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Thin 3He-4He physisorbed films are examples of strongly interacting, quasi
two-dimensional, fermion-boson mixture systems. The properties of the
mixture systems can be tuned by changing the substrate or the 4He film
thickness. In this paper, we discuss the ground-state and magnetic ground-
state of the 3He subsystem and also the interactions between the excita-
tions of the 4He superfluid film with the single-particle excitations of the ad-
sorbed 3He. The ground-state of the 3He system is calculated using a mod-
el for the 3He-3He effective interaction in the static 4He film which explicitly
includes the effective interaction due to exchange of virtual film excitations
(ripplons). This latter effective interaction is evaluated in the random phase
approximation and is shown not to be capable of causing the 3He system
to be self-bound. We discuss the evidence from magnetization, third sound
and heat capacity measurements that the 3He first transverse excited state
is being occupied prior to monolayer completion.
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1. Introduction

In recent years, there has been considerable effort in trying to understand the
properties of 3He-4He mixture films [1]. There have been surprises along the way.
One of the most interesting was the realization that in these thin films the 3He
transverse excited states are occupied at submonolayer coverages. The occupation
of these states affects the equation of state, the hydrodynamic response and the
response to magnetic and thermal probes. In this paper we shall discuss first excited
state occupation both from the point of view of a semi-phenomenological microscopic
calculation and also an analysis of existing magnetization data. We shall also discuss
recent third sound experiments and the role that they play in this analysis. The first
attempt to examine the transverse bound state structure of a single 3He atom in
a 4He superfluid film was reported by Gasparini et al. [2]. These authors adapted
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the Lekner [3] type of approach developed by Mantz and Edwards [4] for the bulk
4He surface. For 4He films of 13.0 Å and 15.3 Å thickness they found that the level
spacing from the ground-state to the first excited state, ∆, was 2.88 K and 2.76 K
respectively. If the 3He is modeled as an ideal quasi-particle gas with effective mass
m∗

3, then the value of the 3He areal density, σ3, when the Fermi energy is equal
to the level spacing is given by σ3F = (∆ m∗

3/π~
2). If we use m∗

3 = 1.38m3, the
hydrodynamic effective mass, then the level spacings calculated in [2] correspond to
densities of 0.079 Å−2 and 0.076 Å−2, respectively. The conventional areal density
corresponding to monolayer completion, σmax = (n◦

3)
2/3 = 0.065 Å−2, where n◦

3 =
0.0165 Å−3 is the bulk 3He number density. Thus the results of [2] predict that, at
temperatures low relative to the Fermi energy, there should be no 3He occupation
of the first transverse excited state before monolayer completion.

Sherrill and Edwards [5] used a more elaborate version of the Mantz and Edwards
theory [4] where some adjustable parameters used in [2] were eliminated. They calcu-
lated the ground-state and first excited state energies as a function of film thickness
and showed that for thin 4He films the influence of the substrate van der Waals
potential is important. For thin films, the attractive substrate potential causes both
the ground-state and first excited state energies to decrease rapidly. The ground-
state decreases faster than the first excited state and so the level spacing increases

as the film becomes thinner. Anderson and Miller [6] using a semi-phenomenological
effective interaction for the 3He in the film also calculated the ground-state and
excited state energies as a function of film thickness and found, in agreement with
[5], that the level spacing increases with decreasing film thickness. We note that the
value of the level spacing when σ3F = σmax is ∆F = 2.4 K which is quite close to the
spacing of the 3He surface state on bulk 4He relative to the 3He chemical potential
in bulk 4He (2.22 K). For ∆ > ∆F we expect no occupation of the first excited state
before the first monolayer is completed. The results of the single-particle calcula-
tions, [5] and [6], thus indicate that for thin 4He films there should be no occupation
of the first excited state prior to monolayer completion

In the most elaborate set of calculations of the single-3He properties in a 4He film
to date , Krotscheck, Saarela and Epstein [7] solved a coupled variational problem
for both the film and the adatom in the substrate potential. The major difference
between their system and those considered in [5] and [6] is that the 4He film took
on realistic transverse structure and was not simply treated as a slice of the bulk.
For the thinnest film that they studied, they reported a level spacing ∆ = 3.09 K.
This means σ3F = 0.085 Å−2 which once again predicts that the first excited state
will not be reached before monolayer completion.

On the experimental side, Higley, Sprague and Hallock [8] using magnetization
measurements on a mixture film system adsorbed on Nuclepore filter, showed un-
ambiguously that, for this substrate, the 3He is promoted to the first excited state
at coverages far less than a completed monolayer. These results were confirmed in
third sound measurements by Sheldon and Hallock [9] as pointed out by Anderson,
Miller and Hallock [10]

In section 2, we shall give a brief overview of the ground-state theory as developed
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by Anderson and Miller [6,11]. In [11], Anderson and Miller generalized the approach
in [6] to include the presence of 3He transverse excited states. One product of this
approach was a density dependent level spacing, ∆, due to the effective interaction
between 3He atoms and due to the exchange of virtual film excitations, ripplons, and
is denoted by the one ripplon exchange potential (OREP). The value of ∆ decreased
with increasing 3He coverage thus providing theoretical support for the experimental
observation that first excited state occupation occurs prior to monolayer completion.

We note that an alternative way to view this mechanism is from Landau’s Fermi-
liquid theory. The OREP contributes to the residual 3He-3He quasiparticle interac-
tion. This may yield an effective mass, m∗

3, with strong density dependence. Then
one would interpret a density dependent level spacing as simply the manifestation
of the density dependence in the effective mass. Calculations of the Fermi-liquid
parameters are in progress [12].

In section 3, we shall give a brief description of the magnetization measurements
and, in the ideal quasi-particle limit, derive the coverage dependence of the excited
state population. In section 4, we discuss the effects of the 3He transverse state
occupation on third sound, the 4He film’s hydrodynamic modes. Section 5 is the
conclusion.

2. 3He ground-state (the OREP)

We consider a film with N4
4He atoms and N3

3He atoms which is physisorbed
to some solid substrate which occupies the lower half space (z 6 0). The 4He film
occupies area A and, in equilibrium, is laterally transitionally invariant. The film
has thickness d. (d can be defined as the height of a mobile layer above the substrate
surface as measured in a third sound experiment.)

The model Hamiltonian [6,11] can be written

H = H4 +H3 +H34, (2.1)

where

H4 =
∑

k

~Ωk

[

b†kbk +
1

2

]

, (2.2)

H3 =
∑

k,µ

ǫk,µa
†
k,µak,µ, (2.3)

H34 =
1√
A

∑

k,m

(Γµν
m a†k+m,µak,νbm + Γµν

−ma†k,µak+m,νb
†
m). (2.4)

H4, equation 2.2, is the 4He film Hamiltonian. The frequencies, Ωk are third
sound/capillary wave modes and are defined in [6,11]. H3 is the Hamiltonian for
a noninteracting 3He system embedded in the 4He background. The 3He single par-
ticle states can be factored into a lateral, quasi-continuum of plane waves times
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transverse, discrete single-particle states. Thus the energies can be written:

ǫk,µ =
~
2k2

2m∗
3

+ εµ, (2.5)

where the εµ are the eigenenergies of a single-particle-like Schrödinger equation:

− ~
2

2m∗
3

ϕ
′′

µ(z) + v3(z)ϕµ(z) = εµϕµ(z). (2.6)

v3(z) is the single particle, effective interaction due to the substrate and background
4He film. H34, equation 2.4, is the lowest order 3He-4He interaction. The vertex
functions, Γµν

m , for the 3He-ripplon scattering between transverse states labelled by
the superscripts, are determined by matrix elements for a model of the 3He-4He
effective interaction. The single particle effective interaction, v3(z), introduced in
equation 2.6 is determined by the same model effective interaction. Such a model
is introduced and discussed in detail in [6,11]. In figure 1 we illustrate the vertex
function Γ00 (q) calculated for a 4He film thickness of 12.3 Å.
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Figure 1. The vertex function Γ00(q) calculated as described in [6] for a 4He film
of thickness 12.3 Å.

Utilizing standard equation of motion methods [6] it is straightforward to deter-
mine from equation 2.4 the third-sound-mediated 3He-3He interaction (the OREP).
The OREP is given by

V αγβδ
OREP (q, ω) =

Γαβ (q) Γγδ (−q)

~

[

1

(ω − Ωq + iη)
− 1

(ω + Ωq − iη)

]

, (2.7)
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where, as above, the Γαβ (q) are the vertex functions, and the quantity in square
brackets is the (time-ordered) free ripplon propagator.

In [11], we combined the OREP with an effective direct 3He-3He interaction (a
softened Lennard-Jones) to compute the ground-state energy and free energy in the
thermal Hartree Fock approximation. The energy showed no sign of a van der Waals
loop which we interpreted as indicating that no gas-to-liquid transition has occurred.

In the equation of state calculations described above only the static limit of the
OREP was used. In recent work [13,14] which we shall describe below, we have
investigated the contribution to the ground-state energy from the fully frequency
dependent OREP in the random phase approximation (RPA). The zero temperature
RPA contribution to the ground-state energy of a 2D fermion system is given by [15]

∆ERPA = − i

2

A~

(2π)3

∫

d2q

∫ +∞

−∞

dω
{

ln
[

1− V (q, ω)Π0 (q, ω)
]

+ V (q, ω)Π0 (q, ω)
}

, (2.8)

where q is the 2D momentum, ω is the frequency, V (q, ω) is the Fourier transform
of the interaction potential, Π0 (q, ω) is the 2D free fermion polarization propagator,
and A is the area of the system. The potential used in this calculation is the OREP
given by equation 2.7.

The RPA energy comes from the imaginary part of the integral as seen by the
presence of the factor i in front of the integral. The linear (nonlogarithmic) term
in equation 2.8 can be evaluated by straightforward numerical integration. We note
that the imaginary part of VOREP has Dirac delta-functions which pin the frequency
to the ripplon frequency or its negative.

The logarithmic term was evaluated for a finite box model of the fermion system.
A square box of length L such that A = L2 was chosen. The polarization propagator
then becomes a discrete sum over a finite number of single pole terms which are
equally spaced along the real ω axis. Consecutive poles are spaced by the separation,
∆ω, where ∆ω = (2π~/mL) q. Consequently the argument of the logarithm, 1 −
V (q, ω)Π0 (q, ω), assumes an analytic structure similar to that of the polarization
propagator. The ω integral of the logarithmic term accumulates an imaginary value
whenever the real value of the logarithm is negative. The imaginary value of the
logarithm is either +iπ or −iπ according to whether the branch cut is approached
from above or below the real ω axis as determined by the infinitesimal imaginary
part of the denominator in the propagator. The integral of the logarithmic term
becomes, therefore, the product of ±iπ and the sum of the segments of the ω-axis,
δiω, for which Re {VOREP (q, ω)Π

0 (q, ω)} > 1. The logarithmic term in the RPA
energy can be written

±1

2

(

~

2π

)

∑

q

∑

poles

πδiω. (2.9)

The sum of the δiω segments reduces to a compact formula in the limit of large
area, A, of the normalization box. We note that the i subscript labels a particular
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pole in the polarization propagator. The final form for the logarithmic contribution
to the RPA energy, after symmetry of the ω-dependence is considered, can be written
as

(

~

2π

)

∑

q

∑

ωi>0

tan−1

[

2πηiVOREP (q, ω)

A~∆ω

]

∆ω. (2.10)

The quantity ηi is a degeneracy factor which counts the number of states which yield
identical contributions to the frequency integral for a given value of the wavevector
q. Explicit expressions for the degeneracy factors can be found in [14]. We note that
in the limit L → ∞ the degeneracy factor per unit length, ηi/L, is nearly the same
for the ith pole and its neighbouring terms. The final form shown for equation 2.10
is obtained by treating ηi as a common multiplier.

The contribution of this expression was obtained numerically. Successively great-
er values were assigned to the box length L until further increase did not alter the
first two significant figures. A value of L on the order of a few thousand Angstroms
was found to be sufficient.

There is one additional contribution to the RPA energy which we have not men-
tioned yet and it is only present for a potential whose real part is positive. For VOREP,
in the asymptotic frequency regime beyond the last pole, i.e. ω > ωmax, there is a
zero sound contribution for frequencies greater than the ripplon frequency, ω > Ωq.
There are two cases to consider Ωq < ωmax and Ωq > ωmax. These are discussed in
[14].

For the numerical results to be discussed below, we use the transverse, ground-
state matrix elements for VOREP (q, ω). That is, we set α = β = γ = δ = 0 in
equation 2.7. Thus this model calculation is only strictly valid for the density regime
below the onset coverage for first excited state occupation. For a 3.67 layer superfluid
4He film on a Nuclepore substrate, the first excited 3He transverse state begins to
be occupied at a coverage of 0.6 monolayers (≈ 0.04 Å−2).

In figure 2, we show the RPA energy per particle as a function of 3He density
for VOREP with its full frequency dependence and also in the static limit. We note
that frequency dependence may have an important effect on the magnitude of the
correlation energy. In the density range of interest, the RPA energy obtained with
the static VOREP is always negative and less than the RPA energy obtained with
the dynamic VOREP. Indeed, the inclusion of explicit frequency dependence in the
potential causes the RPA energy to be positive in the density range of interest. We
note that neither set of results has appreciable density dependence.

Finally we note the importance of using the time ordered form for Π0(q, ω). This
is especially clear for a real static potential where the product V (q) Im Π0(q, ω) is
an even function of ω for the time ordered propagator but is odd for the retarded
form.
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Figure 2. The RPA energy for the OREP as a function of density. The upper
results are for the fully frequency dependent VOREP and the lower results are for
the static limit as discussed in the text.

3. 4He film excitations: third sound

In [16,17], it was shown that the expression for third sound in a 3He-4He mixture
film at very low temperatures is given by

(

c23
c23◦

)

cont. growth

= 1− n◦
3

n◦
4

[

1−
(

1 +
hu

h4

)−4
]

, (3.1)

where n◦
3 and n◦

4 are the bulk 3He and 4He number densities, respectively and the
quantity c23◦ = − (h4 − h◦) fℓ (h4) is the third sound speed for pure 4He. This is a
two layer model where the 3He is confined to the upper film of thickness hu and the
superfluid 4He is in the lower mobile layer of thickness h4 − h◦. h◦ is the thickness
of the first immobile layers near the solid substrate.

For almost all of the data reported in [16], the 3He upper films were greater than
a monolayer and so adding 3He to the system simply increases hu in a continuous
manner. For a continuous growth model, all of the information concerning changes
in the third sound speed due to the addition of 3He to the system is contained in the
magnitude of hu. For submonolayer 3He, this model may not be sensible. Adding 3He
atoms in that case changes the areal density in the surface ground-state but does
not affect the “thickness” of the film, a quantity which is fixed by the transverse
extent of motion of the adsorbed 3He atom. If we try to take account of the quantum
mechanical transverse motion of the 3He atom from the beginning then we are led
to a picture different from a classical continuous growth model. We can imagine a
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Figure 3. Third sound squared as a function of 3He coverage. The triangles are
the data of Sheldon and Hallock [9] and the line is the ground-state theory of
equation (3.2). The change in slope at a coverage of 0.6 is the onset of excited
state occupation.

“box” of area A and thickness hu. As
3He is added to this “box” the only effect at

low densities is to change the ratio of the mass density in the upper film to that of
the lower film.

Thus, in this picture, we find [10]:

(

c23
c23◦

)

◦

= 1−∆ℓ◦θ3, (3.2)

where θ3 = (σ3/σ3max) is the coverage in units of monolayers, σ3max = (n◦
3)

2

3 ≈

0.065 Å−2 is the areal density at monolayer completion, and the slope is given by

∆ℓ◦ =
n◦
3

n◦
4

[

1−
(

1 +
hu

h4

)−4
]

. (3.3)

In the low coverage regime where the 3He only occupies the transverse ground-state,
c23/c

2
3◦ should be a linearly decreasing function of the coverage with a slope given

by equation (3.3). We note that the slope ∆ℓ◦ depends only on the thickness of the
superfluid film and is independent of the substrate.

In figure 3 we compare equation (3.2) with the experimental data of Sheldon and

Hallock [9]. In this system, h4 = 3.67ℓ4, and ℓ4 = (n◦
4)

1

3 = 3.6 Å, is the thickness of
one 4He monolayer. Excellent agreement with the experimental data is obtained by
fixing the parameter hu = 3.9 Å. The parameter hu is a measure of the thickness of
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the 3He transverse ground-state probability density and we note in passing that this

particular value for hu is the conventional 3He layer thickness ℓ3, where ℓ3 = (n◦
3)

1

3

= 3.9 Å. Thus, with hu = ℓ3, we find ∆ℓ◦ = 0.5, which is in excellent agreement
with the experimental data. We note that the continuous growth model also shows
a linear decrease in c23 with increasing coverage in the low coverage limit. In that
case the slope is given by ∆cont. growth = (4σ3max/n

◦
4h4), and for the system of [9],

∆cont. growth ⋍ 0.9, nearly a factor of two in disagreement with experiment.

The third sound experimental data in figure 3 shows a change in slope at a
coverage ≈ 0.6. We interpret this change in slope as the signal of the onset of
occupation of the first excited state. The fact that the slope bends up in figure 3,
that is, the third sound speed increases relative to what the third sound speed would
be if all the 3He were in the ground state, is an important constraint on models for
third sound in this region. A second constraint, as will be discussed in section 4,
comes from an analysis of the magnetization step data of [8,18,19].

There have been a number of calculations of the wave functions for the 3He
transverse excited states [5–7]. The first excited state wavefunction has a larger
transverse extent than the ground-state, which we interpret as a larger value for the
parameter hu. The change in the value of hu affects the third sound speed in two
ways. First, by increasing the thickness of the normal fluid layer, the third sound
speed is decreased. Second, by decreasing the mass density in the normal fluid layer,
the third sound speed increases. For agreement with experiment, the latter effect
must dominate the former.

4. 3He transverse excitations: magnetization

In [12] a simple ideal quasi-particle picture is introduced to explain the magne-
tization steps of [8,18,19]. We apply a uniform magnetic field of strength H0. The
quasiparticle energies are given by

ε0↑ = ε00 +
~
2k2

2m∗
0

− µNH0,

ε0↓ = ε00 +
~
2k2

2m∗
0

+ µNH0, (4.1)

where µN = 1
2
gβ, g is the Landé g-factor and β = e~/2mc is the Bohr magneton.

The subscript 0 on the ε’s and the m∗ labels the transverse ground-state. The first
3He atoms added to the system will have their spins polarized up. When the highest
energy spin-up particle is 2µNH0 above the bottom of the band then the spin-down
Fermi sea will begin to populate. Suppose that this occurs at wavevector k = kL0,
the number density in the spin-up band is σL0 = k2

L0/4π. Equating ε0↑ with ε0↓ at
k = kL0 then yields σL0 = m∗

0µNH0/(π~
2). The total magnetization, M0, is given by

M0 =
m∗

0µ
2
NH0A

π~2
. (4.2)
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Increasing the density will now populate both the spin-up and spin-down trans-
verse ground-state Fermi seas. Thus, the magnetization will be unchanged in this
region and we will form the first step. This continues until the spin-up band of the
first excited state is reached. Thus at k = kR↑ we have ε0↑ = ε1↑ and at k = kR↓ we
have ε0↓ = ε1↑. These yield

~
2k2

R↑

2m∗
0

= ∆, (4.3)

~
2k2

R↓

2m∗
0

= ∆− 2µNH0, (4.4)

where we have defined ∆ = ε01− ε00, the single particle level spacing. If we add these
together we find

~
2 (2πσR0)

2m∗
0

= ∆− µNH0, (4.5)

where σR0 =
(

k2
R↑ + k2

R↓

)

/4π and the R (L) subscript refers to the right (left) hand
limit of the magnetization step. We note that in the absence of an external field, the
first excited state would begin to be filled at an onset density σonset given by

~
2 (2πσonset)

2m∗
0

= ∆. (4.6)

If we substitute σL0 and (4.6) into equation (4.5) we immediately find

σonset = σL0 + σR0. (4.7)

Thus the sum of the densities at the beginning and end of the magnetization step
gives the onset density for first excited state occupation in no external field.

Thus as with the ground-state, the magnetization will continue to increase lin-
early with the 3He density until the bottom of the spin-down Fermi sea is reached.
The total magnetization at that point can be written M = M0 +M1, where

M1 =
m∗

1µ
2
NH0A

π~2
. (4.8)

Thus the increase in the magnetization per unit area before each step is proportional
to the effective mass of the last state that is being filled. If the effective masses are
equal then the magnetization steps are the same size.

Finally, for the ideal gas we can calculate the fractional filling of the first excited
state in terms of the effective masses. Thus, in zero external field, if the density
σ > σonset then

x1 =
N1

N
=

(1− σonset/σ)

(1 +m∗
0/m

∗
1)

. (4.9)

In the case m∗
0 = m∗

1, then x1 =
1
2
(1− σonset/σ) as used previously in [10] and [20].
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5. Conclusion

It was argued by Miller and Nosanow [21] that pure two-dimensional 3He should
be a gas down to absolute zero. In the 4He medium, however, the OREP provides
a mechanism by which the 3He subsystem could undergo a gas to liquid transition.
In this paper we have summarized a new, numerically-based method to calculate
the contribution to the ground-state energy in the RPA of the OREP [18]. We have
concluded that the OREP even with full frequency dependence does not provide a
mechanism for self-binding of the 3He.
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Figure 4. Onset coverage for first excited state occupation as a function of 4He
film thickness. The three low coverage points are from the analysis of the magne-
tization data as discussed in the text. The point at 3.67ℓ4 is taken from figure 1.
The upside-down triangle at 5.274ℓ4 is an uncertain lower limit determined by
an unpublished third sound run.

In figure 4 we plot θonset, the onset coverage, obtained from the three magne-
tization experiments together with the value obtained from figure 1, for the third
sound analysis at 3.67 ℓ4. The magnetization data are from measurements made at
three 4He film thicknesses: 1.77 ℓ4, 2.14 ℓ4, and 2.91 ℓ4 [1,18]. The onset coverages
are determined by an analysis based on equation 4.7. The fit is quite consistent.
The decrease in the onset coverage as a function of increasing 4He film thickness
is due to the increase in the level spacing, ∆, with decreasing film thickness. The
above analysis yields ∆ ≈ 1.9 K, 1.8 K, 1.7 K for the three films, respectively. [For
these results we use m∗

3 = 1.38m3 the hydrodynamic effective mass.] These spacings
are in agreement with the measured values of Alikacem, Sprague and Hallock [18].
We note that there is both experimental, [2], and theoretical, [11], evidence that
∆ seems to be a function of θ3 in addition to h4. We note that in a heat capacity
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Figure 5. First excited state fractional population as a function of 3He coverage.
The line labelled fermi gas is from equation 4.9. Model A, Model B and Model

C are models for the third sound speed as a function of different assumptions
concerning the spatial distribution of 3He in the first transverse excited state [20].

measurement made as a function of 3He density at fixed temperature, occupation
of the first excited state will be seen as a step increase in the heat capacity. This
behaviour has been observed by the London group [22] in submonolayer 3He.

A detailed analysis of the third sound speed in the mixture film was given in
[20]. A theory to explain the change in the third sound speed, as shown in figure 1,
after the first transverse excited state begins to be populated, requires fairly detailed
knowledge of the spatial distribution of the 3He in the excited state in the presence

of a dense system in the ground-state. Thus, this is a very nontrivial quantum
many-fermion problem. In [20], we introduced three plausible models for the 3He
distribution and then used the experimental third sound speeds to solve for the
fractional population of 3He in the first excited state as a function of 3He coverage. In
figure 5, we compare these results with the ideal quasi-particle result of equation 4.9.
We note that the third sound models yield first excited state populations that are
larger than the ideal fermi gas model; however, the basic shapes of these curves are
quite similar to one another. Please see [20] for a detailed discussion.
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Властивості тонких надплинних плівок 3He-4He
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Вашингтонський державний університет, фізичний факультет,

Пуллман, WA 99164-2814, США

Отримано 11 серпня 2000 р.

Тонкі плівки 3He-4He є прикладом сильно взаємодіючих, квазідвови-

мірних, ферміонно-бозонних змішаних систем. Властивості зміша-

них систем можуть бути керовані зміною підкладки або товщини плів-

ки 4He. У цій статті ми обговорюємо основний стан і магнітний основ-

ний стан підсистеми 3He, а також взаємодії між збудженнями над-

плинної плівки 4He з одночастинковими збудженнями адсорбовано-

го 3He. Основний стан системи 3He обчислюємо, використовуючи

модель для ефективної взаємодії 3He-3He у статичній плівці 4He, яка

явно включає ефективну взаємодію, зумовлену обміном віртуальни-

ми плівковими збудженями (ріпплонами). Ця остання ефективна вза-

ємодія оцінюється в наближенні хаотичних фаз, і показано, що вона

не є здатна спричиняти самозв’язаність системи 3He. З вимірювань

намагніченості, третього звуку і питомої теплоємності ми обговорю-

ємо свідчення того, що перший поперечний збуджений стан 3He за-

повнюється раніше від завершення моношару.

Ключові слова: надплинні плівки, суміші 3He-4He, третій звук,

ріпплони

PACS: 67.70.+n, 67.60.Fp, 64.30.+t
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