position
shifts to the larger distances. This behaviour reflects the changes in the effective
sizes of the star molecules, which causes depletion effects.

6. Conclusions

In this study we propose an extension of the product-reactant Ornstein-Zernike
approach for the fluid of star molecules and formulate the corresponding version
of the mean spherical approximation, which we call polymer mean spherical ap-
proximation (PMSA). Using Baxter-Wertheim factorization technique we obtain an
analytical solution of the PMSA for the fluid of star molecules with Yukawa hard-
sphere interaction between the molecular segments. Our solution is illustrated by
its application to several different versions of the star fluid model. In general, the
theory gives qualitatively correct description of the structure of the models at hand.
More systematic investigation and comparison with computer simulation results will
be carried out in the future studies.
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MonimepHe cepeaHbochepUu4He HaAGNMKEHHA Ang
PiAVHN rHY4YKNX TBEpAOoCcPepHUX I0KaBIBCbKUX
3ipKOBUX MOneKkyn

t0.B.KantoxHuin, M.®d.lonosko

IHCTUTYT @i3ukn koHaeHcoBaHnx cuctem HAH YkpaiHu,
79011 JibBiB, ByN. CBEHLjUBKOrO, 1

OtpumanHo 12 notoro 2002 p.

3anponoHoBaHo y3aranbHeHHs nigxony OpHuwTenHa-LlepHike npoaykT-
peareHT gas pigvHN rHy4YKuX 3ipkOBMX MONEKYN Ta CHOPMYNbOBAHO Big-
NMoBiOHWIA BapiaHT cepeaHbocdepunyHoro HabnmxkeHHs (CCH), Tak 3Ba-
He nonimepHe CCH (MNMCCH). Ha ocHoBi meTony ¢pakTopusauii bakctepa-
BepTtxama oTpumaHo aHanitmyHuii po3’a3ok MNCCH gna pianHmn 3ip-
KOBUX MOJIEKYN 3 TBEPAOCHEPHOIO IOKABIBCHKOIO B3aEMOLIEID MiX Cer-
MEHTaMM MONEeKyn Ta NPeAcTaB/EHi 9BHI aHaniTUYHI BUpasn ans Bifb-
HOI eHeprii, XiMiYHOro NOTEHLUiany Ta PiBHAHHSA cTaHy. [poBeaeHo oochni-
[)KEHHS CTPYKTYPHUX BNAaCTUBOCTEN KiNlbKOX Pi3HMX BapiaHTiB Moaeni pi-
OVIHN 3IPKOBUX MOJIEKYI.

Kniou4oBi cnoBa: 3ipkoBi nosimepu, noaiMepHe cepeaHbochepunyHe
HabmxeHHs1, acouialisi, TBephochepHa oKaBiBCbKa PiavHA, PIBHSIHHS
OpHLuteriHa-LlepHike

PACS: 05.20.Jj, 05.70.Ce, 64.10.+h
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