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We present a new set of closures for restricted models of electrolyte solu-
tions at the McMillan-Mayer level that improve upon the Hypernetted Chain
prediction for the ion-ion pair correlation functions. The improvement is ac-
complished by proposing simple functional forms for the bridge functions
and the specification of certain adjusting parameters according to several
criteria. Under the new closures, and unlike the HNC case, the “sum” di-
rect correlation function, which is crucial for determining the stability of the
solution with respect to phase separation, remains finite at thermodynamic
states along the spinodal and at the critical point.
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1. Introduction

The accurate prediction of the structure and thermodynamic properties of elec-
trolyte solutions over a wide range of thermodynamic states has been the focus of
an enormous number of studies. In spite of these efforts, there are still a number of
issues that require more development, especially those concerning the description of
the structure and thermodynamic properties of an electrolyte solution close to criti-
cality (i. e., the critical point associated with the unmixing of an ionic solution into
two liquid phases of different electrolyte concentration). Another relevant issue is
the need of an improved description of the structure and thermodynamic properties
for aqueous solutions of 2-2 electrolytes (and also for electrolytes of higher charge)
at low concentrations.

The vast majority of the efforts have focussed on the calculation of the structure
and other properties of electrolyte solutions by statistical mechanical methods at
the McMillan-Mayer level [1]: integral equations and computer simulation. In the
first approach the ion-ion pair correlation functions g;(r) are calculated by solving
an appropriate set of Ornstein-Zernike (OZ) equations, that is supplemented with
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a set of additional relations between the indirect {h;(r)} and the direct {c;(r)}
correlation functions [2,3]. Because of their role in setting the mathematical problem
determinate, the additional relations are referred to as closure relations or integral
equation closures.

Among the closure relations proposed for ionic systems, the hypernetted chain
(HNC) closure [2,3] has probably been the closure most thoroughly investigated.
The HNC closure predicts the structural and thermodynamic properties of 1-1 elec-
trolytes quite accurately up to concentrations greater that 1 mol dm 3. For 2-2 elec-
trolytes, however, this closure predicts a spurious peak in the like-sign (i. e., cation-
cation or anion-anion) correlation functions, which is absent in the correlation func-
tions extracted from computer simulation calculations [4]. At the same time, results
obtained from molecular dynamics computer simulations indicate that the height
(¢1*)\p of the peak in the cation-anion correlation function is considerably larger
than the corresponding quantity (¢7%*)unxc obtained with the HNC closure [5,6]. A
somewhat less known problem is that the direct correlation functions c;;(r) under
the HNC closure become long-ranged as the state of the solution approaches the
critical point (or, more generally, the stability limit of the solution with respect to
phase separation) [7].

Recently we proposed an integral equation closure for general models of binary
electrolytes that gives direct correlation functions c;(r) that remain of finite range
at every thermodynamic state [7]. The new closure is formulated by decomposing
the density fluctuation of each ionic species into contributions to two mutually or-
thogonal types of fluctuations: the charge density fluctuations and the neutral den-
sity fluctuations. The source in the ion-ion direct correlation functions responsible
for the long-range behaviour close to the critical point is eliminated in the closure
by appropriately choosing the bridge function. The particular form of the bridge
function, which is reminiscent of the Percus-Yevick (PY) type bridge function [see
equation (18) below], explains the name, HNC/PY, assigned to the closure. A short-
coming of the proposed HNC/PY closure is that it systematically gives (¢15)unc/py
smaller than (¢7%*)unc and (¢75*)mp-

The purpose of this paper is to propose and investigate a new family of integral
equation closures for electrolyte solutions that are constructed using the HNC/PY
closure as the starting building block. The closures are obtained by simply extending
the bridge function associated with the HNC/PY closure with supplementary terms
of carefully selected form. In particular, the functional forms of the additional bridge
function terms are extracted from the asymptotic behaviour of the direct correlation
functions under the HNC/PY closure. Clearly this strategy guarantees the property
(shared with the HNC/PY closure) that the new closures remain of finite range close
to the critical point.

Although the HNC/PY closure was originally formulated for general solution
models of binary electrolytes at the McMillan-Mayer level [7], here we confine the
presentation to the simpler case of solutions of restricted or symmetric binary elec-
trolyte models (see the next section for details). Furthermore, with respect to the
performance of the new closures, in this work we consider only temperature and

622



Bridge functions for electrolyte solutions

concentration states where the electrolyte solution is stable.

The outline of the rest of the paper is as follows. In section 2 we discuss some
theoretical features of the HNC and the HNC/PY integral equation closures. Unlike
in the original presentation [7], here we use the language of the sum and difference
ion-ion correlation functions that is so convenient for problems involving symmet-
ric binary electrolytes. In this section we also introduce the new integral equation
closures HNC/A; and bp/A; by adding new terms to the bridge functions in the
HNC/PY closure. In section 3 we report calculations that test the performance of
the HNC/\; closure for models of aqueous solutions of a 2-2 electrolyte at 298.15 K.
The results are compared with the results obtained from calculations with the HNC
and HNC/PY closures, as well as with the results obtained from molecular dynam-
ics computer simulations of the same solution models by Smith et al. [5]. Finally,
in section 4 we briefly discuss the results obtained under the HNC/\; closure, and
suggest alternatives for further improvement (the bp/\; closure and another exten-
sion, the HNC/\, closure). We also compare our approach with previous work on
the development of bridge functions appropriate for electrolyte solutions.

2. Theory

Our starting point is the well known McMillan-Mayer level expression [2,3]
hil(r) = exp(=Bu;(r) + tu(r) + bu(r)) =1, jl=1,2 (1)

for the ion-ion correlation functions, where the indices 7 and [ refer to the ionic
species: 1 for the cations and 2 for the anions. As usual, 8 = (ksT)~! has the
meaning of the inverse of the temperature expressed in energy units (kg is the
Boltzmann constant).

We recall that the indirect correlation function hj(r) is related to the ion-ion
radial distribution function g;;(r) [which is proportional to the probability that two
ions, one of species j and the other of species [, are separated by a distance r in the
ionic solution] according to the equation h;(r) = g;(r) — 1. The other functions in
equation (1) are @j(r), the solvent-averaged potential between two ions of species
J and [ separated by a distance r at infinite dilution [1,2]; ¢;(r) = hj(r) — cj(r),
in which ¢;;(r) is the ion-ion direct correlation function; and finally the ion-ion
bridge function b;(r) [2,3]. The sets of functions {h;(r)} and {c;(r)} are further
interrelated through (see below) the Ornstein-Zernike equations [2,3].

As mentioned in the introduction, in this study we focus on the case of a symmet-
ric (or restricted) model of an electrolyte solution. In such a model the electrolyte
dissociates into equal numbers of cations and anions. Furthermore, the cation and
anion species are entirely equivalent, except for their charges z1e and zye, which are
of the same magnitude but of opposite signs (z; = —z»; e is the charge of a proton).
Quite generally, then, we write the McMillan-Mayer level ion-ion solvent averaged
potentials u;;(r) as the sum of a short-range contribution @*(r), that is the same
for every jl ionic pair-type, and a long-range Coulombic contribution whose sign
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depends on whether the labels 7 and [ refer to the same or to different ionic species:

2,2
a(r) = w'(r) + (-2 =12 2)
€T
It should be noted that in the McMillan-Mayer level description, the Coulomb in-
teraction between the charges is attenuated by the dielectric constant € of the pure
solvent. A particular but important case of equation (2) is the restricted primitive
model, for which @*(r) is a hard sphere potential. In this study, however, the dis-
cussion will not be limited to that model, but instead it will consider more general
forms of u*(r).

For the restricted electrolyte models represented by equation (2) it is advanta-
geous to express any ion-ion function Fj; [such as any of the functions that occur
in equation (1)] in terms of the “sum” (subscript S) and difference (subscript D)
functions:

Fs(r) = [Fu(r) + Fua(r)] /2, Fp(r) = [Fu(r) — Fia(r) ]/ 2. (3)

With this notation, equation (1) for 51 =11, 12, 21, and 22 may be cast in the
more succinct form

hS<7~.) — efﬁﬂ*(r)+t5(r)+bs(r) COShD(T) — 1 , (4)

hp(r) = e P WHtsO+bs™) ginh D(r) | (5)
where we have introduced the auxiliary function
D(r) = —pPup(r) + tp(r) + bp(r) . (6)

Notice that because u*(r) is the same function for every jl pair, we have used in
writing equations (4) and (5) that ug(r) = u*(r), the short-range part of the ion-ion
potential energy of interaction. Correspondingly, we note that the nature of up(r)
is purely Coulombic: @ p(r) = 222 /eor .

Equations (4) and (5) may also be rearranged to display the sum and the differ-
ence direct correlation functions explicitly:

cg(r) = e PUMHsFbs() cosh D(r) — 1 — tg(r) , (7)

cp(r) = e PUOFsOTs0) Ginh D(r) — tp(r) . (8)

In terms of the Fourier transforms of the sum and difference functions, the
Ornstein-Zernike equations at the McMillan-Mayer level are

hs(k) = Cs(k) + Es(k) pe hs(k) , 9)

hp(k) = @p(k) + ep(k) pihp(k) (10)
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where p; = p; + p2 is the total number density of ions in the solution (for the
restricted electrolyte systems discussed here p; = po applies). We recall that the
sum/difference decoupling suggested by equations (9) and (10) is only apparent, as
the set of functions {hg,cs} and {hp,cp} are still entangled by the relations (7)
and (8).

2.1. HNC closure

In the set of equations (7)-(10), which provide the means for the calculation
of the structure functions of the electrolyte solution, we still have to specify the
sum and difference bridge functions bg(r) and bp(r). To do so is one of the goals
of this study. In this section, however, we discuss the closure relations that result
from the simplest possible approximation for these functions, namely when both
bridge functions can be ignored (i. e., bg(r) = bp(r) = 0). This is the well-known
Hypernetted Chain (HNC) approximation, for which equations (4) and (5) simplify
to

hs(r) = e AT () +ts(r) coshDy(r) — 1, (11)

hp(r) = e PEHsE) ginh Dy(r) | (12)
while the auxiliary function D(r) [cf. equation (6)] is given by
Dy(r) = —pup(r) + tp(r) . (13)

It is interesting to analyze here a shortcoming of the HNC closure that is not
widely appreciated. This may be seen most straightforwardly from equations (11)
and (12). These equations can be formally solved for the function Dy(r):

Dy(r) = arctanh{ x(r) } , (14)

in terms of the auxiliary function

_ _ho(r)
) = 725 (15)
Equation (14) for Dy(r) can then be substituted back into equation (11). Recall-
ing that in the resulting equation tgs(r) = hg(r) — cg(r) in the argument of the
exponential, we can then solve for the sum combination cg(r) of the ion-ion direct
correlation functions. We obtain, for values of r large enough that we can make the
approximation exp(—/pu*(r)) ~ 1,

hs(r)

e 1 2
cS(r):ln{ )}—éln{l—[x(r)] b (16)

1 + hs(?“

The particular form of the second term in this equation follows straightforwardly
from the identity cosh arctanh(z) = 1/4/(1 — 22).
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The feature, revealed by equation (16), that cg(r) under the HNC closure is
expressed by a sum of two separate contributions, one that depends only on hg(r)
while the other depends only on x(r), is the source of difficulties when the closure is
used to examine the material stability limit of the electrolyte solution. We recall [8]
that the stability of the solution against phase separation (unmixing) is determined
exclusively by the sum combination cg(7) of the direct correlation functions. (Briefly,
the solution is stable or metastable against phase separation as long as 1 —p; ¢s(0) >
0, where ¢5(0) denotes the Fourier transform of cg(r) specialized at k& = 0). On
the other hand, the signature of the states on the spinodal line (and, of course,
at the critical point) is that at those thermodynamic states the sum combination
hs(r) becomes infinitely long ranged (or, equivalently, 715(16) diverges as k — 0 at
these states). In contrast, the range of (), which is proportional to the difference
combination hp(r), remains finite at the stability limit of the electrolyte solution
[9].

At large values of the interionic distance r, where both hg(r) and x(r) are small,
we can approximate cg(r) in equation (16) by the first few terms of its power series
expansion with respect to hg(r) and x(r):

es(r) = 5 [hs(r) = 5 Ths(r)l® + -
b3 P+ 7 O+ - ()

When the thermodynamic state approaches the stability limit and, correspondingly,
hs(r) becomes more and more long-ranged, equation (17) reveals that, under the
HNC closure, the sum combination cg(r) (due to the presence of terms with “pure”
[hs(r)]™ powers) also becomes infinitely long-ranged .

2.2. HNC/PY closure

As a first step in designing an integral equation relation that improves over the
HNC closure, it is natural to introduce into the closure a bridge function bg(r)
that eliminates from cg(r) the terms that contain pure [hg(r)]" powers of the sum
combination function hg(r). This can be accomplished most simply by choosing
bs(r) of the form [7]

bs(r) = In[1 + tg(r)] — ts(r) . (18)

We still insist on the approximation bp(r) = 0. When these approximations are
introduced into the general equations (4) and (5) they become

hs(r) = e P [1 4+ tg(r)] coshDy(r) — 1, (19)

hp(r) = e P [1 4 tg(r)] sinhDy(r) , (20)

with Dy(r) given by equation (13).
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In the next section we show that the choice of equation (18) for the sum com-
bination bg(r) bridge function makes cg(r) under this closure short-ranged (which
is the correct behaviour) at the critical point or any other state along the spinodal
line of the electrolyte solution.

Equation (18) is the well-known form that the bridge function for a pure sub-
stance takes under the Percus-Yevick (PY) integral equation closure. In fact, the
PY flavour of this closure becomes immediately obvious in equation (19) if we ig-
nore the charge-fluctuation factor cosh Dy(r). On the other hand, through the choice
bp(r) = 0 for the difference bridge function combination, this closure retains all the
features of the HNC closure in what concerns the difference combination direct cor-
relation function cp(r). For these reasons we use the acronym HNC/PY to refer
to this closure. A version of this closure for general models (i. e., not restricted) of
electrolyte solutions has been reported [7].

As the calculations reported in section 3 show, the performance of the HNC/PY
closure for dilute solutions of 2-2 restricted electrolytes is somewhat disappointing,
with the HNC closure giving (broadly speaking) better results. The goal of this
paper is, using the HNC/PY closure as the foundation, to propose a new family of
improved integral equation closures for solutions of symmetric electrolytes.

2.3. Beyond the PY form for the sum bridge function bg(r)

To obtain improved results but, at the same time to preserve the feature that
cg(r) is of finite range at every thermodynamic state, we slightly modify the PY
form of the sum combination bg(r) of the bridge functions [cf. equation (18)]. We do
this by adding a corrector function A(r) to the argument of the logarithmic term:

bs(r) = In[1 + ts(r) + A(r)] — ts(r) . (21)

For generality we do not assume at this point that bp(r) = 0, but instead we leave
this function momentarily unspecified.
The general equations (4) and (5) take the form

hs(r) = e P [1 + tg(r) + A(r)] coshD(r) — 1, (22)

hp(r) = e P [1 4 tg(r) + A(r)] sinhD(r) , (23)

where D(r) was introduced in equation (6).
We follow now the discussion in section 2.1. We begin by solving equations (22)
and (23) for the auxiliary function D(r):

D(r) = arctanh [ x(r)] , (24)

where x(r) is given in equation (15).
At interionic distances such that exp(—pfu*(r)) ~ 1, equations (22) and (24)
may be solved for the sum combination cg(r) of direct correlation functions, with

the result
es(r) = A(r) + (14 hs(r) {1 = VI-X(OP | - (25)
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To derive this equation we have used the identity

sech arctanh [x(r)] =/ 1 —[x(r)]?.

Equation (25) shows that the contribution A(r) coming from the sum bridge
function bg(r) is separated from the remaining terms. Except for the multiplicative
factor (14 hg(r)), these terms depend only on the function y p(r), which is short-
ranged at every thermodynamic state. Furthermore, the equation does not explicitly
involve the bridge function bp(r): this expression of cg(r) in terms of A(r), hg(r)
and x(r) is not affected by whichever approximation we choose for bp(r).

At large values of r, where x(r) is small, we can approximate equation (25) for
cs(r) by

1

cstr) = A1) + o) { 50000 + x| (26)

in which hg(r) does not appear explicitly

Leaving aside for a moment the function \(r), equation (26) shows that at large
r the sum combination cg(r) involves terms from which pure powers |[hg(r)]" are
absent; such powers of hg(r) (that originate from the expansion of the denominator
of x(r)) are always multiplied by powers [hp(r)]™ of the difference combination
function hp(r). The latter function is of finite range at every thermodynamic state
[9]. When A(r) = 0, equation (26) coincides with the large-r behaviour of cg(r) under
the HNC/PY closure (cf. section 2.2). This demonstrates the statement made in that
section that cg(r) under the HNC/PY closure is of finite-range at the stability limit
of the ionic solution.

In view of the extreme complexity involved in the direct calculation of A(r), here
we simply consider this function to be a functional of the functions x(r) and h p(7)
(or, equivalently, given equation (15), a functional of hg(r) and hp(r)). Furthermore,
we propose that this functional has a form that closely resembles the first terms in
the asymptotic expansion of cg(r) under the HNC/PY closure [which is given by
equation (26) after making A(r) = 0]. With these assumptions it follows that the
simplest candidate for A(r) has the form

Mr) = 3 Bshp(r) x(r) (27)

where the value of the bridge parameter Bg needs to be specified.
Replacing this form of A(r) back into equation (26) gives the asymptotic be-
haviour of the sum direct correlation function cg(r) at large r

cs(r) = (As/2) hp(r) x(r) + (1/8) hp(r) [x(r)]* + -+, (28)

with the parameter Ag is related to Bg by As = 1+ Bg.

It is clear that this approach for constructing A\(r), that borrows from the asymp-
totic expansion of cg(r) under HNC/PY, guarantees that cg(r) under the new closure
[that incorporates A(r)] remains of finite range at the stability limit of the electrolyte
solution. It is also worth noting that the strategy just outlined for the construction of
A(r) is completely independent on which approximation we choose for the difference
bridge function bp(r).
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2.4. Approximation for the difference bridge function bp(r)

As in the case of A(r), we propose to construct an approximation for the difference
bridge function bp(r) by considering the first few terms of the asymptotic form of
¢p(r) under the HNC/PY approximation.

From equations (6) and (24) we find for ¢},(r) = ¢p(r) + Sup(r) (the short-range
part of the difference direct correlation function)

§ 1 L+ x(r)

CD(T‘) = bD(T) + hD(T) — 5 In {m . (29)
The last term is, of course, equivalent to arctanh { x(r) }. This expression is explicitly
linear in hp(r). Expanding the logarithmic term in powers of x(r) we obtain

1

¢p(r) = bo(r) + ho(r) = x(r) = 3 [x(r)]’ - é[x('f’)P +o (30)

The second and third terms can be combined together, taking into account equa-
tion (15), so that the large-r asymptotic expansion of ¢}, (r) becomes

plr) = bolr) + hs(r)x(r) — 3 (XD + -+ (31)

It is important to note that this result applies irrespective of any approximation
made to bg(r).

By taking bp(r) = 0 in equation (31) we obtain the asymptotic expansion of
¢p(r) under any closure that approximates the difference bridge function to zero,
like the HNC or HNC/PY closures. We may generate an approximate expression
for bp(r) by proceeding as we did for constructing A(r) in the last section; i. e., we
assume that bp(r) is proportional to the first term of the asymptotic expansion of
¢ (r) under the HNC/PY closure. We then have

bp(r) = Bphs(r) x(r) (32)

in terms of the bridge parameter Bp. With this approximation ¢},(r) [equation (31)]
behaves at large r as

olr) = Aphs(r)x(r) = 5 [X()P + - (33)

where Ap = 1+ Bp. Clearly, this expansion does not contain terms with pure powers
[hs(r)]™; such powers appear to be always multiplied by powers [hp(r)]™ that are
of finite range for every thermodynamic state.

Finally, it is straightforward to show from equations (28) and (33), together with
the expected small-k behaviour of the Fourier transforms of hg(r) and hp(r)

hs(k) = KAY + k20 + Ok, (34)
hp(k) = KB + B2r2 + o), (35)

that the direct correlation functions cg(r) and c¢p(r) under the closures proposed in
this section have the form that is required for the Stillinger-Lovett second moment
condition [10] to be satisfied.
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3. Calculations

3.1. Closure relations

The development in section 2 motivated specific forms for the sum bg(r) and
difference bp(r) bridge functions [equations (21) and (27) for bg(r); equation (32)
for bp(r)]. Having this information, we may think of several approximate implemen-
tations of equations (7) and (8):

HNC closure. In this closure we have bg(r) = bp(r) = 0 at every r. The sum and
difference direct correlation functions cg(r) and c¢p(r) are given by relations
similar to equations (7) and (8), but with bg(r) absent from the argument of
the exponential, and with Dy(r) in place of D(r) [cf. equations (13) and (6)].

HNC/PY closure. In this closure \(r) = bp(r) = 0 at every r. Hence cg(r) and
cp(r) are given by expressions similar to equations (7) and (8), but with bg(r)
given by equation (18) and, again, with Dy(r) in place of D(r).

HNC/\; closure. In this closure bg(r) in the argument of the exponentials in equa-
tions (7) and (8) is given by equation (21), with A\(r) represented by (27). The
auxiliary function D(r) again takes the form of Dg(r) [i. e., in this closure we
again assume that bp(r) = 0 at every r].

bp /A1 closure. In this closure cg(r) and ¢p(r) take the form of equations (7) and (8),
with bg(r) given by equation (21), A(r) given by equation (27), and bp(r) given
by equation (32).

It is obvious that the implementation of closures HNC/A; and bp /Ay require the
specification of the bridge parameters Bg and Bp. We address this important issue
in the case of the HNC/A; closure in the next subsection.

In what remains of section 3 we report numerical results for the structure and
thermodynamic properties of dilute solutions of a model 2-2 electrolyte as calculated
with the HNC, HNC/PY, and HNC/A; closures. We briefly comment on closure
bp/A1 in section 4.

3.2. Numerical algorithm, electrolyte model, and calculations

To solve the Ornstein-Zernike integral equations [cf. equations (9) and (10)]
under any of the above closure relations we have used the familiar Picard iterative
approach. The technical difficulties associated with the long-range nature of the
difference direct correlation function cp(r) are avoided by means of Ng’s method
[11,12].

As a representative of a restricted model of an electrolyte solution, we consider
the model of a 2-2 electrolyte studied by Duh and Haymet [6]. In this model the
ions interact through a McMillan-Mayer level potential of the form of equation (2),

with a*(r) given by
. ks B o\9
() = =22 (2 (36)

o r
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where B = 5377(z¢)? AK and 0 = 2.8428 A. In the Coulombic term #p(r) we specify
z =2 and ¢y = 78.358, the value of the dielectric constant of water at 298.15 K.

The calculations reported here for this model electrolyte parallel those in the
study by Duh and Haymet [6]. We have solved each of the integral equation closures
summarized in the previous section for electrolyte solutions at several concentra-
tions in the range 0.001 mol dm =2 < ¢, < 0.5625 mol dm~3, where ¢, is the molar
concentration of the electrolyte.

In addition to the structure functions [the cation-cation gq1(r) and the cation-
anion g, radial distribution functions, obtained from gs(r) and hp(r) by inversion
of equations (3)], we have calculated the following thermodynamic properties:

(a) the reduced excess internal energy per ion v = SU®/Ny:

w = 218p; {/Ow dr 2 @*(r) gs(r) + e /Ooo dr r hD('r)} . (37)

€0

(b) the osmotic coefficient ¢ = 57/p, of the solution:

2 . e’} df* 2.2 [e e}
o =1-— Wfp {/0 drr?’udir(r)gs(r)—% i dTThD(T)}. (38)

(c) the generalized compressibility:

In the above equations 7 is the osmotic pressure of the solution. It may be shown
that the generalized compressibility equals

o 8,u5> (Glnvi)
=/ — A =1+ , 40
6<0Pt)T P (5’pt T Olnps Jr (40)

where ps and 7. are, respectively, the chemical potential and the mean activity
coefficient of the electrolyte, while p, is the number density of the salt (ps = p/v,
where v = vy + 14 is the sum of the cation and anion stoichiometric coefficients).

It is important to remember that equations (37)—(39) correspond to different
thermodynamic routes [energy route for u, virial route for ¢, and compressibility
route for 5(0m/0pt)r], and when implemented using correlation functions gg(r) and
hp(r) calculated from approximate integral equation closures, their results are not
necessarily thermodinamically consistent.

3.3. Results

As a representative of the results obtained at each concentration examined, we
first discuss in some detail the results obtained under the HNC, HNC/PY, and
HNC/\; closures for the model electrolyte solution at concentration ¢y = 0.02 mol
dm™3 at temperature 298.15 K.
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Figure 1. Ion-ion radial distribution functions for an aqueous solution of a re-
stricted 2-2 electrolyte at ¢, = 0.02mol dm 3 and 298.15 K. The correlation func-
tion are calculated under the integral equation closures HNC and HNC/PY. (a):
Like-sign (cation-cation or anion-anion) correlation function g11(r); (b): cation-
anion correlation function gi2(r). r is in units of A.

In figure 1 we report the pair correlation functions g11(r) and gi2(r) at this
concentration as calculated under the HNC and the HNC/PY integral equation
closures. The first thing to notice is that (¢1%*)up = 48.0, the peak height for the
cation-anion correlation function g12(r) calculated from molecular dynamics comput-
er simulation [5], is substantially larger than the corresponding HNC and HNC/PY
results, (¢15)unc = 37.6 and (¢7%™)unc/py = 33.7. From this perspective, and in
spite of the fact that for this closure bg(r) # 0, the HNC/PY closure does not im-
prove over the HNC predictions. We notice, however, that there is no evidence of
the spurious peak at r ~ 8.5 A in the like-sign ion-ion correlation function gq;(r)
calculated under the HNC/PY closure, contrary to the case for g;;(r) under HNC
closure. The simulation study [5] indicates that such a peak is an artifact of the
approximate HNC closure.

With respect to the thermodynamic properties at this concentration, we find
upne/py = —1.245 and ¢pnc/py = 0.709, which should be compared with the HNC
results ugne = —1.280 and ¢pne = 0.713 and with the molecular dynamics results
[5,6] unp = —1.413 and ¢yp = 0.706.

Thus, except for the case of the osmotic coefficient and the absence of the peak in
g11(r), at this concentration of the 2-2 electrolyte the structure and thermodynamic
properties obtained with the HNC/PY closure differ from the simulation results
by a larger extent than the predictions of the HNC closure. This pattern in the
performance comparison between HNC and HNC/PY is also observed, in different
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Figure 2. Dependence of thermodynamic and structural properties of an elec-
trolyte solution with the bridge parameter Bg under closure HNC/A;. The re-
sults shown correspond to a 2-2 aqueous electrolyte solution of concentration
cs = 0.02mol dm~3 at 298.15K. (a) Reduced excess internal energy per ion,
u, calculated with equation (37); (b) osmotic coefficient ¢, calculated with equa-
tion (38); (c) peak height g% in the cation-anion pair correlation function gi2(r).

degrees, at the other electrolyte concentrations. The differences between the two
closures disappear for concentrations above ¢, ~ 0.5 mol dm~3.

We now turn to the HNC/\; integral equation closure. The HNC/PY closure
discussed above is a particular case of HNC/A, and is obtained when we set to
zero the bridge parameter Bg in equation (27). The complete specification of the
HNC/\; closure requires that we select the value of Byg.

In figure 2 we illustrate the dependence of u, ¢, and g75* with Bg at ¢; = 0.02 mol
dm~3 and 298.15 K. We observe that both u and ¢gJ** are quite sensitive to the
value of Bg, and that as we increase the value of this parameter both v and g5
change, respectively, to more negative and more positive values, thus improving the
predictions of the closure when compared with the molecular dynamics data. On the
other hand, ¢unc/py is already in good agreement with ¢np, and as Bg is increased
the agreement of ¢ under this closure deteriorates. It should be noted, however,
that the dependence of ¢ with Bg is much milder than the dependence of the other
properties.

More careful examination of the figure reveals u and g5 change with Bg towards
the target values (respectively uyp and (¢7%*)up) at different rates. For example,
at Bg = 0.14 we find that (975*)unc/y, = 47.49, which approximately matches the
molecular dynamics result (g7%**)yp = 48.0. However, at this particular value of Bg
we find upne/y, = —1.302 which, although an improvement over both the HNC/PY
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Figure 3. Sensitivity of two thermodynamic consistency tests with the bridge
parameter Bg in the HNC/)\; integral equation closure. The results shown cor-
respond to a 22 aqueous electrolyte solution of concentration ¢y = 0.02mol
dm=3 at 298.15K. (a) Generalized compressibility test: 3(0m/0p)r calculated
according to the compressibility route (upper curve) and the virial route (lower
curve). (b) Maxwel relation derived test: (energy route)-based left hand side of
equation (42) (lower curve) and (compressibility route)-based right hand side of
equation (42) (upper curve).

and HNC values, respectively uunc/py = —1.245 and upgne = —1.280, differs from
the considerably more negative molecular dynamics result uvyp = —1.413. With
regard to the osmotic coefficient, we find ¢unc/n, = 0.7105 at Bg = 0.14, which
should be compared with the simulation result ¢yp = 0.706. The HNC/A; result
is slightly better than the HNC prediction, ¢unc = 0.713, but as mentioned above,
¢unc/py = 0.709 is in a better agreement with simulation. Thus, at Bg = 0.14,
when (g75™)unc/a, = (975)mp, the reduced excess energy per ion upnc/a, betters
upNe, but it is still far from the target uyp.

Conversely, we observe from figure 2a that at Bg = 0.4 the reduced excess
energy is upnc/y, = —1.372, which is still short of matching uyp = —1.413. At this
value of Bg, however, (¢7%)unc/n, = 76 is far too large when compared with the
(975 )mp = 48.0.

To further illustrate the dependence with Bg of the thermodynamic properties
calculated under the HNC/\; closure, figure 3 reports two independent consistency
tests for properties calculated according to different thermodynamic routes.

One test [figure 3a] addresses the thermodynamic consistency for the generalized
compressibility 3(0m/0p:)r under the HNC/A; closure when this property is calcu-
lated using either the compressibility route [equation (39)] or the virial route. The
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latter route involves numerical computation of the indicated partial derivative, with
the function S at each density calculated with the relation 7 = p;¢, in which the
osmotic coefficient is obtained with the help of the (virial route)-based equation (38).

The other thermodynamic consistency test considered follows from the Maxwell
relation between the reduced internal energy and the reduced chemical potential of

the electrolyte [8]:
(Mo () "

Notice that the left hand side of the relation requires the full reduced internal
energy per ion; the term 3/2 is just the value of the non-interacting contribution
BUY/N; to the reduced internal energy. By taking the derivative of each side of
equation (41) with respect to the total ionic density p; we derive, after taking into
account the first equality of equation (40),

, 0%u ou 0 or

g 2o = Tar 12 (), ) #2)
It should be noted that the partial derivatives on the left hand side of this equation
are carried at constant temperature, while those on the right hand side are carried at
constant density of the ions. To use this equation as a measure of the thermodynamic
consistency of closure HNC/\;, we calculate each side of the equation following a
different thermodynamic route. Specifically, for the left hand side we calculate u at
several values of p; using the energy route, equation (37). For the right hand side
we calculate 3(0m/0p;)r at several temperatures using the compressibility route,
equation (39). The results are shown in figure 3b.

Figure 3a shows that at Bg = 0, which corresponds to the HNC/PY closure,
the difference between the values of the generalized compressibility 5(0n/0p;)r cal-
culated under the compressibility and virial routes is the largest, with the value
calculated by the compressibility route larger than the one obtained through the
virial route. The thermodynamic inconsistency decreases, however, when Bg is in-
creased, and the figure shows that at Bg ~ 0.395 the two routes in fact give the same
value for 5(0m/0p;)r. Although this is satisfying, this thermodynamic consistency
is achieved at a value of Bg where g5 is too large and, furthermore, for which the
shape of g11(r) differs considerably from the like-sign correlation function extracted
from molecular dynamics simulation (see below).

Figure 3b illustrates the performance of the HNC/\; closure with respect to the
second thermodynamic consistency test, equation (42). It is evident from the fig-
ure that under this closure the (energy route)-based left hand side of the relation is
different at every Bg from the (compressibility route)-based right hand side. Further-
more, the magnitude of the thermodynamic inconsistency is practically independent
of the value of the bridge parameter Bg.

Finally, in figure 4 we report the ion-ion correlation functions g4 (r) and g12(r) for
the 2-2 electrolyte at concentration ¢, = 0.02 mol dm~3. In addition to the HNC and
HNC/PY results already shown in figure 1, we also display the correlation functions
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Figure 4. Ion-ion radial distribution functions for an aqueous solution of a re-
stricted 2-2 electrolyte at ¢; = 0.02mol dm™> and 298.15K. The correlation
function are calculated under the integral equation closures HNC, HNC/PY, and
HNC/\; for two values of the bridge parameter Bg. These are Bg = 0.14, when
(915 )unc/x, = (9157)nNe, and Bg = 0.083, when upnc/y, = unnc- (a): Like-
sign (cation-cation or anion-anion) correlation function g11(r); (b): cation-anion
correlation function gio(r).  is in units of A.

calculated under HNC/\; using two different choices, Bg = 0.14 and Bg = 0.083,
of the bridge parameter.

As discussed above, when Bg = 0.14 (at ¢, = 0.02mol dm—3) the HNC/\; clo-
sure gives a cation-anion correlation function g,2(r) whose preak height (¢75™)unc/x,
approximately equals (g7%*)up, the value observed in the molecular dynamics sim-
ulation. Figure 4b shows that for this value of Bg the HNC/A; correlation function
g12(1) compares very favourably with the corresponding molecular dynamics result
[5,6]. (We refer the reader to references [5,6] for the relevant figures of the corre-
lation functions obtained by molecular dynamics). Unfortunately, figure 4a reveals
that for this value of Bg the like-sign correlation function gq1(r) develops the same
spurious peak at r ~ 8.5 A that plagues the HNC closure. We have found this same
behaviour of closure HNC/A; at electrolyte concentrations ¢; < 0.02 mol dm™3: for
values of Bg such that (g7%*)unc/a, =~ (915 )mp the shape of g1(r) under HNC/);
deteriorates to a level comparable to gi1(r) under the HNC closure. For even larger
values of Bg [as would be needed for achieving compressibility-virial thermodynamic
consistency in the computation of 5(97/dp;)r| the spurious peak is more intense,
and the quality of the predicted structure of the solution is not acceptable.

The results reported so far eliminate the possibility of seeking thermodynam-
ic consistency as a practical and unbiased approach for fixing the strength of the
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Figure 5. Ion-ion radial distribution functions for an aqueous solution of a re-
stricted 2-2 electrolyte at ¢, = 0.001mol dm~3 and 298.15K. The correlation
function are calculated under the integral equation closures HNC, HNC/PY, and
HNC/A; with the bridge parameter Bg = 0.047, for which UHNC/\; = UHNC- (a):
Like-sign (cation-cation or anion-anion) correlation function g11(r); (b): cation-
anion correlation function gi2(7). r is in units of A.

bridge parameter Bg in the HNC/)\; closure. An appealing alternative for estab-
lishing the value of Bg that gives under HNC/\; improved results (relative to HNC
and HNC/PY) is suggested by the correlation functions g;(r) reported in figure 4
using Bg = 0.083. For this value of the bridge parameter (at ¢, = 0.02mol dm~3)
unNc/y, =~ upne = —1.280. Inspection of figure 4a reveals that at this value of Bg
there is only a minimal trace of the spurious peak in g11(r), with the overall shape of
the function in better agreement with the simulation result [5,6]. At the same time
figure 4b shows that gi5(r), although not as good as the result at Bg = 0.14, is still
an improvement over the predictions of HNC and HNC/PY [(¢15*)unc/y, = 41.75
versus (¢1%)unc = 37.6, (975 )u~nc/py = 33.7, and (¢i%*)mp = 48.0]. For the os-
motic coefficient we find ¢unc/y, = dunc/py = 0.709, which is in better agreement
with ¢yp = 0.706 than the HNC result ¢yne = 0.713.

We have tested this strategy for fixing the Bg parameter of closure HNC/\;
for solutions of the 2-2 electrolyte in the concentration range 0.001 — 0.5625 mol
dm™3. The results obtained are summarized in table 1. The second column in the
table reports the value of Bg for which ugnc/y, = unnc at each concentration. It
is interesting that this “optimun” value of the bridge parameter does not change
monotonically with the electrolyte concentration.

By following this procedure, the HNC/A; results for the reduced excess energy
u will be obviously equivalent to those of HNC; they are systematically smaller
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Table 1. Comparison of the predictions of the HNC/\; against the results by
molecular dynamics, HNC, and HNC/PY calculations for model aqueous solu-
tions of a 2-2 electrolyte at 298.15K. (a) ¢, is in units of mol dm~3. (b) For
each electrolyte concentration Bg is selected such that ugnc/y, >~ uHNC- (c) At
cs = 0.5625mol dm 3, (¢7%*)mp and ¢ump have not been reported; the data re-
ported in the table are integral equation results from Duh and Haymet [6] based

on bridge functions extracted from simulation data.

c,” | Bg? unp ° UNC/A, UHNC UHNC/PY
0.001 | 0.047 -0.469 -0.432 —0.4328 —0.4053
0.005 | 0.096 —0.9226 —0.8283 —0.8285 —0.784
0.020 | 0.083 -1.413 -1.280 —1.280 —1.245
0.0625 | 0.040 -1.834 -1.713 -1.713 -1.697
0.200 | 0.005 —2.255 -2.197 -2.197 -2.196
0.5625 | 0.0 —2.666 —2.648 —2.648 —2.648

Cq B’ OMD © PHNC /A PHNC QHNC/PY
0.001 | 0.047 0.898 0.889 0.890 0.892
0.005 | 0.096 0.808 0.800 0.802 0.802
0.020 | 0.083 0.706 0.709 0.713 0.709
0.0625 | 0.040 0.646 0.639 0.642 0.637
0.200 | 0.005 0.611 0.593 0.594 0.592
0.5625 | 0.0 0.638 0.615 0.615 0.615

c:” | Bs’ | (85 )wmp | (85 )unc/, | (85 )unc | (855 )unc/py
0.001 | 0.047 234 231 186 147
0.005 | 0.096 112 104.7 85 69.6
0.020 | 0.083 48 41.75 37.6 33.8
0.0625 | 0.040 22.5 18.94 18.4 17.7
0.200 | 0.005 9.6 8.82 8.81 8.77
0.5625 | 0.0 5.02 4.73 4.73 4.73
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in magnitude than the corresponding molecular dynamics results. For the osmotic
coefficient, HNC and HNC/PY are quite comparable, and the table shows that
these two closures perform marginally better against simulation than the HNC/\
closure. On the other hand, the last part of the table reveals that HNC/\; performs
considerably better than HNC and HNC/PY with respect to the height ¢73** of the
peak in the cation-anion radial distribution function. Especially encouraging are the
results at the smallest concentrations c¢s; = 0.001 and 0.005mol dm 3. To illustrate
this point, in figure 5 we compare the ¢;,(r) at ¢, = 0.001 mol dm? calculated under
closures HNC, HNC/PY, and HNC/\; with Bg = 0.047. From table 1 we see that
(915 )uncy/a, = 231 compares very well with (¢15*)vp = 234. Inspection of figure 5b
reveals that the peak in g12(r) predicted by HNC/A; is slightly narrower than the
peak calculated under HNC (and it is also narrower than the peak extracted from
the molecular dynamics data [6]). With respect to the like-sign correlation function
g11(r), the HNC/A; closure gives, compared against the simulation results, better
results than HNC/PY. Unfortunately, for Bs = 0.047, at which unnc/y, = unnc,
g11(r) under closure HNC/\; displays the spurious peak closeby to r ~ 8 A. The
size of the peak, however, is much smaller than the peak in gq1(r) under the HNC
closure.

4. Discussion

Starting from the previously reported HNC/PY integral equation closure for
solutions of binary electrolytes [7], we have proposed a very simple strategy for
improving the closure performance concerning the structure and thermodynamic
properties of the solution. Basically, the improvement is accomplished by adding new
terms to the ion-ion bridge functions b (r) of the HNC/PY closure. The general idea
is to borrow from the first few terms in the asymptotic expansion of the HNC/PY
c;ji(r) the specific functional form of the new terms in the bridge functions b (r).
We note, however, that although the original HNC/PY work was concerned with
general McMillan-Mayer level models of binary electrolytes, the present extension of
the HNC/PY closure has been implemented in the present work only for restricted
(or symmetric) models of electrolytes. In fact, by exploiting the symmetry of such
electrolyte models, the discussion was actually cast in the language of the sum and
difference functions introduced in equation (3).

The calculations presented in section 3.3 tested the predictions of the simplest
extension, the HNC/\; closure, for aqueous solutions of a restricted 2-2 electrolyte.
For this closure, only the sum combination bg(r) of ion-ion bridge functions is mod-
ified relative to the corresponding HNC/PY bridge function; the difference bridge
function bp(r) for this closure, like in the HNC and HNC/PY closures, is assumed
to vanish at every r. The explicit of expression for bg(r) is given by equations (21)
and (27), and contains an unspecified parameter Bg. Initially we had hoped that the
optimal value of Bg would be fixed by demanding thermodynamic consistency for
B(0m/Opy) v when calculated through the compressibility and virial routes. While
at every concentration studied we succeeded finding a Bg for which the thermody-
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namic consistency is realized, the calculated correlation functions g ;(r) at those Bg
deviate substantially from the structure functions g;(r) extracted from computer
simulations. We were therefore forced to adopt the less elegant (but quite practical)
criterion of choosing Bg such that upnc/y, = unnc is satisfied.

The performance of the HNC/A; closure based on this criterion for fixing Bg was
examined in section 3.3, where we concluded that, except for the osmotic coefficient,
this new integral equation provides a substantial improvement over the HNC/PY
and the HNC closures. Here we notice that, while still insisting on the approximation
bp(r) = 0, there is room for improving the closure relation by further extending b¢(r)
with a 2-parameter \(r) function:

Mr) = () x(r) +

B o) [x() (43)

The functional form of each term is borrowed from the respective term in the
asymptotic expansion of ¢g(r) under the HNC/PY closure [the second term in equa-
tion (26)]. We refer to this closure by the acronym HNC/\,, as its implementation
requires the specification of the two bridge parameters Bg and By.

When considered from the viewpoint of the ion-ion bridge functions b;(r), the
assumption bp(r) = 0 in the HNC/\,, family of closures implies that under these clo-
sure relations by (1) = bia(r) applies. Ichiye and Haymet [13] and Duh and Haymet
[6] have extracted the bridge functions for 2-2 electrolytes at several concentrations
from computer simulations, and their results indicate that bi1(r) and bya(r) have
different sign, with by2(r) > 0. (See also Kjellander and Mitchell [14]). The bridge
functions in the Ionic-Percus Yevick (IPY) integral equation closures developed by
Ichiye and Haymet [6,13,15] specifically account for this feature, and are able to
account for the simulation results to a better degree than the HNC/\; closure de-
scribed in section 3.3. It should be mentioned that the IPY closures have no free
parameter. To our knowledge, the behaviour of these closures in the context of ther-
modynamic consistency between the various routes has not been examined. (The
exponential exp[bi2(r)] in the IPY2 closure [15] contains a term with the factor
exp|—712(r)], where 712(r) is an optimally designed ¢15(r) function. The presence of
this exp[—712(r)] factor suggests that the range of the corresponding direct correla-
tion function would become infinite as the electrolyte solution approaches the limit
of material stability).

Only when we allow bp(r) # 0 we can have by;(r) and byo(r) of different sign.
This leads us to the bp/A; integral equation closure introduced in section 3.1. This
closure requires the specification of the two bridge strength parameters Bg and Bp.
The criterions for fixing these parameters and the performance of this new integral
equation are the subject of ongoing research in our group.

We conclude with the mention that, for the dilute systems studied here, the
results of the HNC/PY closure are practically identical to the results calculated
with the Livshits-Martinov integral equation relation [16].
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HoBui knac micTkoBux PpyHKLUiN AN pO34YMHIB
enekTponiTie

@®.0.PaiiHepi, Ox.Ctenn

HepxasHunii yHisepcuteT Hbio-Mopka, CToHi Bpyk, Helo-Mopk, CLUA
OtpumanHo 5 nuctonaga 2001 p.

Onga cnpoleHnx moaenein po3yvmHiB enekTposiTiB MU NPeacTaBnsaeMo
HOBWI Habip 3amMukaHb Ha piBHI MakMinnaHa—Maepa, skuii nokpatlye
nepenbavyeHHs Os NapHUX KOPENSUIMHUX QYHKLUIN iOH-iOH, OTPUMaHNX
y rinepnaHuoroBoMy HabnmxeHHi. NMokpalleHHs 3ailACHIOETLCS BBEAEH-
HAM MPOCTUX PYHKLiOHANbHUX HOPM A9 MICTKOBUX DYHKLIN | OeAKNX
niaroHO4YHMX NapameTpiB, AKi BiANOBIAAOTb Pi3HUM KpuTepiam. MNMpu Ho-
BUX YMOBaXxX 3aMUKaHHS, Ha MpOoTUBary Ao rinepnaHLuoroBoro HabamxeH-
HS1, NpsiMa KopenauinHa dyHKuig “cymMa”, Wo € BaXMBOIO 419 BUSHAYEH-
HS1 CTIIKOCTi pO3B’A3KY MO BiAHOLLEHHIO A0 $a30BOro po3aifieHHS, 3anm-
LIAETbCS CKIHYEHOIO NPU TEPMOOMHAMIYHNX CTaHax y3[40BX cniHogasi i B
KPUTWYHIN TOYL,.

Knio4oBi cnoBa: po34unHu es1eKTPOIITIB, CrpOoLLEeHa MOAESb,
CTPYKTypa, TepMoanHamika, MiCTKOBI (pyHKLIi, TepMognHamidyHa
CYMICHICTb

PACS: 61.20.Gy, 61.20.Qg, 64.60.Fr, 64.70.Ja, 64.75.+g
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