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Some conformational and dynamical aspects of branched polymer are re-
viewed. We discuss the theoretical Gaussian Self-Consistent (GSC) ap-
proach proposed in our group and used to study the behaviour of regular
star polymers and dendrimers in different solvent conditions. Within a sin-
gle framework, we consider the unperturbed Θ state, as well as the good-
solvent state in comparison with other theoretical or simulation approach-
es, and with some experimental results. We also briefly report the further
results obtained for amphiphilic copolymer stars in selective solvents so as
to highlight the potentialities of the method, as well as its strengths and its
shortcomings.
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1. Introduction

1.1. Generalities

In recent years, branched polymers have been synthesized with an unprecedent-
ed control over molecular architecture [1–4]. Relevant examples are regular star-
branched polymers, that have equal arms connected to a single multifunctional
core, and dendrimers, that possess an exponentially increasing number of branch
points with increasing molar mass. These synthetic achievements also revived the
theoretical interest in such molecules, both because of their aesthetic appeal, and
because of their practical importance, as witnessed by a number of reviews [1,2,5,6].
Moreover, these systems challenge at the same time fruitful theoretical approaches
and long-held general paradigms, in particular about the unperturbed state. On the
other hand, control over molecular architecture is astonishingly good, yet it is still
not perfect. For instance, heavily branched stars often show an incomplete linking
reaction, and analogous difficulties are met in growing sterically encumbered den-
drimers [7]. This problem might be alleviated through different synthetic strategies,
but it cannot be easily disposed of. For instance, it eventually limits the dendrimer
growth to a finite, and usually relatively small, generation [8].

Many approaches were employed to study branched polymers, ranging from ana-
lytical renormalization group or scaling approaches to computer simulations. In our
group, we proposed a molecular model to investigate both equilibrium and dynam-
ics of linear and branched polymers in a unified approach based on a coarse-grained
picture of the molecule. A basic assumption is the Gaussian distribution of the
distances among the beads, where the interactions and the friction with solvent are
concentrated [9]. The equilibrium conformation is obtained from self-consistent min-
imization of the intramolecular free energy, which provides the name of Gaussian
Self-Consistent (GSC) approach. We correctly account for all the relevant degrees of
freedom within the configurational entropy, and include two- and three-body inter-
actions as the most representative many-body interactions. In dynamics, we adopt
the stochastic Langevin equation taking into account the equilibrium results. We
should mention that Timoshenko et al. have independently developed an equivalent
version of the GSC approach to study the behaviour of homo- and copolymers in
poor solvents [10].

In the next sections, we first describe regular star-branched polymers (or stars for
brevity) and dendrimers, introducing some notation and a few results valid for the
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random-walk (RW) model and for the good-solvent state of linear polymers. After
summarizing the mathematical background, we discuss the unperturbed state, with
the Θ-temperature depression of stars and dendrimers compared to linear chains,
and their expansion compared to a random walk due to residual interactions. After-
wards, we consider the good-solvent state both through the molecular size and the
intramolecular dynamics. Later on, we address the behaviour of amphiphilic star
copolymers in selective solvents. The final section summarizes the main issues and
provides an outlook for future work.

1.2. Stars and dendrimers

Regular stars are formed by f equal arms emanating from a central core, each
arm comprising N/f beads connected by bond vectors of unit length for a total of
N bonds and nbeads = N + 1 beads. Beads are sequentially numbered on each arm
as shown in figure 1a, where f = 5 and N/f = 4. Dendrimers are formed by f
trees, or arms, of order m (the dendra) connected to a central core and comprising
P bonds between neighbouring branch points (see figure 1b, where f = 3, m = 2
and P = 1). The topology of this class of molecules can be viewed as consisting of
a sequence of concentric layers. The outmost layer defines the dendrimer generation
g, numbered from 0 (no branch point beyond the central core) onward. The total
number of beads is [11]

nbeads = 1 + f ·P ·m
g+1 − 1

m− 1
, (1.1)

which increases exponentially with the dendrimer generation g.

(a) (b)

Figure 1. Schemes of regular stars (a) and dendrimers (b).

The molecular size is best discussed through the mean-square radius of gyration
〈R2

S〉. In linear and star polymers, its molar mass dependence is given by the power

39



F.Ganazzoli

law [12–17]
〈

R2
S

〉

∝ N2ν , (1.2)

where ν is the Flory exponent. For either topology, ν = 0.5 for the RW model and
in the Θ state, and ν ∼= 0.6 in a good solvent (apart from f -dependent prefactors).
Because of the common value of the exponent, it is also customary to introduce
the topological ratio gQ = Qstar/Qlin for molecules with the same molar mass in
the same solvent conditions [5]. Q may be 〈R2

S〉, the hydrodynamic radius RH, the
intrinsic viscosity [η], etc. In the limit of large molar mass, the RW model produces
the simple result [18]

gRWS =
〈R2

S〉
RW
star

〈R2
S〉

RW
lin

=
3f − 2

f 2
, (1.3)

showing the obvious result that stars are more compact than linear chains with the
same molar mass.

Conversely, dendrimers belong to a different universality class, as easily seen
through the RW model. In fact, for dendrimers equation (1.2) is ruled out and the
asymptotic result for N → ∞, corresponding to g → ∞, is given by [11,19]

〈

R2
S

〉

= P (g + 1) (1.4)

(in bond-length units). Thus, the radius of gyration is equal to the dendron span,
as it is expected considering that one half of the beads lies on the outmost shell (see
figure 1b). In terms of the total number of bonds, we have

〈

R2
S

〉

∝ lnN. (1.5)

Within the random-walk model, the Flory exponent ν = 0.5 of linear and star
polymers corresponds to a fractal dimensionD = ν−1 = 2. Conversely, in dendrimers
ν is smaller than any non-zero value, since the logarithm increases more slowly
than any power of its argument, hence the fractal dimension diverges. Interestingly,
ideal randomly branched (cascade) molecules do still follow equation (1.2) with a
Flory exponent that can be as low as 0.25 [18, 20], hence with a fractal dimension
D = 4. Therefore, dendrimers form an extreme case of regularly branched systems.
Note that according to equation (1.2) the average density within a molecule is d ∝
N/〈R2

S〉3/2 ∝ N1−3ν . The exponent ν = 1/3 corresponds to a density independent
from molar mass, while for ν > 1/3 the density goes to zero with an increasing
molar mass, and for ν < 1/3 it diverges. The latter situation is met with cascade
molecules, and a fortiori with dendrimers because of equation (1.5). In conclusion,
the RW model can never apply to such molecules [20], and dendrimers cannot exceed
some definite molar mass so as to keep d finite.

The relationship between radius of gyration and molar mass is further compli-
cated in dendrimers by the finite span of the arms which prevents reaching any
asymptotic behaviour. Therefore, we only find apparent N -dependent ν exponents
(see later), and the gS ratio is meaningless for these systems.
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2. Mathematical background

2.1. The intramolecular free energy and the intramolecular conformation

In our statistical approach, the average scalar products among the bond vectors
can be used to describe the chain conformation. We collect them in the symmetrical
matrix M, with elements [9,19,21,22]

Mij = 〈li · lj〉 . (2.1)

Knowledge of this matrix under the specific thermodynamic conditions affords all the
mean-square equilibrium averages. For instance, the mean-square distances among
the beads are given by the general expression [11]

〈

r2ij
〉

=

Dij
∑

u=1

Dij
∑

v=1

U(u, v)
〈

lb(u) · lb(v)
〉

, (2.2)

where the bond index b(u) identifies the u-th step of the shortest path connect-
ing beads i and j, while Dij is the topological distance between the two beads and
U(u, v) = ±1 accounts for the vector directions in the path (see figure 1). This equa-
tion simplifies for linear and star polymers, but no simple, yet general, expression
can be written for dendrimers.

Taking the RW model as the reference state, the excess free energy of the single
molecule in kBT units is [9] A = Ael + Aintra . Ael accounts for the configurational
entropy, which determines the molecular elasticity (whence its name). Assuming a
Gaussian distribution of the bond vectors, it is given by [19,21,22]

Ael =
3

2
[TrM−N − lnDetM] = −3

2
lnDetM (2.3)

due to the equality TrM =
N
∑

i=1

〈

|li|2
〉

= N , which holds for constant (unit) bond

lengths.
If short-range stereochemical interactions are ignored, A intra is only due to topo-

logically long-ranged intramolecular two- and three-body interactions. We express
them as sums over all the distinct pairs and triplets of beads

Aintra = A2 +A3 = β2

∑

i<j

pij + β3

∑

i<j<k

pijk, (2.4)

where β2 and β3 are the irreducible binary and ternary cluster integrals of the
beads, while pij and pijk are the corresponding probability densities of contact.
Under the assumption of a Gaussian distribution of the intramolecular distances we
have: [9,21,22]

pij =

[

3

2π
〈

r2ij
〉

]3/2

, (2.5)
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pijk =

[

3

2π

]3

Ψ
−3/2
ijk , (2.6)

Ψijk =
1

2

[〈

r2ij
〉〈

r2ik
〉

+
〈

r2ij
〉〈

r2jk
〉

+
〈

r2ik
〉〈

r2jk
〉]

− 1

4

[

〈

r2ij
〉2

+
〈

r2ik
〉2

+
〈

r2jk
〉2
]

. (2.7)

We point out that only in special cases does pijk factor out in the product pij · pjk,
for instance in the RW model, and that the positivity requirement for Ψ ijk is related
with the requirement of intramolecular connectivity [9].

Using equations (2.5) and (2.6), we then write

Aintra = b2
∑

i<j

〈

r2ij
〉−3/2

+ b3
∑

i<j<k

Ψ
−3/2
ijk (2.8)

with b2 = β2 · (3/2π)3/2 and b3 = β3 · (3/2π)3. The b2 parameter depends on the
solvent quality and is therefore temperature dependent. Thus, it can approximately
be written as

b2 = τB, (2.9)

where B is the adimensional covolume of a bead and

τ =
T −Θbead

T
. (2.10)

Therefore, Θbead is the temperature that makes β2 = 0. In a good solvent, the
beads are well solvated, b2 is positive and the two-body interactions are repulsive.
Conversely, in a poor solvent b2 is negative and the attractive interactions among
the beads expel the solvent from the coil interior. The unperturbed Θ state, corre-
sponding to vanishing interactions between two molecules, is more complicated, and
does not correspond to the simple case b2=0, i.e. T = Θbead, when the two-body
interactions among the beads vanish [14,20,23–25]. We discuss this case in section 3.

As to the b3 parameter, it is always positive and essentially independent of tem-
perature, so that these interactions are repulsive. In fact, they correct the excessive
contribution of the independent two-body interactions involving three beads, be-
cause there is less room for the third bead to interact with the other two if these are
already in contact. Note that the number of two- and three-body interactions are
of the same order of magnitude, because each two-body interaction brings about a
few three-body interactions involving a topologically neighbouring third bead due
to molecular connectivity.

The chain conformation is obtained by minimizing the intramolecular free energy
expressed through the scalar products 〈li · lj〉 that form our variational parameters.
The problem becomes numerically intractable at large molar mass, since the number
of variables is equal toN(N−1)/2. By exploiting the molecular symmetry, we greatly
reduce this number, but still we cannot study the asymptotic behaviour of stars. In
this case, we choose a different strategy, consisting in optimizating the eigenvalues of
M once we know its eigenvectors matrix V from symmetry considerations [9,24,26].
To this end, we collect the N bond vectors of the star in the column vector l, so
that lT = [l1, l2, . . ., lN ] and M =

〈

l lT
〉

. Diagonalization of M can be carried out as
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discussed in [26]. The eigenvector matrix V transforms l into the orthogonal vector
L:

L = V· l, (2.11)
〈

LLT
〉

= V
〈

l lT
〉

VT = V·M·VT = α2. (2.12)

The elements of the eigenvalue matrix α2 are collected into two groups with differ-
ent degeneracies, arising from the statistical symmetry among the star arms: α 2

2p,
p = 1, 2, . . ., N/f with a unit multiplicity, and α2

2p−1, p = 1, 2, . . . , N/f with an
f − 1 multiplicity, for a total of N/f + (f − 1)N/f = N eigenvalues, as it must
be. Therefore, the elements of α2 are the strain ratios of the configurational nor-
mal modes with respect to the RW conformation where

〈

l lT
〉

=
〈

LLT
〉

= 1, i.e.
the identity matrix. The statistically orthogonal elements of L, the configurational
normal modes, coincide with the dynamic normal modes in the free-draining regime
(see also section 2.2). The mean-square distances and the configurational entropy
are then written as sums over these normal modes [26], so that the intramolecular
free energy depends only on the 2N/f variational strain ratios α2

2p and α2
2p−1.

There is however a problem with this choice of variables, which may be relevant
in some cases. The elements of V are known a priori from symmetry considera-
tions provided the molecule is conformationally homogeneous and the bond-vector
correlation dies off quickly enough with topological separation. These requirements
are not met in two important situations [21]: i) in copolymers, because of the pres-
ence of unlike monomers; ii) in a good solvent, because of long-range bond-vector
correlation. In the former case, we must resort anyway to the full procedure [22],
whereas in the latter case the normal-modes can still be satisfactorily used even
with a large expansion, provided we are in the crossover regime. In fact, with the
approximate form of V, the diagonal terms of the α2 matrix are anyway close to the
true eigenvalues of the star, and the neglected off-diagonal terms do not significantly
affect the radius of gyration [26]. On the other hand, in dendrimers the bond-vector
correlation is very large in all cases because of the molecular topology, and we must
always adopt the complete procedure.

From the free energy minimization, we get the mean-square distances among the
beads. Other quantities describing both the local and the overall conformation may
be derived, in particular the mean-square radius of gyration

〈

R2
S

〉

=
1

n2
beads

∑

i<j

〈

r2ij
〉

(2.13)

and the mean-square distances of the generic i-th bead from the molecular center
of mass

〈

R2
i

〉

= n−1
bead

∑

j

〈

r2ij
〉

−
〈

R2
S

〉

. (2.14)

2.2. The intramolecular dynamics: Zimm’s approach

The dynamics is studied following Zimm’s approach [27] with preaveraged hy-
drodynamic interaction, using a bead-and-spring model, each “bond” being replaced
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by a harmonic spring. The stochastic Langevin equation is written as [11,19,28]

3kBT

l2
H·A·R+ ζṘ = F, (2.15)

where R is the column vector formed by the the vector positions of the beads,
ζ is their friction coefficient and 3kBT/l

2 is the spring constant. F is the vector
containing the Brownian forces acting on the beads: each element of F has a zero
mean and a non-zero second moment obtained through the fluctuation-dissipation
theorem. The force-constant matrix A also depends on the molecular topology and
is obtained by inverting M [29]:

A = G·M−1 ·GT. (2.16)

Here, G is the incidence matrix which depends only on molecular topology [11]. The
hydrodynamic interaction is embodied in matrix H with elements [27,30,31]:

Hij = δij + (1− δij) ζr

〈

l

rij

〉

, (2.17)

where ζr = ζ/6πη0l is the reduced friction coefficient (set equal to 0.25 [32]), η0 is

the solvent viscosity and, in the Gaussian approximation,
〈

r−1
ij

〉

=
(

6
/

π
〈

r2ij
〉)1/2

.
The dynamical problem reduces to solving the eigenvalue equation

[H·A]·Q = Q·Λ, Λ = {λpδpq}. (2.18)

The diagonalization of the non-symmetrical matrix H ·A can be performed numer-
ically. The eigenvalue matrix Λ contains a zero eigenvalue related to the diffusion
of the center of mass, and the relaxation rates of the normal modes of motion λp,
p = 1, 2, . . ., N , which produce the viscoelastic relaxation times τp = (2σλp)

−1, σ =
3kBT/ζl

2 being the time unit. The eigenvectors, collected in matrix Q, connect the
column vector ξ of the normal coordinates ξp, p = 0, 1, 2, . . . , N , to the column
vector R of the vector positions of the beads ri:

R = Q·ξ. (2.19)

According to the Langevin equation, the autocorrelation function of the normal
coordinates decays exponentially with time constants equal to 2τp.

While the above procedure is fully general, using the bond vectors as the dynamic
variables allows us a more efficient treatment of the molecular symmetry of stars.
Since these variables are given by li = ri − ri−1, after collecting the bond vectors in
the row vector l, the alternative equation reads [28,33]

3kBT

l2
B·M−1 ·l+ ζ l̇ = F′, (2.20)

where B = GT ·H·G accounts for the (preaveraged) hydrodynamic interaction.
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The spectrum of the relaxation times yields the dynamic viscosity, measured
under an oscillating shear deformation with frequency ω [27,30]

[η(ω)] = lim
c→0

η(ω)− η0
cη0

, (2.21)

where c is the polymer mass concentration. From the dynamic equations, we get

η(ω) = η0 +
cRT

M

N
∑

p=1

τp
1 + iωτp

(2.22)

(M being the molar mass) which yields the usual viscosity in the limit ω → 0. The
complex modulus is obtained as G∗(ω) = G′(ω) + iG′′(ω) = iωη(ω), i being the
imaginary unit. Also, we get the oscillatory flow birefringence S(ω):

S(ω) = S0 +
2cNAv∆γ

3M

N
∑

p=1

α2
p

τp
1 + iωτp

, (2.23)

where S0 is the solvent contribution, while NAv is Avogadro’s constant and ∆γ is
the difference in polarizability along the bond axis and perpendicular to it. Both
η(ω) and S(ω) can also be reported in terms of their modulus and phase angle as
η(ω) = ηM exp(−iϕη) and S(ω) = SM exp(−iϕS). It is current practice to report
the complex modulus through its real and imaginary components, and S(ω) in the
phasor notation.

The relaxation times obtained from the eigenvalues of H ·A or of B ·M−1 are
often approximately expressed in linear chains through the power law [9,27,30]

τp ∝ (N/p)β (2.24)

or equivalently τp = τ1/p
β where τ1 ∝ Nβ is the longest relaxation time. The

exponent is given by β = 3ν, which yields 3/2 in the Θ state and for the RW model,
and 9/5 in a good solvent [9,30]. From this relationship and equation (2.22), we get
the power-law dependence of the polymer contribution to the complex modulus

G′(ω) ∝ G′′(ω)− ωη0 ∝ ω1/β (2.25)

when probing the intramolecular dynamics.
We also get the dynamic structure factor S(q, t), measured in quasi-elastic scat-

tering experiments. Here, q is the modulus of the scattering vector given by q = |q| =
4π sin(ϑ/2)/λ, ϑ being the scattering angle and λ being the radiation wavelength.
S(q, t) is given by [9,30]:

S(q, t) = n−2
beads

∑

j,k

〈exp {−iq · [rk (t)− rj (0)]}〉. (2.26)

In the Gaussian approximation, we get

S (q, t) = exp
[

−q2Dt
] 1

n2
beads

∑

i 6=j

exp

[

−q2

6

〈

r2ij (t)
〉

]

. (2.27)
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Here, we separated the contribution of the zero-th mode, yielding the diffusion
coefficient D, from that of the internal modes, which produce the time-dependent
mean-square distances

〈

r2ij (t)
〉

=
〈

[rj (t)− ri (0)]
2〉−6Dt irrespective of the position

of the center of mass. In bond-length units we have:

〈

r2ij (t)
〉

=
〈

r2ij
〉

+ 2

N
∑

p=1

QipQjpµ
−1
p [1− exp (−t/2τp)], (2.28)

where µp is the generic element of the diagonal matrix QT ·A ·Q. Note that for
t → 0, S(q, t) reduces to the static structure factor, or form factor.

The dynamic structure factor is often characterized through its first cumulant
Ω(q), produced by the initial logarithmic slope [31,34]

Ω(q) = − ∂

∂t
ln

(

S (q, t)

S (q, 0)

)
∣

∣

∣

∣

t→0

. (2.29)

In principle, Ω(q) is somewhat ill-defined because of the t → 0 limit due to
the local relaxation within a monomer. While this problem does not arise when
using coarse-grained models, the experimental time scales of local and of collective
dynamics usually differ by a few orders of magnitude, so that in practice they are
easily separated in appropriate experiments. This may not be true in the case of
stiff polymers, where there is no sharp distinction between local and collective time
scales.

Neglecting such an issue, the first cumulant can be calculated as [34]

Ω(q) =
q2l2σ

S (q)

[

1 +
ζr

nbeads

∑

i,j

(1− δij)

〈

l

rij

〉

f (xij)

]

, (2.30)

〈l/rij〉 being obtained from
〈

r2ij
〉

in the Gaussian approximation. xij is the dimen-

sionless variable xij = q ·
(〈

r2ij
〉/

6
)1/2

, while f(x) may be calculated with or without
preaveraging the hydrodynamic interaction:

f (x) =







exp (−x2) with preaveraging,

3
4
(x−3 + x−1) e−x2

x
∫

0

e−t2dt− x−2 without preaveraging.
(2.31)

Therefore, computation of the first cumulant enables us to gauge the error en-
tailed by this approximation.

3. The unperturbed state of stars and dendrimers

3.1. The Θ temperature and the second virial coefficient

The unperturbed state is experimentally achieved when the second virial coef-
ficient A2 vanishes for the given polymer/solvent pair, and the solution shows a
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(pseudo) ideal behaviour [12]. The temperature producing A2=0 is the Θ temper-
ature, analogous to the Boyle temperature of real gases. Generally, Θ is taken as
independent from molar mass, as indeed observed in (long) linear chains. This is
consistent with the notion of a vanishing binary cluster integral of the beads: at-
tractive and repulsive interactions exactly cancel one another and the Θ state can be
described in terms of non-interacting molecules with a RW conformation. This pre-
diction, in excellent agreement with observation, leads to the notion of universality
of the Θ state [12,13,30].

In recent years, however, experimental results have shown that neither the Θ
temperature of stars nor their Θ dimensions show any universality [5,6,35]. In par-
ticular, stars show an f -dependent depression of the Θ temperature compared to
linear chains, although at large molar mass the same asymptotic value is reached.
Moreover, even in this limit, stars have a larger size than expected for the RW model,
and accordingly exhibit residual intramolecular interactions, unlike linear chains.

To explain this behaviour, we calculate the Θ temperature that makes A2 = 0.
This condition is met when the intermolecular free energyA inter(1, 2) vanishes [13,23]

Ainter(1, 2) = A(1, 2)−A(1)−A(2) = 0, (3.1)

A(1),A(2),A(1, 2) being the free energies of the two molecules and of their ensemble.
Ainter(1, 2) is given by the two- and three-body interactions between two molecules:

Ainter(1, 2) = n2
beads · τB + 2nbeads · b3

∑

i<j

〈

r2ij
〉−3/2

. (3.2)

The first addendum accounts for the two-body interactions among the beads of the
two molecules, and the second one for the three-body interactions among the nbeads

beads of the first molecule and all the (i, j) pairs of the second molecule, the factor 2
taking into account the interchange between the molecules. Therefore, Θ is obtained
from

τΘB = −2
b3

nbeads

∑

i<j

〈

r2ij
〉−3/2

, (3.3)

where
τΘ = (Θ−Θbead)/Θ. (3.4)

Thus, Θ must be smaller than Θbead as an effect of molecular connectivity. Further-
more, in stars, the larger is the interaction multiplicity the larger are the three-body
repulsions between two molecules, hence the larger must be the two-body attractions
and thus the lowering of Θ [24,36].

Numerical calculation of Θ through equation (3.3) is coupled to the issue of the
molecular conformation, because it requires the knowledge of the actual mean-square
distances

〈

r2ij
〉

. In turn, these can be obtained by self-consistent minimization of the
intramolecular free energy at the current Θ temperature (i.e., with b2 equal to the
current τΘB) [24,25].

Incidentally, for ring polymers equation (3.2) should also include an entropic term
accounting for the loss of translational degrees of freedom due to the impossibility
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Figure 2. The Θ temperature of star polymers as a function of the number
of skeletal atoms per arm N/f . The experimental results for 8- and 12-arm
poly(isoprene) in dioxane are taken from [35]. For this system, the asymptot-
ic Θ temperature is Θ∞ = 33.4◦C, while the fitting parameter is ϕ = 52.7 K.

to have interlocked rings. Such a term effectively yields a repulsive potential that
must be compensated by attractive two-body interactions, i.e., by a lowering of Θ
compared to linear chains that is roughly independent of molar mass [37].

The results of our calculation indicate a striking difference between stars and
dendrimers. In stars, Θ increases with the arm length N/f (or equivalently with
molar mass) to the same asymptotic limit Θ∞ as in linear chains, as shown in
figure 2, because in this limit the star topology becomes irrelevant. Moreover, at a
fixed arm length, the Θ depression increases with the arm number f as an effect of
the larger multiplicity of intermolecular interactions. Θ changes with N/f according
to the square-root law:

Θ = Θ∞ − ϕ · χf(N/f)−1/2, (3.5)

showing that indeed Θ becomes asymptotically equal to Θ∞ for both linear and star
polymers if N/f → ∞. In equation (3.5) χf

∼= −2.628 + 0.5767 ·f − 0.00988 ·f 2,
which is positive for f > 4, so that Θ∞ is reached from below (see also figure 2).
Formally ϕ = 4b3Θbead/B, but it is best treated as an adjustable parameter. Here
both ϕ and χf are obtained from full analysis of the problem unlike what was done
in [23], no recourse being made to the RW model.

On the other hand, in dendrimers, Θ decreases without limit with increasing
generation g, as shown in figure 3 for the dendrimers of figure 1b, although only finite,
and usually small, g values can be realized in practice because of the increasingly
larger monomer density. The reason for this behaviour is apparent: increasing g
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Figure 3. The calculated Θ temperature of the dendrimers shown in figure 1b.
Here we arbitrarily chose Θbead = 300 K, and an adimensional covolume per bead
B = 0.1. The three-body interaction parameter was taken as b3 = 2 · 10−3 for
PS-like and b3 = 1 ·10−3 for PE-like dendrimers, according to the values obtained
for the corresponding star polymers (see figure 4).

also brings about a larger interaction multiplicity, so that from this viewpoint a
dendrimer with an increasing g can be compared to a star with a constant arm
length and a larger number of arms. The Θ temperatures of figure 3 were obtained
after choosing tentative, though realistic, values for the parameters b3,Θbead and B
in view of the lack of experimental data [25]. The B value corresponds to a relatively
slim bond, while for b3 we used the values yielding the correct radii of gyration for
polyethylene and polystyrene stars in the Θ state (see next section).

The opposite trend of Θ that was just described is also obtained semiquantita-
tively from a very simple, smoothed density model similar to that employed in [38].
Let us assume in equation (3.3) that the density probability of contact between two

beads, proportional to
〈

r2ij
〉−3/2

in the GSC approach, be simply set equal to V −1,
where V is the volume pervaded by the molecule. With this replacement, we have

τΘB ∝ − 1

nbeads
· n

2
beads

V
= −nbeads

V
= −d. (3.6)

From the discussion at the end of section 1.2, we conclude that in linear and star
polymers τΘ = (Θ − Θbead)/Θ tends to zero with increasing molar mass just as
its average density, and therefore Θ tends to the finite limit Θbead (instead of Θ∞)
from below. The correspondence with the full result is even better, considering that

V ∝ 〈R2
S〉

3/2 ∝ (gSN)3/2. Using the RW result of equation (1.3) at large f , so that
gS ∝ f−1, we get τΘ ∝ −f · (N/f)−1/2. This result yields the same Θ dependence
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Figure 4. The topological ratio of the mean-square radii of gyration of stars in
the Θ state gΘS plotted as a function of the number of arms f . The dotted line
shows the random-walk prediction gRWS = (3f − 2)/f2, the solid and the dash-
and-dot line the calculated results for PS and PE. The experimental results are
taken from [35,42] (PIP), [39] (PS) and [40,41] (PE).

from N and f as the full treatment with the RW model [the actual dependence
is stronger, see equation (3.5)]. Conversely, in cascade polymers, and a fortiori in
dendrimers, d diverges and therefore τΘ tends to −∞ for g → ∞, so that Θ decreases
without limit, in agreement with figure 3.

3.2. The molecular dimensions at the Θ temperature

In linear chains, the attractive two-body interactions due to the depression of Θ
compared to Θbead compensate almost exactly the intramolecular three-body repul-
sions. Therefore, linear chains can be described through an equivalent RW model.
This is not so in stars and in dendrimers, where residual three-body repulsions involv-
ing three beads on three different arms or dendra are inherently non-compensated,
lacking any intermolecular counterpart. These residual interactions give rise to a
finite molecular swelling [5,24] that can be described through the expansion factor
α2
S of the mean-square radius of gyration with respect to the RW value,

α2
S =

〈

R2
S

〉

/

〈

R2
S

〉RW
. (3.7)

In stars, the topological ratio gS can be written in terms of α2
S:

gS = gRWS · α2
S, star

/

α2
S, lin (3.8)
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Figure 5. The Θ-state expansion factor of the radius of gyration for dendrimers
of figure 1b plotted as a function of their generation g. The calculations for PS-
like and PE-like dendrimers were carried out with the same b3 parameters as in
figures 2 and 3. More details on the fitting curve are reported in [25].

so that we get gΘS > gRWS , since αS, lin is equal to unity to a very good approximation.
The gΘS ratio for regular stars is reported in figure 4. Here we compare our results,
valid for atactic polystyrene (PS) and polyethylene (PE), with the RW prediction
and with experimental data from PS [39], PE [40,41] and poly(isoprene) (PIP) [35,
42], showing the non-universality of the Θ state [5]. The PE values were tentatively
obtained through equations (3.7) and (3.8) by comparison of the radii of gyration
measured in solution and in the melt. Indeed, we argued that the RW conformation
is achieved in a melt because of the screening of all interactions exerted by the
neighbouring molecules, unlike what happens in the Θ state [40]. The agreement of
our calculation with the experimental results is excellent, considering also that the b 3

parameters were previously determined for PS from an independent fit with entirely
different experimental results [24], and for PE from a theoretical estimate by scaling
the PS parameter through the monomer covolume and the characteristic ratios of
the two polymers [40]. Interestingly, the simple scaling approach [43] predicts gS ∼
f−1/2. This power law disagrees with experimental results, as well as with the non-
universality of gΘ

S . In our view, the basic assumption made in such an approach
of a melt-like RW conformation near the star core is hard to reconcile with the
topological constraint of the branch point.

In dendrimers, the multiplicity of three-body interactions increases with gener-
ation, leading to a sharp increase of molecular size over the RW value, as shown in
figure 5 through αS as a function of g [25]. The curves are best fitted by a sigmoidal
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function, consistent with the finite expansion eventually achieved by the molecules
because of their connectivity, although the upper asymptote (not shown) is reached
at a generation that is probably too large to be realistic. As far as we know, the only
other approach to study the dendrimer size in the Θ state was carried out through
computer simulations [44]. However, this work adopted the interaction potential of
linear chains (i.e., the same T ), which suggests that the dendrimers are progressively
moving in the good-solvent regime with the increasing generation [25]. Therefore,
these results should be viewed with caution.

In this connection, we point out that a potentially serious shortcoming of com-
puter simulations lies in the criterion adopted for the Θ temperature, usually found
by looking for the relationship 〈R2

S〉 ∝ N to be obeyed for a single molecule (see
for instance [17] and [45]). On the other hand, the thermodynamic definition of Θ
in terms of a vanishing A2 requires simulating a two-chain system, which is obvi-
ously much harder. Only the approaches accounting for intermolecular interactions,
as done for instance in [46], can provide definite answers, but unfortunately are
extremely lengthy with present computers.

As a conclusion of this section, we stress that the non universality of the Θ state is
related with the non-universality of the three-body interactions parameter b3. Since
its value is proportional to the sixth power of the ratio between the “bond” length
and the local thickness, slight differences among different polymers may significantly
affect the Θ state.

4. The good-solvent expansion of stars and dendrimers

4.1. The molecular size and the local conformation

In a good solvent, the repulsive two-body interactions swell the molecules com-
pared to the Θ state. The expansion differs qualitatively from that due to the residual
interactions in the Θ state. Within the GSC approach, the molecular conformation
can be obtained by self-consistent free energy minimization neglecting the three-
body interactions, effectively absorbed in the renormalized two-body interactions
(“dressed” interactions [47]). Simultaneous two-body interactions are formally treat-
ed as independent in a mean-field approach, although they indirectly influence one
another.

The result is a non-affine molecular expansion that in linear chains is greater
at the chain center because of the additional interactions involving the outer beads
[9,26]. This non-affinity is more pronounced in stars, being concentrated near the
branch-point. Here the arms are stretched outward so as to minimize at the same
time both the intra- and the inter-arm repulsions with little correlation among the
initial arm directions, the more so the larger is the core functionality [26]. These
theoretical predictions were nicely confirmed by off-lattice Monte Carlo simulations
[48]. On the other hand, they are at variance with the basic assumptions of the
scaling approach, which depicts the central part of the molecule as a melt [43].
However, since our results were obtained for relatively lightly branched stars (f 6
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Figure 6. Universal plots of α2
S vs. the reduced variable z = τB

√
N for linear

(f = 2) and star (f = 6, 12, 18) polymers in a good solvent.

18), we speculate that scaling approaches are adequate for more heavily branched
stars [6]. In dendrimers, the molecular expansion must account for the repulsive
interactions both among the main dendra and among the sub-dendra, etc. This
is achieved by an outward stretching of the individual dendra, sub-dendra, etc.
with incipient dendron segregation and little inter-dendra mixing, in agreement with
computer simulations [49]. Interestingly, we also find this effect to be enhanced in
looser structures comprising two bonds between neighbouring branch points, which
are kept apart as much as possible.

In spite of the non-affine expansion, linear and star polymers in a good sol-
vent display a universal behaviour at a large molar mass when the appropriate
reduced variables are adopted. This is achieved by plotting the expansion factor of
the mean-square radius of gyration α2

S vs. z = b2
√
N . In the large-expansion limit,

the dependence is simply expressed through a power law

αS ∝ z2ν−1, (4.1)

which yields equation (1.2) in view of the definitions of αS and of z. Conversely, at
small z, the exact perturbative result is obtained:

α2
S = 1 +Kfz, (4.2)

where the the analytical expression of Kf is reported in [13]. Kf slowly increases
with f above the value 134/105 of the linear chain, being eventually proportional
to f 1/2.

Figure 6 reports the universal plots for α2
S obtained by the GSC approach through

optimization of the approximate eigenvalues of M and neglecting the off-diagonal
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terms (see [26]). The numerical results in the cross-over region are fitted to a good
approximation by the following expressions:

α2
S = [1 + 9.571 z + 5.81 z2 + 106.6 z3]2/15 (f = 2, linear), (4.3)

α2
S = [1 + 10.866 z + 15.7 z2 + 113.1 z3]2/15 (f = 6), (4.4)

α2
S = [1 + 13.276 z + 28.3 z2 + 163.0 z3]2/15 (f = 12), (4.5)

α2
S = [1 + 15.402 z + 37.2 z2 + 232.0 z3]2/15 (f = 18). (4.6)

In these equations, the exponent outside the square brackets was chosen so as to
yield the Flory exponent ν = 0.6, while the linear term gives the correct perturbative
results.

In linear and lightly branched star polymers, α2
S essentially follows the same func-

tion of the reduced variable z due to the compensating effects of the arms expansion
and of their increasing loss of correlation across the branch point. Accordingly, the
topological ratio gGS

S = gRWS · α2
S, star/α

2
S, lin is very close to the RW value because of

the cancellation of the effects within the expansion factors of linear and star poly-
mers. An analogous result was previously obtained with the renormalization group
approach [5]. In conclusion, remembering also the result of section 3.2 we have in
general gΘS > gGS

S
∼= gRWS .

Going back to the expansion factors of linear and star polymers, we note that a
given z = b2

√
N for a fixed monomer/solvent pair, i.e., a fixed b2, implies also the

same molar mass. In stars with an increasing core functionality, this is achieved by
decreasing the arm length. Conversely, in stars with the same arm length (the linear
chain being the degenerate star with f = 2), the molar mass increases linearly with
the number of arms, hence z is correspondingly larger by a factor f 1/2, with a larger
molecular swelling.

Dendrimers in a good solvent follow a universal behaviour too, but because of
their different fractal dimension a different reduced variable is required. Numerical
results obtained with the GSC approach produce universal curves when plotted as a
function of τBNϕ, with an empirical exponent ϕ = 0.923 [19], as shown in figure 7.
Since for linear and star polymers the reduced variable is τB ·N (4−d)/2 [14], d being
here the space dimension, the ϕ exponent of dendrimers is significantly larger than
the value ϕ = 0.5 for d = 3, but quite close to ϕ = 1 for d = 2 of linear and
star polymers, consistent with the fact that a large fraction of the beads lies near
the molecular surface. The dendrimer size is predicted to increase above the RW
dimension up to a constant value with increasing generation and/or with increasing
solvent quality. This asymptotically finite expansion is in sharp contrast to what
is shown by stars, where the arm length can in principle increase without limit.
This result is consistent with the finite maximum extension in real molecules, where
the local stereochemistry is not affected by the solvent quality. Accordingly, for
dendrimers we fitted a saturation Hill function to αS:

αS
∼= 1 + AH

xH

xH
1/2 + xH

, (4.7)
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Figure 7. Universal plot of the expansion factor of the radius of gyration for the
dendrimers of figure 1b in a good solvent plotted as (αS− 1)/(αS,max− 1) vs. the
reduced variable τBN ϕ. Here ϕ = 0.923, and αS,max is the asymptotic maximum
expansion of the molecule with fixed bond lengths [19], while the H and x1/2

parameters of equation (4.7) have the best-fit values H = 0.75 and x1/2 = 20.33.

where x = τBNϕ is the reduced variable, while AH, x1/2 and H are the fitting
parameters (see figure 7). Here AH = αSmax

− 1 is related to the strain ratio of the
asymptotic maximum expansion of the molecule, while α S attains one half of the
maximum increase above unity for x = x1/2 [19]. Moreover, we also find that the
topologically equivalent dendrimers with two bonds between adjacent branch points
do follow the same curve, apart from a rigid shift along the logarithmic abscissa.

4.2. The intramolecular dynamics in a good solvent

A characteristic feature of regularly branched polymers consists in the degeneracy
of the relaxation times. Since this degeneracy is due to the (average) molecular
symmetry, it is present in all solvent conditions, regardless of the hydrodynamic
interaction, although the exact ordering of the relaxation times might be affected.
The star symmetry gives rise to even modes, related to the concerted motion of
the arms, with a unit multiplicity, and to odd modes, describing the independent
motion of the arms, with an (f − 1)-multiplicity [33,50], i.e., the degeneracies of the
eigenvalues ofM discussed after equation (2.12). Because of the involved motion, the
relaxation times of the odd modes follow the same power law of equation (2.24) as
linear chains, unlike those of the even modes which however are of lesser importance.
The complicated structure of dendrimers produces a whole hierarchy of relaxation
times, whose general structure and multiplicity is reported in [31,51]. An example
of this pattern is shown in figure 8 for the 6th generation dendrimer of figure 1b.
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Figure 8. The relaxation times τp, in σ−1 units, of the 6th generation dendrimer
of figure 1b as a function of the normalized mode index p. The inset shows an
expanded view of the collective modes on a logarithmic abscissa.

As a general feature, the relaxation times become larger with molecular expan-
sion, at least for the collective modes [see figure 8 and equation (2.24)], so that the
instantaneous intramolecular conformation changes more slowly. This longer mem-
ory has a two-fold origin: i) the change in the chain elasticity embodied in the A

matrix or equivalently in the M−1 matrix [see equation (2.16)]; ii) the change in the
hydrodynamic interaction, embodied in the H matrix [see equation (2.17)]. Because
of that, in a good solvent, the intramolecular dynamics is moving toward the partial
draining regime, intermediate between Zimm’s impermeable coil limit and Rouse’s
free draining limit [33].

The dynamical eigenvalue problem in the presence of good-solvent expansion
may be solved numerically. A useful and entirely adequate approximation for linear
and star polymers consists in using the free-draining normal modes of the RWmodel,
that are known analytically. Their use in the presence of hydrodynamic interaction
(the so-called Zimm-Hearst approximation) entails a negligible error even with good-
solvent expansion for stars at least up to f = 18 [33]: in particular, derived quantities
such as the intrinsic viscosity are basically unaffected by the approximation. The
situation is more complex in dendrimers, because of the larger hydrodynamic inter-
action. Therefore, the full numerical diagonalization is by far the simplest and the
fastest procedure [19,31]. In this connection, we recall that the main source of error
of the present treatment is due to the preaveraging approximation, in view of the
large bead density [52].

The intrinsic viscosity is obtained from equations (2.21) and (2.22). As done
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Figure 9. Universal plots of α3
η vs. the reduced variable z = τB

√
N for linear

(f = 2) and star (f = 6, 12, 18) polymers in a good solvent.

before for the radius of gyration, we define the expansion factor of the intrinsic
viscosity with respect to the random-walk conformation:

α3
η = [η]/[η]RW, (4.8)

the third power arising from the dimensions of intrinsic viscosity (volume/mass).
In stars, for a given choice of the reduced friction coefficient per bead ζr, α

3
η is a

universal function of z [26]. The GSC results reported in figure 9, are well fitted by
the analytical expressions

α3
η = [1 + 2.804 z + 4.095 z2]3/10 (f = 2, linear), (4.9)

α3
η = [1 + 3.364 z + 3.216 z2]3/10 (f = 6), (4.10)

α3
η = [1 + 4.156 z + 3.171 z2]3/10 (f = 12), (4.11)

α3
η = [1 + 4.822 z + 3.376 z2]3/10 (f = 18). (4.12)

The exponent outside the square brackets was chosen so as to asymptotically give
Zimm’s result [η] ∝ N 0.8 [9,30], whereas the perturbative results cannot be repro-
duced because of our use of the Gaussian approximation in equation (2.17).

We also introduce the topological ratio of the intrinsic viscosity for star polymers:

gη = [η]star /[η]lin = gRWη · α3
η, star

/

α3
η, lin. (4.13)
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Figure 10. The topological ratio of the intrinsic viscosity gGS
η plotted as a function

of the reduced variable z = τB
√
N for star polymers in a good solvent.

Here, gRWη is the RW result, first obtained by Zimm and Kilb [50]: its numerical
values can be found in [33]. The gGS

η ratio is reported in figure 10 as a function of z.
The initial slight increase of gGS

η qualitatively agrees with the perturbative results,
while the asymptotic decrease by about 6% to a constant value for all stars, although
obtained by extrapolation, is consistent with experimental results [5].

In dendrimers, αη is predicted to show a cross-over to a constant plateau value
with increasing molecular expansion, just as found for αS. A universal curve was ob-
tained using as universal variable τBN ξ, with ξ = 0.735, and the full curve, shown
in figure 11, was again fitted by a saturation Hill curve of the same form as in equa-
tion (4.7). Note that the ξ exponent is significantly lower than the corresponding ϕ
exponent required for αS. While we have no simple explanation for this difference,
we point out that relevant factors are the finite size of the dendra and the complex
hydrodynamic behaviour within these overcrowded molecules. As concerns the effect
of the limited dendron length, we point out that we extracted apparent Flory ex-
ponents from the relationship 2νapp = ∂〈R2

S〉/∂nbeads . νapp steadily decreases from
0.43 for g = 1 to 0.23 for g = 6 at intermediate solvent quality [19], in reason-
able agreement with simulations [53,54]. No simple power law can thus be obtained
for dendrimers of a realistic generation, as anticipated. If we were now to use the
scaling relationship [η] ∝ R3/nbeads through some appropriate radius R proportion-

al to the radius of gyration [53], the above exponents would yield [η] ∝ n
3νapp−1

beads ,
which increases as n0.29

beads at low g, but decreases as n−0.31
beads at large g. Therefore, [η]
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Figure 11. Universal plot of the expansion factor of the intrinsic viscosity for the
dendrimers of figure 1b in a good solvent plotted as (αη − 1)/(αη,max − 1) vs.
the reduced variable τBN ξ. Here ξ = 0.735, and αη,max is the asymptotic value
at maximum expansion of the molecule with fixed bond lengths [19], while the
H and x1/2 parameters of equation (4.7) have the best-fit values H = 0.787 and
x1/2 = 11.19.

should pass through a maximum, as indeed found experimentally in some cases [2].
However, the full calculation does not support this result, and indicates that [η]
monotonously increases with g. If the latter result is affected by the preaveraging
approximation, we point out that because of the limited dendron span, simple and
general scaling relationships are ruled out.

Let us now turn to dynamical-mechanical experiments. Figure 12 shows results
for the complex modulus of stars in a good solvent [55] with an increasing number
of arms and a fixed arm length. At low frequency, we recover the usual power-laws
G′ ∝ ω2 and G′′ − ωη0 ∝ ω. The intramolecular dynamics, where G ′ ∝ G′′ − ωη0 ∝
ω1/β [see equation (2.25)], is observed for τ−1

1 < ω < τ−1
N , the upper frequency

roughly corresponding to the crossing of the curves of G′ and G′′. The length of
this interval is about the same for stars with the same arm length: on the other
hand, for stars with the same molar mass this interval progressively shrinks with an
increasing number of arms because of their corresponding shortening [6,55,56]. The
β exponent is very close to the theoretical good-solvent value of 5/9, but the main
feature differentiating linear and star polymers consists in the shoulder at ωτ1 ∼= 1
for G′′ in the stars, in particular for f = 12. This shoulder, that may become a
shallow maximum at larger f , is due to the f − 1 multiplicity of the first mode
that strongly enhances its contribution compared to that due to the non-degenerate
second mode [55].

The oscillatory flow birefringence predicted for linear and star polymers is shown
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Figure 12. The real and imaginary parts of the complex modulus G′ and G′′ −
ωη0 (the storage and loss modulus) in cRT/M units plotted as a function of
the applied frequency ω for linear (f = 2) and star (f = 6, 12) polymers in
a good solvent. On the abscissa, the frequency was scaled through the longest
intramolecular relaxation time τ1. For the sake of clarity, the curves for the 6-
arm star were rigidly shifted upwards by 1.5, and those for the 12-arm star by 3.

Figure 13. The phase angles ϕS and ϕη for the oscillatory flow birefringence and
the dynamic viscosity as a function of the applied frequency as in figure 12 (see
also the text). For the sake of clarity, the curves for the 6-arm star were rigidly
shifted upwards by 15◦, and those for the 12-arm star by 30◦.
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Figure 14. The real and imaginary parts of the complex modulusG′ and G′′−ωη0
(the storage and loss modulus) in cRT/M units plotted as a function of the
applied frequency ω for the 6th generation dendrimer shown in figure 1b. On the
abscissa, the frequency was scaled through the longest intramolecular relaxation
time τ1.

in figure 13 through the frequency dependence of the phase angle ϕS in compari-
son with the analogous quantity ϕη of the dynamic viscosity. These phase angles
are very sensitive to solvent conditions, and give rise to a well-defined maximum
in stars matching the shoulder of G′′ − ωη0. A noteworthy feature consists in the
clear difference between ϕS and ϕη. In fact, the two experiments provide different
information, since dynamic viscosity probes the orientation of intramolecular forces
with the applied deformation, whereas optical flow birefringence measures the ori-
entation of bonds. In the bead-and-spring model with a RW conformation the forces
acting on a bead are only transmitted by the adjacent bonds, and accordingly, the
two experiments are entirely equivalent, with ϕS ≡ ϕη. Conversely, in a good sol-
vent the intramolecular forces depend on all the bonds, in principle, because of the
long-range correlations, and therefore we expect ϕS 6= ϕη.

The complex modulus calculated for dendrimers is shown in figure 14. Here, it is
difficult to unambiguously detect the region of intramolecular dynamics because of
the limited dendron length and the smooth crossover with the low frequency response
where G′ ∝ ω2 and G′′−ωη0 ∝ ω. A linear portion in the doubly logarithmic plot is
only seen in high-generation dendrimers at large expansion, in particular when the
molecule comprises two bonds between adjacent branch points (not shown here).
In the latter case, the slope in the log-log plot is marginally smaller than in star
polymers [31], but it cannot be related to any exponent of the relaxation times
because in dendrimers these do not follow a power-law dependence on the mode
index.
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Figure 15. The first cumulant for the 6th generation dendrimer shown in figure 1b
plotted as Ω/σ · (ql)3 as a function of the modulus of the scattering vector q
normalized by the root-mean-square radius of gyration. The time unit is σ−1 and
l is the bond length. The inset shows the error of the first cumulant Ωexact/Ωpreav,
“exact” and “preav” referring to the calculations without preaveraging and with
preaveraging the hydrodynamic interaction, within the GSC approach.

Finally, we discuss the first cumulant of the dynamic structure factor because
it enables us to gauge the error entailed by the preaveraging approximation. Since
this error becomes larger with increasing bead density [52], we report here our re-
sults for dendrimers only [31]. The first cumulant Ω(q) is reported in figure 15 as
a function of q. Both at very small and at very large q, we have Ω(q) ∝ q2 due
to the diffusive motion either of the whole molecule (low q) or of the single bead
(high q) before it experiences the connectivity constraints [30,34]. In the interme-
diate q range the dependence switches to Ω(q) ∝ q3. Note that these exponents
are insensitive to good-solvent expansion, that merely modifies the prefactors. The
characteristic feature of branched polymers consists of a shallow minimum in the

plot of the normalized cumulant Ω(q)/q3 at about q ·〈R2
S〉

1/2 ∼= 2 ÷ 3, as predicted
and observed in stars [15,57], matching the corresponding maximum in the Kratky
plot of the static structure factor S(q) [58]. Such minimum, that is absent in linear
chains, is more pronounced in dendrimers due to the larger local density, and there-
fore it becomes deeper with increasing generation, and shallower with good-solvent
expansion. The region of the minimum is also the q range where the preaveraging
approximation is mostly in error, as shown in the inset. Interestingly, good-solvent
expansion makes the error significantly smaller, in keeping with the notion that the
molecules display an intermediate draining regime, in particular with more bonds
between adjacent branch points because of the lower local density. Finally, we note
that the preaveraging error amounts to underestimate Ω(q), i.e. to predict a slower
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intramolecular relaxation. In turn, this produces a larger [η] via longer relaxation
times, which is a well-known result [52].

5. Star polymers in a poor solvent and amphiphilic block-co-
polymer stars

The poor-solvent conditions are realized at T < Θ, when the two-body inter-
actions among the beads of the same or of different molecules become attractive.
As a result, there is competition between intramolecular collapse to a globule and
intermolecular aggregation with eventual precipitation [21]. While the kinetics of
these processes dictates what the exact fate of each molecule is, extremely dilute
solutions and a viscous solvent strongly favour the monomolecular process. At a low
undercooling below Θ, collapse to the globular state is resisted by configurational
entropy, while in the globule the three-body repulsions dominate, dictating also its
density. In water-soluble polymers the poor-solvent region is usually found at T > Θ
when the hydrogen bonds with solvent are disrupted, but the present argument does
not change, apart from some trivial redefinition of the b2 parameter.

In the globular state, we expect the mean-square radius of gyration to follow
equation (1.2) with a Flory exponent ν = 1/3, so that the density within the molecule
is independent of molar mass [20,21]. The parameter of the three-body interactions b3
determines both the transition temperature and the transition order to a globule. For
a small b3, corresponding to thin and long bonds, we have a first-order transition, and
two sharply different molecular conformations coexist at the transition temperature,
one being close to unperturbed, and the other one being close to a compact globule.
Conversely, a large b3 yields a smooth, second-order transition. An extensive analysis
of these issues is to be found in [21] and [59], where we discuss the thermodynamic
meaning of these transition orders and their peculiarities related with the finite size
of the molecules and with molecular connectivity.

The behaviour of amphiphilic block-copolymer stars in selective solvents is def-
initely of greater interest [60]. For the sake of argument, we assume the solvent to
be water, and the star arms to be made by two blocks of equal length comprising
hydrophobic beads (H-beads) and polar beads (P-beads). Therefore, the H-beads
are in a poor solvent and tend to cluster together, while the P-beads are in a good
solvent, well solvated by the water molecules. We consider copolymer stars with
both topological connections: INNER-H stars, where the H block is connected to
the core and the P-beads are on the outside, and OUTER-H stars, with the op-
posite topology. Within the present approach, the nature of the beads and their
polarity or hydrophobicity are simply characterized by the parameter B i = ±σ, a
positive sign indicating a P-beads, and a negative one indicating an H-bead. The
pairwise interactions are expressed as Bij = (Bi + Bj)/2, which replaces the b2
coefficient within the double sum of A2 in equation (2.8) [60]. Therefore, σ mea-
sures the amphiphilicity of the molecule. The two-body interactions between a P-
and an H-bead vanish, while all beads are still subject to three-body repulsions,
whose b3 parameter is taken as independent from the bead triplet. In order to test
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Figure 16. The mean-square distances of the beads from the molecular center of
mass

〈

R2
i

〉

, i = 0, 1, 2, . . ., N/f for INNER-H (left) and OUTER-H (right) 3-arm
stars as a function of their position along the arm (0 is the branch point and N/f
the free end). Both the vertical and the horizontal axis were normalized by the
number of beads per arm to quantitatively compare the GSC and the simulation
results (N/f=16 and 51, respectively). The vertical line separates the P-beads
from the H-beads (the latter ones being given by i/(N/f) < 0.5 in the INNER-H
star and by i/(N/f) > 0.5 in the OUTER-H star).

the GSC approach, off-lattice Monte Carlo simulations were carried out [60] using
a hamiltonian that includes a harmonic potential for the connected beads, and a
Lennard-Jones potential for the non-bonded interactions. The energy parameter of
the latter potential was introduced as in the GSC approach, and the simulations
swept the range of composition from 20% to 80% of H-beads, although the overall
picture was qualitatively unchanged.

With increasing degree of amphiphilicity σ, both INNER-H and OUTER-H stars
form a compact globule comprising all the H-beads wherefrom the P-beads are ex-
pelled, surrounding it in a sort of monomolecular micelle. Thus, intermolecular ag-
gregation is basically forbidden because of the mutually repulsive outer beads, which
provide a sort of colloidal stabilization. In the INNER-H star, the overall molecular
size is larger because of the free ends, while in the OUTER-H star the P-blocks, con-
nected also to the core bead, form long loops at the globular surface. However, in the
OUTER-H star the picture is richer, because a non-trivial metastable state is also
possible. In such a state, the inner P-beads keep apart the arms, and the H-blocks
form small sub-globules at the end of each arm. These long-lived droplets constitute
a robust local minimum, their coalescence to the single globule of the stable state be-
ing kinetically difficult. Only at very large amphiphilicity a spinodal regime sets in,
rendering such conformation unstable. Obviously enough, the metastable conforma-
tion does not provide any colloidal stabilization against intermolecular aggregation
and phase separation [60].

The agreement of the GSC results with the Monte Carlo simulation is quite good
even from the quantitative viewpoint, as shown for instance by the mean-square dis-
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tances of the beads from the molecular center of mass 〈R2
i 〉, i = 0, 1, 2, . . ., N/f for

both INNER-H and OUTER-H stars, reported in figure 16. The results quantita-
tively agree in general, apart from minor effects, the only significant difference being
the GSC prediction that the core P-bead should be trapped within the compact
hydrophobic globule in the stable state of the OUTER-H star. Such trapping is not
borne out by the simulations, and therefore it is an artifact of the GSC approach,
that accounts only for the average molecular conformation through quadratic aver-
ages. Among the other calculated quantities, the density profiles ρ(r) of the H- or
P-beads and of the undifferentiated beads as a function of the distance r from the
molecular center of mass, display the main shortcoming of the Gaussian approxima-
tion. In fact, the agreement between the GSC and the Monte Carlo result for ρ(r)
is reasonably good, apart from the density profile of the P-beads close to the center
of mass. According to the simulations, this profile vanishes at a finite r > 0 since
these beads are expelled from the globular core. Conversely, this may not happen
in the GSC approach, that yields a vanishing radial density profile only for r → 0
(or r → ∞): the Gaussian distribution function cannot produce any flat density
profile, as it is well known. We stress, however, that apart from this shortcoming,
the GSC approach produces quantitatively correct results in most cases with the
simplest mathematical formulation.

6. Concluding remarks

In this paper, we review some configurational and dynamical properties of regu-
lar branched polymers within the Gaussian Self-Consistent approach. The method
allows us to investigate both equilibrium and dynamics within a unified, consistent
method and is has many advantages: i) it correctly accounts for all the configura-
tional degrees of freedom, which is of major importance; ii) it explicitly accounts for
molecular connectivity; iii) it provides detailed information about the intramolecular
conformation in terms of quadratic averages or through the average scalar products
among the bond vectors; iv) it permits studying molecules of any topology; v) it
allows specifying the detailed sequence of any number of unlike beads in random or
block copolymers; vi) it is naturally consistent with the linear form of the stochastic
Langevin equation in dynamics. Some of these features are clearly interdependent,
but they show the rich potentiality of the method.

The main approximation of the approach consists in adopting the Gaussian ap-
proximation for the distribution function of the bond vectors connecting adjacent
beads and of the distances among the beads. A related problem in dynamics consists
in the preaveraging approximation for the hydrodynamic interaction and in express-
ing the reciprocal averages through the Gaussian distribution, which is particularly
in error for topologically close beads. Improving our approach beyond the Gaussian
approximation is not trivial. The general form of the correct distribution function
is known for linear chains [14], but it is not clear whether it applies also in the
presence of branch points. Also, it does not produce a linear elastic force, so that
the linear Langevin equation cannot be used any more for the intramolecular dy-
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namics, rendering the consistent treatment of equilibrium and dynamics a daunting
task. Incidentally, we note that in linear chains the renormalization group results
for dynamic properties compare less favourably with experiments than the GSC
predictions [61]. Computer simulations do not suffer from the above limitations and
indeed provided much insight in the behaviour of branched polymers. In this case, a
different problem arises regarding the ergodicity of the simulations, because of the
limitations to the accessible conformations and/or to the local or global motions
allowed by the steric interactions. In particular, an efficient sampling of the phase
space may become a serious problem in high-generation dendrimers.

Other effects in a dilute polymer solution can also be investigated within the GSC
approach, such as the shear deformation and the solution viscosity at large shear rate
γ̇ [62]. Actually, since in the bead-and-spring model each “bond” can be stretched
without limit with increasing γ̇, a constraint must be applied to the average mean-
square spring lengths. The latter constraint amounts to a stiffening of the springs,
as expected in real molecules when the local conformation is fully elongated. With
this additional feature, we could describe the elongation and orientation of linear
and star polymers with increasing γ̇ in terms of a prolate ellipsoid forming the
molecular envelope [62]. We also calculated the intrinsic viscosity, predicting a non-
Newtonian behaviour with first a slight shear thinning, then thickening taking place
at γ̇ ≈ τ−1

γ̇ , where τγ̇ is a characteristic time of the molecule, and eventually a much

larger thinning described by the power law [η] ∝ γ̇−2/3. Interestingly, the model
predicts that good-solvent effects and hydrodynamic interaction become irrelevant
at a large shear rate because of the molecular elongation, in keeping with simple
expectation.

From the experimental viewpoint, we mention the issue of the unperturbed state
of dendrimers, that was hardly investigated, to the best of our knowledge. Exper-
iments on such systems will provide an even more stringent test of the theoretical
prediction about the unperturbed state than provided by stars. The rheological
behaviour of dendrimers at a large shear rate is another aspect still needing ex-
tensive studies, that may reveal potentially important features of these fascinating
molecules.
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Конформації та динаміка зірок і дендримерів:

гаусівський самоузгоджений підхід

Ф.Ганаццолі

Факультет хімії та хімічних технологій ім. Г.Натта

Міланського політехнічного інституту,

вул. Л.Манчінеллі 7, 20131 Мілан, Італія

Отримано 1 червня 2001 р.

Здійснено огляд деяких конформаційних та динамічних аспектів гіл-

кових полімерів. Ми обговорюємо теоретичний гаусівський самоуз-

годжений підхід, запропонований у нашій групі, що використовуєть-

ся для вивчення поведінки регулярних зіркових полімерів та дендри-

мерів в умовах різних розчинників. Ми розглядаємо в єдиних рамках

як незбурений Θ -стан, так і стан доброго розчинення, в порівнянні з

іншими теоретичними чи симуляційними підходами, а також з деяки-

ми експериментальними результатами. Ми коротко представляємо

також подальші результати, отримані для амфіфільних кополімерних

зірок у відбіркових розчинниках, з метою показати як можливості ме-

тоду, так і його недоліки.

Ключові слова: зіркові полімери, дендримери, статистична

механіка, конформації полімерів, динаміка полімерів.

PACS: 36.20.Ey, 61.25.Hq, 82.35.Jk, 82.35.Lr, 83.80.Rs
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