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Electron and hole spectra in 5-HgS cylindrical quantum wire superlattice in
B-CdS matrix are calculated within the method of augmented plane waves.
The energy term determined by the movement of quasiparticles in direction
perpendicular to the axial axis of the wire is presented by the alternating
zones with a positive and a negative effective mass. The degeneration on
the magnetic quantum number outside T point of Brillouin zone is taken off
when the potential of the superlattice quantum wires is taken into account.
The ground zones energy dependence of plane quasiparticle movement
on the radii of the quantum wires as well as the distance between the wires
are investigated.
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1. Introduction

The new unusual phenomena of fundamental character and exclusive possibilities
of nanoheterosystem practical utilization are of great interest to the researchers. In
[1], the prospects for a further development of this branch were recently analyzed.
Among the others, the technologically produced superlattice quantum wells (QW)
were pointed out. Changing their spatial characteristics one can control the funda-
mental properties of these systems (location of energy zones, quasiparticle effective
masses, etc.).

One of the objects of the present research is to provide a heterosystem consisting
of quantum wires (QW) of one material embedded into the other material and
forming the superlattice in the direction perpendicular to the axial axis of QW.
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When the QW length is much bigger than the length of quasiparticle free movement
then the QW can be assumed to be infinitely long. The QW radius and the distance
between the nearest neighbours are of nanosize. It is clear that the spatial changing
of QW sizes and locations should bring about the change of electron, hole and exciton
zones in such a superlattice.

The purpose of this work is to perform theoretical calculations of electron and
hole spectra and to define the wave functions of these quasiparticles in the cylindrical
superlattice of quantum wires (CSQW).

2. The theory of electron (hole) spectra in CSQW

The system consisting of cylindrical QW (semiconductor material 1) periodically
located in the medium (semiconductor material 2) is under study. For the sake of
simplicity we observe an electron assuming that in a cylindrical coordinate system
with OZ axis along the axial axis of one QW, the potential energy and the effective
mass are different in different media

_ _UOJ iIl QW7
ur) = { 0; outside of QW, (1)
_ Hi; in QW7
p(r) = { o; outside of QW. (2)

In order to obtain spectrum and electron wave functions one has to solve Schro-
dinger equation with Hamiltonian which in a cylindrical coordinate system has the
following form

H hQ(ﬁ L g, 82>+U() (3)
2\ up.d) " ulp, §) 922
It is impossible to part z-th variable exactly in a Schrodinger equation due to the
dependence of pon pin (2). Since it is suitable to introduce the “average” (constant)
electron effective mass (e.q. uﬂ = b ) and represent Hamiltonian (3) as

H=H,+ AH, (4)
where 2 . -
Hy=—-—(V Vs + —) +U(p 5
’ 2 ( “ulp,¢) " ulp, d) 922 (v) )
is a basic part and
NI 1 0?
AH=—|——-—| — 6
2 (uﬁ u(p)) 0z? ©)
is the perturbation.
Now in the equation
Hy*(p, ¢, 2) = E"°(p, 6, 2) (7)
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Figure 1. CSQW geometry

z-th component can be parted. Really, representing 1°(p, ¢, z) in the form
1
VL

where L is the length of the basic region along the QW axis, one can get

W, ¢, 2) = —=1°(p)e™”, (8)

0 0 0 0 h2kﬁ
Il

where EY value and °(5) wave function are defined by the Schrodinger equation

{ h? <1 0 1 0 N 1 02
_ — _p _ _—
2 \pdp" pp,®)dp  p*0¢?
The latter can be solved using the augmented plane waves (APW) method which

is well known in the three dimensional systems [2]. Modification of APW method
for the case of the system under research is performed in the following way. Let us
set the beginning of the plane system coordinate into the center of the circle with

po radius (figure 1), so that it coincides with the node of the direct lattice. Within
one Vigner-Zeit cell the so called “m-t potential” has the simple form

- _ ) —Uo p<po,
vip={ 5 hS )

) T U<p>} 0@ =BG, (10)

According to the APW method, the Schrédinger equation for the region of the
plane space inside the quantum wells where the wave function is presented as a
superposition of cylindrical harmonics is solved exactly.

As the potential is equal to zero in the space outside the wells, the wave function
should have the form of the plane wave which can be expanded into a series by the
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cylindrical harmonics. The expanding coefficients can be obtained from the condition
of function continuity on the border of the circle of py radius. In such a way the trial
wave function is found in the form of augmented plane wave (APW).

W Z m%Jm(aP)elm(qs_%fg); P Po;
D = B p—dp ) (12)
\/Lﬂ_oe(lu 9p \/_Zl Im (|/u—g|p) FLE p > po,

where )y — volume of unit cell, .J,, — Bessel cylindrical function, m — magnetic
quantum number, k | — quasiparticle wave vector, § — vector of the reverse lattice,
|IZ¢ — gl and ¢g; . — polar coordinates of k. — § vector, a = ™! 21 (Uy —

APW (12) satisfies the Bloch periodical condition but does not satisfy the Schré-
dinger equation with the potential of all the superlattice because the relationship
between the energy and wave vector has not been accounted for by now. In order to
find this relationship according to the Bloch theorem one can find the quasiparticle
wave function as a linear combination of the augmented plane waves

) Zc,u o _P), (13)

where the summing is performed over the vectors of the reverse lattice and i g
coefficients are to be defined.

It is better to use the variational method instead of the Schrodinger equation
because every APW has the rupture of the derivative on the border between the
quantum wells and interwell regions. Let us define the energy functionals on the
wave functions (13)

h2 — " ]_ . . )
A= / {_v oV ==Vl +U(p) — Eﬁ)@bglwgl}dp_ (14)

2 TR u(p, §)
Qo

Minimization of A (6A = 0) functional over ¢;__ leads to the system of equations

h2
{2 - B e g+ Y Tpce g =0 (15
g‘/
where ['zz is the integral containing ®; S functions and Hamiltonian with

periodical potential of the system. Integratmg in 'z over the unit cell volume €
we obtain

Qo 2u2 |§—7'|

Lag = % {— g (B — 9)(Fu — ) — B | 2o
5 o0 . - 5 - 5 (16)
s S (L = ) n(F - 7l [indutan)] |}

where ¢y is the angle between (k. — ) and (k. — ') vectors. The first term in the
right 81de of (16) arises due to the regions outside the quantum wells and the rest
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of the terms arise due to the impact of the gradient operator into the augmented
plane waves. 'y values are the Fourier-components of the effective potential of the
superlattice quantum wells.

The condition of the non-trivial solution of equation (15) leads to the secular
equation

det =0, (17)

{;Z (kL — §)* EL:| Ogg

which determines the quasiparticle energy spectrum EO(E 1) due to its movement in
the plane L to the axial axis of QW. Generally, the equation (15) hasn’t got just
one but several (7) solutions when k. is fixed. Then, the corresponding energies are
further denoted as Egzl’zl_ﬁ(l;:i).

Now according to (9) the electron energy spectrum in the superlattice QW in
zeroth approximation (on /) is

. h2kﬁ
Ey(kL, k) = Ey(kL) + EmE (18)
From the conditions of normalization
Zk §CkL -7 (Pgg + Pgg) = 1, (19)

_‘_‘,

where the values L,
27 po J1(|19 — g’ po)

Q  |g-7

7TP0 7 — Jrzn(aﬂo) — Jm—1(po) Jm1(apo)
kL — m(lkL —
E (kL = glpo) Im([kL — G’ po) JZ (apo)

(20)

Pgg = dgqr —

m=—0oC
(21)
and the system of equations (15) cg i_7 coefficients can be found and since the
.
electron wave functions are defined as

— 1 ik z —
’ng(ﬂa Z) = ﬁe i ch, Ei_§®n7 Ei—ﬁ(p) (22)

-

in the superlattice QW in zeroth approximation (on effective mass).
Taking into account perturbation (6) and wave functions (13), we can obtain the
longitudinal effective mass in the first approximation

0
m_ _ M 53
lln ™ 1 4 [nﬂﬂ’ (23)
where ) X )
In - ch,l_c‘J_fg‘C”’EJ_*g' (m B M_ﬁ) n’]_g‘l,g(p)q)n ki—g (_‘)dp
- ’ (24)
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Figure 2. (a) — Dispersion law of the CSQW quasiparticle ground zone at b =
16acqs for the different values of well radius pg : 1 —4angs, 2—6angs, 3—8amgs, 4—
10amgs, 5 —12amgs. (b) — Dispersion laws of the CSQW quasiparticle ground zone
at po = 10apgs for the different distances between the wells b : 1 — 12acqs, 2 —
16(1CdSa 3 — 20aCds, 4 — 30aCds, 5— 40(1Cds

-0,8

Let us note that in zeroth approximation the longitudinal effective mass does not
depend on the n state but in the first approximation it essentially depends on it.
If it is necessary, the energy spectrum and wave functions can be further obtained
according to the perturbation theory.

3. Electron and hole spectra in 3-HgS superlattice quantum
wires in 3-CdS matrix

The theory developed is applied for calculating the electron and hole spectra
in the rectangular superlattice formed by the 5-HgS quantum wires embedded into
[-CdS crystal.

Such a system is chosen because both crystals have got a very close size of
unit cells and the media parting border between them is very strict (without the
transition region) as in the case of complicated quantum wells formed experimentally
[3].

The main attention is paid to the analysis of the electron and hole energy spectra
(E° (k) dependencies corresponding to the movement of these quasiparticles in
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the plane L to the axial axis of QW because the square dependence of the energies

h Ry
Ey (kH) = 9 (1)e,th (25)
[ln
on the longitudinal term of qusimomentum is trivial.
The calculation of E?(k,) was performed according to (17) for the system with

parameters given in the table. In figure 2a the results of calculating the electron

Table 1. Parameters of crystals

medium ji.(p0) pa(po) Us (eV) U (eV) a (A) E, (V)
CdS 02 07 1.2 0.8 5318 2.5
HgS 0.036 0.044 0 0 5.851 0.5

and hole ground zones energy dependencies on the QW radius at a fixed barrier
thickness are presented. It is clear that the width of the zones is practically not
sensitive to the changing of the radius but their location is very strongly (hundreds
of meV) shifted into the region of lower absolute energy values at the increasing of
QW radius.

In figure 2b the results of E%(k ), E% (k) dependence on the barrier thickness
at the fixed QW radius is presented. The figure shows that when the barrier size
decreases, both zones essentially (hundreds meV) shift into the region of lower ab-
solute energy values. Herein their width increases a dozen times which is equal to
the decreasing of the corresponding effective mass (u,) component.

The developed theory of the electron and hole spectra in superlattice quantum
wires shows that having changed the spatial size of superlattice quantum wires we
can control the fundamental characteristics of quasiparticles in a very wide scale.
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CnekTpu eNneKTPOoOHIB i AiPOK y HaArpaTui LMNiHAPUYHNX
KBaAHTOBUX APOTiB

M.B.Tkau ', I.B.MpoHuwmH ', 0.M.Maxareub ', I.I3erpsa ?,
B.M.lonosay ?

YepHiBeLubKnii AepXxaBHNM YHIBEPCUTET,
Byn. KoutobuHebkoro, 2, 274012 YepHiBuj

Di3NKO-TEXHIYHNI IHCTUTYT iM. A.D.Nodde,
194021 Ct.lNeTepbypr, Pocis

OTpumaHo 26 4yepsHsa 1998 p.

MeToaoM npueaHaHux MaoCKUX XBUb PO3PaxoBaHi CNEKTPW eNeKTPOHIB
i AiPOK y HAArpaTLi UMNIHAPUYHNX KBAHTOBUX APOTIB 5-HgS y maTpuui 5-
CdS. Cknaposa eHpeprii, Wo obyMoBfeHa pyxoM KBa3i4aCTUHOK Y Ha-
NPSMKY NepnenauKynapHoOMY akciasbHil Bici ApoTy sBnsie coboto vepry-
BaHHS 30H 3 404aTHBOIO Ta Big’ EMHOK e(PEeKTUBHOI Macoto. BpaxyBaH-
HS NOTeHLUjany HaarpaTky KBAHTOBMX APOTIB NPUBOANTL A0 3HATTS BUPO-
IDKEHHS 32 MArHiTHAM KBAHTOBUM YUCIOM MPU Biaxoai Bia, TOUYkn I 30HM
BpintoeHa. JocnigxeHi 3anexHOCTi eHeprin OCHOBHUX 30H MJIOCKOro py-
Xy KBa3i4aCTMHOK Bif, padiyca KBaHTOBMX APOTIB i BiACTaHi MiX ApoTamu.

KniouoBi cnoBa: HanisrnpoBiaHWK, e1eKTPOH, AipKa, Haarparka,
KBaHTOBWI APIT

PACS: 79.60.jv
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