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A semiempirical technique is proposed for bipartite structures (lattice-like systems with
two interpenetrating sublattices). For such systems, the corresponding one-electron tight-
binding model can be easily modified to include electron correlation effects, although in a
rough manner. It allows one to describe the so-called effectively unpaired electrons (EUE)
in giant many-electron systems by using even uncomplicated hardware. The average EUE
occupancy is interpreted as a counterpart of the order parameter reflecting a hidden
antiferromagnetic structure of the strongly correlated system. We illustrate the developed
method by analyzing EUE for several model problems (nanoflakes and nanoribbons) mim-
icking the graphene-based materials.

IIpennoxeH MMONYSMIUPHUYECKUN METOJ pPacuyeTa MHOT'OSJIEKTPOHHBIX CHCTEM [JA IBY-
IOJBHBIX CTPYKTYP (PEIIeTOUYHBIX CHCTEM C JBYMS B3aMMOIPOHHKAIIIUMH IIOJPEIIeTKAMH).
i TAKMX CHCTEM COOTBETCTBYIOIIAS MOIEJNb CUJLHOUN CBA3H MOMKET OBITH JIEMKO MOLUMUII-
poBana ¢ Tem, 4YTOOBI y4YecTb, XOTd u rpy0o, s(pdexKThl 3JIeKTPOHHOII KOpPpeIAnuu. ITO
IIOBBOJISIET OIKCHIBATH TAK HasblBaeMble d(PpPeRTUBHO pacnapeHHble daeKTpoHbl (DPC) B ru-
TaHTCKUX MHOTIOJIEKTPOHHBIX CHCTEMAX, IIPUMEHAS IPU 9TOM OayKe CKPOMHYIO BBIUMCIUTEJb-
Hy10 TexHUKY. CpeHsis 3aCeeHHOCTh PACIIAPEHHBIX DJIEKTPOHOB MHTEPIIPETUPYETCA KaK aAHAJIOr
nmapamMeTrpa MIOPALKA, OTPAMKAIOIIEr0 CKPBITYI0 aHTU(DEPPOMATHUTHYIO CTPYKTYPY CHJIBHO KOppe-
JUPOBAHHON CHUCTEMBI.

EdexTuBHO po3mapeHi €JeKTPOHM y ABOMOJBHHX TpPaTKaxX 3a y3araJbHEHOI0 CXeMOIO
CIJIBHOTO 3B’SA3KY. 3aCTOCYBaHHS A0 rpadeHOBUX HaHOYACTUHOK. A.B.JIy3anos.

3ampoNIOHOBAHO HAMBEMITIPUUHY CXeMY PO3TJIAAY 0araToeJeKTPOHHUX CUCTEM Y JBOJOJb-
HUX CTPYKTypax (TPaTKOMOTIOHUX CHUCTeMaX 3 JBOMAa B3A€MOTPOHUKAUUMHN MiATPAaTKaAMM).
ITomo TaKkMX CUCTeM JIeTKO MOAMUMPIKYBATH OMHOENEKTPOHHE HAOIMIKEeHHS CUJIBLHOTO 3B’ SABKY
TAKUM YUHOM, 1100 ypaxyBaTu edeKTH eJeKTPOHHOI Kopenadarii, xoua i rpybo. Ile mosBoase
OMIMCYBaHHSA Tak 3BaHUX edeKTUBHO posnapeHux enekTpoHiB (EPE) y riramtcskux 6arartoe-
JIEKTPOHUX CHCTEMAX, BUKOPUCTOBYIOUM TIPW IILOMY HaBiTh HECKJAAHY OOUMCIIOBAJILHY TEX-
Hiry. Cepenmio 3acenenicts EPE nmoTpakToBaHO AK aHAJOT TTapaMeTpa MOPAJKY, IO Bixmobpa-
JKae MPUXOBaHY aHTH(ePOMAarHiTHY CTPYKTYPY CUJIBHO KopeJboBaHoi cucreMu. IIpostocTpo-
BAHO PO3BUHYTUIT MeToj, aHanisyioum EPE mekinTbKOoX MOZeNBLHMX cHUCTEM (HAHOUACTUHKOK
Ta HaHOCTPiuOK), KOTpi iMiTyloTh Hamorpadenori matepiann.
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1. Introduction

In many cases the atomic solids materials
can be treated as giant covalent network
structures. Such structures are frequently
based on the so-called bipartite lattices. It is
well known that carbon nanotubes and gra-
phene-related materials are of this struec-
tural type. The bipartite lattices, by defini-
tion, belong to a class of lattices contain-
ing two type of atoms (sites), so that each
atom has nearest neighbors of the opposite
type. In other words, the bipartite lattice is
formed by two interpenetrating sublattices,
and each of these sublattices contains only
one kind of atoms. There are many remark-
able theorems for bipartite systems studied
in the framework of many-body theory and
related quantum chemical approaches [1-6].
In particular, according to Konig’s simple
theorem, plane bipartite graph does not con-
tain cycles of odd length [6].

It should be recognized that in the cur-
rent computational physics, multifarious as-
sumptions and approaches are applied for
modeling bipartite lattices and related sys-
tems [7]. Some of them employ the sophisti-
cated ab initio machinery which provides
the most accurate results. However, it is
too demanding and has a restricted field of
applications. By this reason, simple and
even rough approaches often get involved
when studying too complex structures.
Among the basic approaches, the tight-bind-
ing (TB) model and its reasonably simple
extensions did not lose a significance as a
useful tool for semi-quantitative description
[8-11]. However, TB in its nature is essen-
tially the one-electron theory, that is, no
electron correlation effects are explicitly
taken into account when using the TB
model. At the same time, many principal
properties are determined by electron corre-
lation, and the problem is how to include,
even partly, important features of electron
correlation theories in the original TB
model without sophisticating it. One possi-
ble way was previously outlined in [12]
where we studied the magnetic field effects
within the Huckel model (which is in fact
the TB scheme for m-electrons in the unsatu-
rated hydrocarbons.

Our objective here is to extend the
Huckel-like correlation model of [12] to the
above-mentioned network structures. The
primary focus of the present study is on the
characterization of the diamagnetic materi-
als by the so-called effectively unpaired
electrons (EUE) [13—-15]. The latter appear

438

even in any covalent structures with strong
electron correlation, and the EUE issues
have become one of the foci and points of
current interest [16-19]. As a starting
point, we make use of a simplified version
of the unrestricted Hartree-Fock (UHF)
model, or in other words, the spin-polarized
model of electron correlation. There are
many papers concerning the main features
of the UHF theory and ensuing practical
techniques [20—26]. In the present context,
specific relations of Brickstock and Pople
[2] for bipartite systems within UHF are
the key for the rationale of our simplified
scheme.

The plan of the paper is following. In the
next section we sketch the EUE theory in
the form which is more appropriate for our
aims. In section 3 some known relations for
bipartite lattices in the TB approximation
are given. Then the extension of TB to a
simplistic electron-correlation treatment
and EUE issues is given (section 4). Testing
and applications of the proposed scheme
(mainly to conjugated polymers and gra-
phene nanoclusters) are presented in sec-
tions 5 and 6, respectively. Finally, we sum
up the main points of the paper (section 7).

2. Effectively unpaired electrons
in a nutshell

In this section, we give a brief outline of
the EUE theory for ground electronic states
which, for the diamagnetic molecules, are
naturally the singlet states. It should be
emphasized that evidently there exist no
spin density effects in diamagneric mole-
cule. Hence, the electrons being ’effectively’
unpaired (e.g., in the dissociated hydrogen
molecule or in radical pairs) remain, as a
whole, in the singlet state due to the total
spin conservation law. This fact indicates
some type of correlation between the parti-
cles, particularly between the spatially sepa-
rated ones, as it is in the classical Einstein-
Podolsky-Rosen pair. At the same time, sys-
tems with a large degree of electron
unpairing become singlet biradicaloids or
even polyradicals which possess many un-
usual properties.

In quantum chemistry terms, the EUE
problem is formulated for arbitrary singlet
states as follows. Let D is a spin-free one-
electron density matrix (charge density ma-
trix) of the N-electron state under study.
For singlet states with slight electron corre-
lation effects one can employ the usual in-
dependent-particle description, that is the
restricted Hartree-Fock (RHF) approach. In
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this case we have the corresponding D ma-
trix with precisely n = N/2 nonzero eigen-
values {A;}, all equal to 2. Generally, the
eigenvalues, {A;}, of D are termed as the
natural orbital occupation numbers (NOON).
Clearly, the NOON wvalue 2 is related to
typical non-correlated electron pairs (as in
usual textbook formulations of the Pauli
principle). It means that for the such states
all orbitals are occupied twice:

D =23 lo)(9}- (1)

i<n

In the case of the correlated singlet
states, deviation of the NOON spectrum
from 2 properly characterizes EUE.

There are several numerical measures
(denoted usually by Negp) for quantifying
EUE and describing associated charac-
teristics (e.g., EUE distributions) [13]. We
will follow the EUE measure due to Head-
Gordon [14] since for typical singlet states
a similar measure has a clear hole-particle
meaning as established in [15, 18]. In this
hole-particle interpretation we have the ex-
pression

Nojr =23, ha s )

a>n

where NOONs {A,} are related to "virtual”
(particle) one-electron states which are occu-
pied owing to electron correlation. Along
with N, the EUE density matrix, DEVE,
can be easily derived in the form of the
spectral representation

DEUE - 2(2 = Ml (@ + 2}"(1|(pa><(pa|‘ (3)

i<n a>n

Here |¢,) and |p;) are the eigenvectors of
D (natural orbitals); they are assigned to the
virtual orbital and occupied orbital subspaces,
respectively. Notice that numbers 2 — A; cor-
respond to hole occupancies. It can be
proved that DEUE is properly normalized:
TrDEVE = N ..

In practice, more tractable expressions
can be used for handling EUE within typical
many-electron approaches. For instance,
within UHF we have

D = py + Pps 4)
with p, and o being the conventional UHF

density matrices. They are simply the one-
electron projectors onto occupied spin-up
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and spin-down orbitals, respectively. In ac-
cordance with this, we have

Njp=N -2 MNPl (5)

i<n

where A,[1%P] is the squared root from the
eigenvalue of PaPp- Other details can be
found in [14, 18]. Obviously, we return to
RHF, when putting p, =pg, so D, is the
same as in Eq. (1), and N = 0.

3. Tight-binding model for
bipartite lattices

Before presenting a suitably generalized
TB approximations we need some simple
facts about the customary TB scheme for
bipartite systems. For this, it is necessary
to write down the standard TB Hamiltonian
K0 in the atomic orbital representation. Re-
call that we deal with the structures which
are made of atoms of the same kind (the
carbon atoms in all our applications). Notice
also that as in [5], we make use of the term
"lattice” in an extended meaning allowing it
for finite lattices and even for any finite-
size atomic structures. In our specific prob-
lem the standard atomic basis set {[y,)} is
employed (it is comprised of the orthonor-
malized 2p,-orbitals assigned to each carbon
atom). With this basis set we have

ho = ZBMV|XH><X\/|- (6)
u,v

Here and elsewhere f3,, = [, is the usual
hopping integral (if u # v), or resonance in-
tegral, between nearest-neighbor sites u and v,
and moreover, diagonal elements 3, =0. It
is convenient to measure all energies in units
of Byl (the Py value is normally negative).
Further, in the case of bipartite lattices we
can always renumber lattice sites in such a
way that the TB Hamiltonian matrix, KO, in
the atomic orbital basis can be cast into the
following block form:

B = _( 0 B] (7)
0 BtO[

Here B is a bond matrix, or in graph
theory terms, biadjacency matrix: Bw =1if
W and v are nearest-neighbor sites, other-
wise B, = 0.

From Eq. (7) a variety of theorems and
useful results can be deduced. One of them
is due to G.G.Hall [27]. For completeness,
we recall that in standard terms the D ma-
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trix in AO representation is the conven-
tional charge and bond-order matrix (e.g.,
see [21], p.139). In the case of the Huckel
(TB) approximation we will denote this D
matrix by Dq. In fact, D, is a specific case
of a more general expression in Eq. (3),
when pg = P = Po» and matrix pgy = (po)2
projects onto the usual doubly occupied
MOs, so Dy = 2py. Hall’s elegant result for
bipartite systems is

I B%)
DO = [ (B+B)*1/ZB+ B(B+?) J’ (8)

that is, bond orders (off-diagonal elements
of Dy ) are immediately determined by biad-
jacency matrix B. It can be straightfor-
wardly derived from the known relationship
Dy =1 - hO/|nY, where |0 =[(h0)2]/2 (see
[28, 29]). The numerically stable methods
for direct computations of such matrix
functions (avoiding matrix diagonalization)
are given in [29, 80]. And again, owing to
Dy = 2pg and pg = (p0)2, the above D, obeys
the spectral resolution (1), that is the EUE
effects are surely not possible within the
conventional Huckel TB approximation.

4. Modifying tight-binding model
for unpairing electrons

Now we will describe the previously men-
tioned Huckel-like correlation model [12] in
more detail, and generalize our results to a
larger context. It allows us to extend TB to
strongly correlated electronic materials with
bipartite lattice geometries (including alter-
nant hydrocarbons in organic chemistry).
Hereafter, we will term our approach as the
quasi-correlated tight-binding (QCTB)
model. The model is a very simplified, and
yet specifically modified, version of the con-
ventional UHF scheme. Notice that the UHF
problem is significantly reduced for bipar-
tite systems because of the restrictions im-
posed by a special structure of the matrices
involved. Really, in the UHF case one must
simultaneously solve two coupled eigenvalue
problems — for the Fock matrices f* and
P associated with spin-up and spin-down
one-electron states. These Fock matrices
have a block structure more complicated
than in Eq. (7):

o ;;“0'3 ©
“A B
fB= B+ _Cj,
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where [ is a slightly modified previous ma-
trix B, and now non-null diagonal blocks A
and C introduce additional intersite effects.
All the blocks in Eq. (10) now depend on
Py, and o (see the last two equations in [2]).
However, qualitative reasoning and numeri-
cal examples tell us that B is not essentially
different from B, and off-diagonal elements
of A and C give mainly the second order
effects. Thus, in addition to B, the most
important are diagonal matrix elements A
and C,, in A and C, respectively. All AHM
can be roughly putted the same constant
value, say 8, and, analogously, Cop = -90.
With this, 8 is treated as a fitting parame-
ter. As a result, we arrive at the effective
Hamiltonians matrices

fr=hpd B =pd, (10)
where a new Huckel Hamiltonian 4% is of
the form

w8 B (11)

Bt I

This Hamiltonian has previously ap-
peared in the usual (that is, correlation-
free) Huckel theory for describing systems
with two different types of sites in bipar-
tite-like lattices (e. g., in the hexagonal
boron nitride "white graphite”). Some gen-
eral relations for such systems were given
in [81]. In our case, however, the meaning
of Y is quite different. By the pair of effec-
tive Hamiltonians in Eq. (10) we introduce
correlation effects for usual bipartite lat-
tices with the same type of sites in lattices.
On this account, § is only an assisting pa-
rameter which artificially introduces elec-
tron correlation effects into the TB formal-
ism. Nevertheless, formal relations from
[31] are applicable and useful in the present
context; for instance, we have

D = (12)
_( 1+3@% +BBY™ B2 + B'B) ¥
82T + B*B) 2B+ I - 8(32I + B*B) 2|

which extends Eq. (8) to systems with the
Huckel Hamiltonian 4% from Eq. (11).

We are now in a position to elucidate the
solution of the EUE problem within the
QCTB model. From Egs. (10), (12) we infer
that

o =D§/2, pp=D5"/2. (13)

Then, Eq. (4) is easily specified to be
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D= I B(32I + B*B) "2\(14)
(82I + B*B) 2B+ I ’

and the problem of diagonalizing it is a
standard one. The resulting NOON spec-
trum is

M =1+¢g/V8% +¢?, (15)
A =1-¢/V8% + €2,

where nonnegative quantities 8i5|8i| are
eigenvalues of (BTB)!/2, that is {g;} is the
bipartite graph spectrum. The same {g;}-
spectrum is precisely the Huckel energy
spectrum (in modulus) which is generated
by matrix (7). Thus, in accordance with Eq.
(2) we have

n

i=1

or explicitly:

n (16)
Neff: N - 228i/ V62 + 8i2'

i=1

This simple working expression permits
us to compute the main EUE measure di-
rectly from Huckel energy spectrum which
is very easy to find either analytically or,
most frequently, numerically.

For instance, let us consider the polyace-
tylene (polyene) chain [-(CH=CH)-], as a
paradigmatic example of strong correlation in
the physics of conjugated polymers [32, 33].
Its Huckel spectrum (see any quantum chem-
istry textbook) is ¢, = 2cos[nk/(2n + 1)]. For
the case of n — o computations on Eq. (16)
are in fact trivial, leading to

Nojs = N(l — Zaresin[1/VT + 62/4]} (")
T

From this equation we see that in the
limit of large & (very strong correlation ef-
fects) the EUE index N, — N, as it should
be. Recall that in this problem N = 2n is a
number of carbon atoms in the polyene
chain, that is the number of m-electrons, so
the value N ;= N corresponds to breaking
each of m-bonds, when all m-electrons are
unpaired.

Before ending this section it is worth
mentioning other approaches which have
much in common with the QCTB scheme
[12]. If we take the EUE issues apart, the
most similar to our method is the earlier
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approximate one-parameter UHF theory [34]
which is based on somewhat different
grounds. In fact, in [34] the conventional
UHF scheme within TB is also a starting
point, and the bipartite structure (7) is
taken account as well. At the same time,
the main deficiency of the UHF theory re-
mains untouched. To be more definite, the
simplified UHF solutions of [34] exist only
for systems with sufficiently strong correla-
tion effects. This differs from our scheme
in which one can always obtain nonzero cor-
relation effects by a suitable choice of the
fitting parameter 8. However, for very
strongly correlated systems, QCTB and the
approximation scheme [34] should be virtu-
ally equivalent. Another interesting paper
is [35] where, if deleting insignificant
terms, the one-electron Hamiltonian matrix
is introduced in the form (11) [see loc cit,
Eq. (11)]. However, an analogue of & has
there indefinite origin, and in [35] no corre-
lation effects are involved within this spe-
cial one-electron TB model. Few words
should be added about our parameter §. For
the systems described below, we made use of
8 =17/24 (in the |By| units). It was obtained
from fitting the QCTB results to the more
reliable data given in [18] (small polyacene
systems, such as tetracene and pentacene,
were used). If needed, one can make a simi-
lar fitting procedure for other structural
classes.

5. Testing and applying QCTB
model to conjugated polymers

It is necessary now to study the accuracy
and applicability of the developed model. To
this end, we performed comparable calcula-
tions of N, for several typical m-conju-
gated hydrocarbons (see Table 1). For large
systems a more suitable is the Netr value
per electron, that is the index

Neff:Neff/N’ (18)

which will serve us as the main EUE char-
acteristics. Most examples for Table 1 are
taken from [18] where numerical data for
several high-level approximations are given.
Furthermore, additional systems were also
considered, and they are included in Table
1. Judging from the previous results [18],
the coupled cluster doubles (CCD) theory
(with using the RHF reference determinant
of UHF natural orbitals [22]) is the most
reliable one among the other affordable
schemes for comparably large systems
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Table 1. Comparison of the EUE index Neff
calculated with the UHF, QCTB, and CCD
n-electron approximations.

System UHF QCTB CCD
Anthracene = 0.046 0.049
Tetracene 0.044 0.055 0.055
Pentacene 0.061 0.062 0.061
Hexacene 0.070 0.068 0.065
Bisanthene 0.056 0.059 0.057
Pyranthrene 0.036 0.050 0.049
Perylene = 0.046 0.045
Terrylene 0.024 0.050 0.046
Zetrene 0.058 0.060 0.059
Phenanthrene =0 0.036 0.043
Picene =0 0.038 0.043

treated in [18]. Thus, when inspecting Table 1,
one must compare between the QCTB and
CCD results first of all. We see that QCTB
typically provides a quite satisfactory de-
scription of EUE. Moreover, QCTB also
gives reasonable semiquantitative results
for the systems with small electron correla-
tion effects, where the conventional UHF
methods inevitably fails (see examples with
Neff::O in Table 1).

It would be interesting as well to com-
pare QCTB against existing ab initio
schemes. Unfortunately, a direct compari-
son seems to be not achievable due to a lack
of details in the most published works. But
some principal features of different ap-
proaches can be observed. For definiteness,
take such an important characteristics as
the NOON spectrum which is given in many
papers on the EUE problems [16-18]. In
particular, the hexacene molecule and its
oligomeric structures of periacene type were
studied within the quite reliable averaged
quadratic coupled cluster scheme with a
basis set of double zeta quality [17]. The
needed NOON spectra are graphically dis-
played in Fig. 8 of loc cit. Our plots within
the QCTB scheme are presented in Table 2.
From comparing these two sets of data we
observe their surprisingly close resemblance
(e. g., in the case of the last system, the
occurrence of two A; (=1.02 and =0.98-0.99 in
our plots), that is quite near 1, and clearly
corresponds to almost unpaired electrons).

We are now apply the proposed method
to the generic m-conjugated polymers and
simplest graphene nanoribbons (GNR). For
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Table 2. The EUE index Nef and discrete
NOON spectrum {A;}; ;<5 for some structures
based on hexacenene subunits. Here N is the
number of carbon atoms.

System N | Ny

78 | 0.067 26 52 78

NOON spectrum

NOON
2

some of them the corresponding Huckel
spectrum is analytically know, for other the
spectrum can be computed numerically by
the conventional energy band theory. We
restrict our study to polyacetylenes,
polyacene, 4-ZGNR (see, e.g., [36] about no-
menclature of graphene nanoribbons), and
poly(perianthracene). All these polymeric
structures are displayed in Table 8 where we
introduced the alternation parameter 1. The
bond length alternation in the carbon chain is
normally taken into account by using hopping
integrals B, ,,; = [1 + (-1)**In]By, where 7
is usually small quantity (we put n = 0.07).
Then, for the polyacetylene the Huckel spec-
trum, which is obtained by Lennard-Jones
[37], is of the form

e, =V2[1 + 12 + (1 — n2)cosnk]'”2,
k [1+m n%) ]

and 0<k<1. For the polyacene (the third sys-
tem in Table 3), in accordance with Coulson
[38],

£, = [1 +(9+ SCosnk)l/z]/2,

For obtaining the electronic m-band struc-
ture in the 4-ZGNR and poly(perian-
thracene) [the last two systems in Table 3]
we employed the computer program from
[39]. As seen from Table 3, for all polymer
chains, except the polyacetylene with alter-
nating bonds and poly(perianthracene) [the
last structure in the Table], we find con-
tinuous spectrum covering the whole inter-
val [0, 2]. Particularly, in polyacene and
4-ZGNR a crowding effect is observed for
the NOON spectrum near 1. In this case, it
would also be helpful to analyze the density
of natural orbitals in the vicinity A; = 1. To
do this, one can follow the technique famil-
iar from the band theory [40]. However,
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Table 8. The Neff index and continuous
NOON spectrum A(k) (0 <k <1) for infinite
n-conjudated polymer chains.

Polymer ]VCH NOON spectrum
2
S~ 1
(n=0) 0.092
‘ 05 1
e
Rr% N
o 0.076 | 1
(n=0.07) \
' 05 1
2
N /-\.
0.098 | 1
' 05 1
. 0.086 | 1
1 A
S 0.5 1
0.041 | '
L
Q 05 1

this aspect of the EUE theory is beyond the
scope of the present paper. The above en-
hance of polyradical character in polyacene
and 4-ZGNR essentially distinguishes the
latter from the polyacetylene (with alternat-
ing bonds) and from poly(perianthracene).
There is a gap in the NOON spectrum for
them, and no crowding A; near a "polyradical
range”, that is near 1. It is interesting that
significant difference in the N, index be-
tween the 4-ZGNR and poly(perianthracene)
can be easily understood in terms of Clar’s
aromatic sextet theory (see, e.g., [41]).

The obtained results can be additional in-
terpreted in terms of antiferromagnetism.
The such terminology is frequently used
when analyzing mn-conjugated polymers [32,
36, 41-44]. However, the nature of antifer-
romagnetism for the overall singlet state is
not so simple as in the case of molecular
ferromagnetism [32, 42, 45]. Indeed, even a
local spin density is absent in the singlet
state. Hence no conventional Neel-like spin
structure is possible for single molecule in
its singlet state. If so, we cannot introduce
as usual the antiferromagnetic order pa-
rameter (such as average difference of spin
density between neighboring atoms). We as-
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sume that for the correlated singlet states,
spin density matrix should be replaced with
EUE matrix (3). Then, for polymer struc-
tures, index N,/ can serve as a new order
parameter. This index satisfies inequality:
0 < N, <1, that is natural to expect from
the order parameter (in our case N,; =1
corresponds to the full Neel state with the
maximal "spin” value in each sublattice of
the bipartite structure). The above sug-
gested interpretation introduces an obvious-
ness in understanding EUE for bipartite
network structures. Furthermore, by adopt-
ing this reasoning, one can invoke the best
spin-polarized (UHF-like) solution which
may be constructed for any good-quality
wave function (see [46] for the appropriate
algorithm). It makes it possible to reinter-
pret even the exact wave function in terms
of the N, index as the order parameter
which is able to characterize a hidden antif-
erromagnetic nature of the state under
study.

6. Unpairing in graphene
nanoflakes

As was stated in [47], "Graphene is a
rapidly rising star on the horizon of materi-
als science”, and, it seems that this rise will
be sustainable [41, 48—50]. A large part of
current interest in this field relates to gra-
phene nanoribbons, nanoislands, nanowig-
gles and other unusual honeycomb struc-
tures [51], that is also bipartite lattices. In
this section we apply QCTB to the large-
scale m-electron systems mimicking gra-
phene nanoflakes (small pieces of graphene
[61-55]). We start with the graphene nan-
oflakes having hexagonal honeycomb lattice.
An initio calculations of such small-sized
nanoclusters were recently performed (e.g.,
see [41, 52, 54]. By using the proposed, al-
though rough, approach we are able to ex-
amine surely larger systems using easy com-
puter software with not powerful hardware
(e.g., laptops).

We restrict our study to nanoclusters
with N ~ 103 (see Table 4). The first three
systems in Table 1 are of the class of nan-
oflakes with the Dg, symmetry (hexagonal
graphene nanoflakes). Two distinct types of
the hexagonal nanoflakes are known: those
having armchair edges (as in the first sys-
tem in Table 4) and those having zigzag
edges (as in the second and third structures
in Table 4). From the displayed results we
can tell that large armchair and zigzag hex-
agonal nanoflakes have a small difference in
energy stability, but a significant difference
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Table 4. The TB energy, E°, and QCTB energy, E, both per electron, and the EUE characteristics

for the graphene nanoflakes. Ng‘f’;"d is analogous to N tor border atoms; Ng# is the same for the

outer border atoms, and Nﬁ,’};l for the inner border atoms.

0 ol AT A rbord X 7out A7l
Nanocluster E E N N N N g

B3

-1.553 | -1.589 | 0.040 | 0.047 | 0.047 -

-1.551 | -1.589 | 0.050 | 0.112 | 0.112 -

-1.589 | -1.578 | 0.055 | 0. 106 | 0.112 | 0.089

-1.550 | -1.587 | 0. 046 | 0.078 | 0.078 -

-1.542 | -1.580 | 0. 048 | 0.073 | 0.078 | 0.060
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in EUE characteristics. In the zigzag nano-
clusters (C;359 and Cqpgg in Table 4) more
electrons are unpaired, and these unpaired
electrons are preferentially localized on bor-
der (edge) atoms. The similar picture was
observed in small clusters studied in [17,
18]. The last two systems in Table 4 repre-
sent the graphene ribbon-like clusters with
zigzag edges (but with armchair edges in
the lengthwise boundary). In these clusters
the EUE effects are also more pronounced
than in its hexagonal armchair structure
(such as Cq39, in Table 4). The presence of a
pore enhances the EUE effects (as in Cq5q)-
Notice that a moderate irregularity of the
edge structure leads to small difference, but
details will not be discussed here because of
lack of space. Based on the EUE localization
index Neffb"rd (sum of atomic EUE occupan-
cies divided by a number of the border
atoms) we can state that the zigzag edge
atoms more unstable, or more reactive, than
the armchair edge atoms, and thereby the
armchair nanoflakes more stable in full ac-
cordance with experiment ([565], p. 382).
The main chemical features of the boundary
atoms in graphene molecules are recently
clarified in papers [56] (their analysis takes
off from the idea of Coulson about pseudo-
carbene and pseudo-carbine types of edge
atoms). The final conclusions in [56] are
also in line with [55], and with our consid-
eration of the EUE characteristics as spe-
cific indicators of the chemically active
boundary atoms.

As the last application of the EUE indi-
ces we briefly consider the behavior of gra-
phene mnanoclusters in strong magnetic
fields. For small m-systems the related prob-
lem was recently considered in [57] but
without the detailed EUE analysis. Here we
study the hexagonal nanoflake Cy35q and
the nanoflake C55q with a single pore (i.e.,
the second and third systems in Table 4). In
our computations the conventional London
gauge-invariant orbitals [58—-60] are used
within TB (in fact, London’s approximation
is equivalent to the so-called Peierls substi-
tution [61]). It is important that in the Lon-
don-Peierls approach the magnetic field
modifies only hopping integrals. So, block
structure (7) is unchanged, and most of our
expressions, such as Egs. (14)-(16), hold
true (about alternant m-systems in magnetic
fields see also [4]). The obtained results for
the magnetic-field dependence of the spe-
cific energy index E (E==10 in the zero
field point) and the EUE index N, are dis-
played in Table 5. We see that the electron
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Table 5. Dependence of the relative energy E
and the EUE index Ne , on the magnetic field
H in the hexalonal graphene nanoflake C,z5
and its nanopore Cyyy, within the QCTB
scheme.

Nanocluster E Ny
E Neff
0.057 0.123
Claso /’v\/\/
0.04
H H
E Neff
0.054 0.127
Ci200
0.055
H H

unpairing and the diamagnetism (increasing
the specific energy E in the field) are sig-
nificantly increased in the nanoflakes under
the strong field. And again, the role of the
boundary is also important as computa-
tions of the bond currents I, (see [60] for
definition) show it. We find that Iwm“x, ie.
the maximum of I v corresponds to the bond
u—v situated on the boundary. Specifically,
I1,,"* = 0.90 for Cy359, and I1,,"%% =0.92
for Cqpqg (all values are given in the units
of ring current in the benzene). Interest-
ingly, in the latter system the maximal cur-
rents are attained on the inter boundary
which forms the pore.

7. Conclusions

In this work, we proposed a very simple
electronic model for bipartite lattices which
frequently occur in practice. The method is
based on a simple modification of the bipar-
tite graph spectrum (in fact, on the modifi-
cation of the equivalent Huckel energy spec-
trum). It allows one to treat the giant cova-
lent networks such as graphenes and use for
unpaired electrons the existing energy band
spectra within the non-interacting TB
framework. The standard diagonalization
procedures can be typically applied when
analytically derived TB energy spectra can-
not be produced. The examples of various
nanoflake structures (which are computed
here by using a very modest hardware) dem-
onstrate possibilities of the proposed
scheme. In the computations we made stress
on the EUE characteristics. These cannot be
studied in principle with the customary one-
electron TB model, because the unpairing of
electrons in singlet states is a purely elec-
tron correlation effect. Our calculations of
large nanoclusters support the observations,
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which were obtained by others using sophis-
ticated techniques for moderate-size sys-
tems, about a difference between the zigzag
and armchair graphene molecules. We also
examined influence of the external mag-
netic field which turned out to make a very
significant increase of electron unpairing.
In future we will continue to investigate
QCTB in various ways. One of the issues is
a choice of parameter & in the effective
Hamiltonians from Egs. (10, 11). Evidently,
it is necessary to seek a more systematic
method than used here and based on a
rather primitive fitting scheme. Further,
there are additional, almost trivial, possi-
bilities for extending QCTB to the bipartite
lattices where one of the sublattices is occu-
pied by one type of atom and the other
sublattice is occupied by another type of
atom (as in the white graphite). It is also
worth examining the behavior of large gra-
phene nanoclusters in strong nonstationary
fields, and QCTB can serve as a possible
starting tool for handling simply and
quickly the such challenging problems.
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