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Microscopic construction of the two-fluid model for
superfluid helium-4
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Using a system of Heisenberg’s equation of motion for both the normal and the anomalous correlation func-
tions a two-fluid hydrodynamics for superfluid helium-4 was constructed. The method is based on a gradient
expansion of the exact equations of motion for correlation functions about a local equilibrium together with
explicit use of the local equilibrium statistical operator for superfluid helium in the frame of reference, where
condensate is in the state of rest.
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1. Introduction

Superfluid behavior is the most striking property of liquid helium-4. The superfluid 4He is a
quantum degenerate system with spontaneously broken symmetry. Its feature is the macroscopic
occupation of the lowest-energy single-particle quantum state or, in other words, it is the presence
of condensate. As a result, the state of statistical equilibrium of the system with spontaneously
broken symmetry depends on eight quantities: particle density ρ, energy density ε, momentum
density ~j and superfluid velocity ~vs. Presence of additional velocity field leads to the two-fluid
hydrodynamics of such a system.

The two-fluid hydrodynamic equations for the superfluid 4He in the phenomenological consid-
eration were constructed by Landau in 1941 [1]. These equations were derived at the microscopic
level by Bogolyubov in 1963 [2].

As a starting point in Bogolyubov’s paper, there is a set of equations of motion for local
quantities (particle density, momentum density and energy density), which easily follows from
Heisenberg equations for both creation and annihilation operators; as well as the equation for
anomalous average 〈ψ〉. Thus, from the latter there follows a hydrodynamic equation for superfluid
velocity.

To perform a transition from formal equations of motion to hydrodynamic equations Bo-
golyubov considered a stage of evolution when it approaches the equilibrium. Then it is possible to
assume that a local equilibrium is established in the system. It is described by the statistical op-
erator with parameters that depend on space coordinates. At the approach to the thermodynamic
equilibrium these parameters are slowly changed in space and time and therefore their gradients
are small. The procedure of expansion by the gradients is formulated by the introduction of the
so-called “parameter of homogeneity” into the equations of motion. Then, expansion in terms of
gradients coincides with expansion by this parameter. Introduction of the parameter of homogene-
ity in Bogolyubov’s paper was carried out in a formal way.

When the conservation relations for the local hydrodynamical quantities are constructed, the
next step is to calculate the hydrodynamical flows in these equations. Bogolyubov calculated the
momentum flux by using a very elegant “scale transformation” method. But the flux of energy
is obtained inconsistently. A more acceptable method of calculation of the energy flux using an
explicit local equilibrium statistical operator was proposed by Morozov [3].
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Our paper is similar to the Bogolyubov’s article [2], but we work with equations of motion
for the correlation functions which are written in the mixed Wigner representation. It permits an
expansion by the gradients to be directly realized with great ease and with rigorous mathematics.

To calculate hydrodynamic flows we use an explicit form for the local equilibrium statistical
operator. But in contrast to Morozov’s work, which operates with statistical operator of the super-
fluid helium at the laboratory reference system, we construct one at the reference system in which
the condensate is motionless. This provides an essential simplification, because in the local frame
of reference moving with ~vs the superfluid component is stopped, then the total current is carried
by the normal component.

We conditionally separate the construction of the two-fluid model into two stages. At the first
stage, using Heisenberg equation of motion for both normal and anomalous correlation functions,
we derive conservation relations for densities of particle ρ, momentum ~j and energy ε, as well as
equation of motion for superfluid velocity ~vs. At the second stage, we express hydrodynamic flows
in conservation relations in terms of the already introduced variables (ρ, ~j and ε).

2. Construction of the two-fluid hydrodynamic equations

2.1. Equation of motion for correlation functions in the mixed Wigner representation

The helium-4 is a typical Bose system with pair interaction. Its Hamiltonian in the second
quantization representation has the following form (we set ~ = 1 throughout this paper)

H =

∫

d~rψ+(~r)

(

−
1

2m
∆

)

ψ(~r) +
1

2

∫

d~rd~r′Φ(~r − ~r′)ψ+(~r)ψ+(~r′)ψ(~r′)ψ(~r), (1)

here ψ+(~r) and ψ(~r) – are the creation and annihilation operators, respectively, Φ(~r − ~r′) =
Φ(|~r − ~r′|) – is interaction potential.

To construct the hydrodynamics of a system with spontaneously broken symmetry we should
proceed from the extended system of correlation functions [5], which is formed both by a normal
and by an anomalous correlation function. Therefore, we will start with the system correlation
functions in the next form

〈ψ+(~r1, t)ψ(~r2, t)〉, 〈ψ(~r, t)〉. (2)

Here, the angular brackets indicate an average at the local-equilibrium ensemble, and the de-
pendence of the creation and annihilation operators on the time is given through a Heisenberg
representation, for instance

ψ(~r, t) = eiHtψ(~r)e−iHt.

Notice, that an average in (2) is treated as quasi-average [4]. For the sake of simplicity, we will
not take “ν ”-term into account which breaks the symmetry of the Hamiltonian (1).

Using the Heisenberg’s equation of motion

i
∂ψ(~r, t)

∂t
= [ψ(~r, t), H ]

−
= −

1

2m
∆ψ(~r, t) +

∫

d~r′Φ(~r − ~r′)ψ+(~r′, t)ψ(~r′, t)ψ(~r, t)

we obtain the equations of motion for correlation functions (2).

These equations are as follows

i
∂

∂t
〈ψ+(~r1, t)ψ(~r2, t)〉 =

1

2m
(∆1 − ∆2) 〈ψ

+(~r1, t)ψ(~r2, t)〉

−

∫

d~r′ {Φ(~r1 − ~r′) − Φ(~r2 − ~r′)} 〈ψ+(~r1, t)ψ
+(~r′, t)ψ(~r′, t)ψ(~r2, t)〉, (3)

i
∂

∂t
〈ψ(~r, t)〉 = −

1

2m
∆〈ψ(~r, t)〉 +

∫

d~r′Φ(~r − ~r′)〈ψ+(~r′, t)ψ(~r′, t)ψ(~r, t)〉. (4)
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The next step will be the separation of gauge-noninvariant multipliers (in fact we will use a
reference system in which the condensate is motionless). Such a separation of the phase has the
form

ψ(~r, t) → ψ̃(~r, t) = ψ(~r, t)eimχ(~r,t).

The separation of the phase transforms correlation functions following the rules

〈ψ+(~r1, t)ψ(~r2, t)〉 = eim(χ(~r2,t)−χ(~r1,t))G(~r1, ~r2; t),

〈ψ(~r, t)〉 = eimχ(~r,t)F (~r; t),

〈ψ+(~r1, t)ψ
+(~r′, t)ψ(~r′, t)ψ(~r2, t)〉 = eim(χ(~r2,t)−χ(~r1,t))D(1)(~r1, ~r2, ~r

′; t),

〈ψ+(~r′, t)ψ(~r′, t)ψ(~r, t)〉 = eimχ(~r,t)D(2)(~r, ~r′; t).

The functions G, F , D(1) and D(2) at the statistical equilibrium state are spatially homogeneous.
At the nonequilibrium states, the functions’ changes will be spatially inhomogeneous.

Then, the equations of motion for G and F are as follows

{

i
∂

∂t
+mχ̇(~r1, t) −mχ̇(~r2, t)

}

G(~r1, ~r2; t)

= −
1

2m

[

(~̂p1 −m~vs(~r1, t))
2 − (~̂p2 +m~vs(~r2, t))

2
]

G(~r1, ~r2; t)

−

∫

d~r′ {Φ(~r1 − ~r′) − Φ(~r2 − ~r′)}D(1)(~r1, ~r2, ~r
′; t), (5)

{

i
∂

∂t
−mχ̇(~r, t)

}

F (~r; t) =
1

2m
(~̂p+m~vs(~r, t))

2F (~r; t)

+

∫

d~r′Φ(~r − ~r′)D(2)(~r, ~r′; t), (6)

where ~vs = ∇χ is superfluid velocity (velocity of the condensate).

The transition to equations of hydrodynamics is performed using an expansion of equation (5)
in terms of space gradients. This expansion can be simply performed by using the so-called mixed
Wigner representation [5]. For this purpose, we introduce new variables

~R =
1

2
(~r1 + ~r2), ~r = ~r2 − ~r1.

After the Fourier transformation with respect to relative coordinate ~r we obtain

f(~r1, ~r2, t) → f(~R,~r, t) =

∫

d~p

(2π)3
f(~R, ~p, t)ei~p~r,

and

~r1 → ~R−
i

2
∇~p , ~r2 → ~R+

i

2
∇~p ,

~̂p1 → ~p−
i

2
∇~R

, ~̂p2 → −~p−
i

2
∇~R

. (7)

Any function of ~R+ i/2 · ∇~p can be understood in terms of its power-series expansion

f

(

~R +
i

2
∇~p

)

= f(~R) +
i

2

∂f(~R)

∂ ~R

∂

∂~p
− · · · . (8)
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Using procedures (7) and (8) the equations for correlation functions can be written as follows

∂G~p(~R, t)

∂t
−mv̇si(~R, t)

∂G~p(~R, t)

∂pi

−
∂

∂Rj

(

(pi +mvsi(~R, t))
2

2m

)

∂G~p(~R, t)

∂pj

+
(pi

m
+ vsi(~R, t)

) ∂G~p(~R, t)

∂Ri

+
∂

∂Rj

(

1

2

∫

d~r′
∂Φ(r′)

∂r′i
r′j
∂D

(1)
~p (~R,~r′; t)

∂pi

)

= 0, (9)

(

i
∂

∂t
−mχ̇(~R, t)

)

F (~R, t) =
1

2m

(

~̂ 2p+m~v2
s(~R, t)

)

F (~R, t)

− i
(

∇~R
vsi(~R, t)

)

F (~R, t) +

∫

d~r′Φ(|~R − ~r′|)D(2)(~R,~r′; t). (10)

Here

G~p(~R, t) =

∫

d~r

〈

ψ+(~R −
~r

2
, t)ψ(~R +

~r

2
, t)

〉

ei~p~r, (11)

D
(1)
~p (~R,~r′; t) =

∫

d~r

〈

ψ+

(

~R−
~r

2
, t

)

ψ+(~r′, t)ψ(~r′, t)ψ

(

~R+
~r

2
, t

)〉

ei~p~r, (12)

In the obtained equation (9) the second order terms with respect to space gradient (the terms
proportional to ∇2

~R
) were neglected.

The equation (9) we denominate as a generating equation, because its application provides
conservation laws for the hydrodynamic quantities. Equation of motion for superfluid velocity will
be obtained in terms of (9).

Let us proceed to obtaining differential conservation laws (balance equations).

2.2. Equation of motion for superfluid velocity

Let us consider the equation for an anomalous correlation function (10). After separating real
and imaginary parts in this equation we find

(

mχ̇(~R, t) +
1

2
m~v2

s(~R, t)

)

F (~R, t) =
1

2m
∇2

~R
F (~R, t) −

∫

d~r′Φ(|~R− ~r′|)D(2)(~R,~r′; t). (13)

Hence

χ̇(~R, t) = −
1

2
~v2
s (~R, t) +

∇2
~R
F (~R, t)

2m2F (~R, t)
−

∫

d~r′Φ(|~R− ~r′|)D(2)(~R,~r′; t)

mF (~R, t)
,

or

χ̇(~R, t) = −
1

2
~v2
s (~R, t) −

µ(~R, t)

m
. (14)

Here

µ(~R, t) = −
∇2

~R
F (~R, t)

2m2F (~R, t)
+

∫

d~r′Φ(|~R − ~r′|)D(2)(~R,~r′; t)

mF (~R, t)

is chemical potential [2].
Applying the operation ∇~R

to equation (14) we obtain the equation of motion for superfluid
velocity

m
∂~vs
∂t

+ ∇~R

(

m~v2
s

2
+ µ

)

= 0. (15)

This is the first hydrodynamic equation which shows that the superfluid accelerates freely
under the applied fields. The remaining hydrodynamic equations are provided by the conservation
relations for the particle density ρ( ~R, t), momentum density ~j(~R, t) and energy density E( ~R, t).
These equations are simply obtained from calculation of moments of the generating equation (9).
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2.3. Equation for particle density

By definition

ρ(~R, t) = m〈ψ+(~R, t)ψ(~R, t)〉 = m

∫

d~p

(2π)3
G~p(~R, t).

After integrating (9) over ~p we find

∂ρ

∂t
+ div~j = 0, (16)

where

~j(~R, t) =

∫

d~p

(2π)3
~pG~p(~R, t) + ρ~vs ≡ ~j0 + ρ~vs . (17)

The (16) is an equation of continuity for particle density. The ~j(~R, t) is a momentum density,
respectively, and ~j0 is a momentum density in the reference system where condensate is motionless.
Calculation of the ~j0 in an explicit form will be performed in section 3.

2.4. Equation for momentum density

Using definition (17), we find that

∂jk
∂t

=
∂

∂t
(j0k + ρvsk) =

∫

d~p

(2π)3
(pk +mvsk)

∂G~p(~R, t)

∂t
+ ρ

∂vsk

∂t
.

Taking the moment of the generating equation (9) with respect to ~p + m~vs and using the
equation of motion for the superfluid velocity (15), we obtain

∂jk
∂t

+
∂Πkj

∂Rj

= 0. (18)

The flow of momentum density (stress tensor) is given by

Πkj =
1

m

∫

d~p

(2π)3
(pk +mvsk)(pj +mvsj)G~p(~R, t) −

1

2

∫

d~r′
∂Φ(r′)

∂r′k
r′j

∫

d~p

(2π)3
D

(1)
~p (~R,~r′; t)

= vskj0j + vsjj0k + ρvskvsj + Π0kj , (19)

where

Π0kj =
1

m

∫

d~p

(2π)3
pkpjG~p(~R, t) −

1

2

∫

d~r′
∂Φ(r′)

∂r′k
r′j

∫

d~p

(2π)3
D

(1)
~p (~R,~r′; t). (20)

2.5. Equation for energy density

By definition the energy density of particles in the laboratory system of reference is as follows

E(~r, t) =
1

2m
〈∇ψ+(~r, t)∇ψ(~r, t)〉 +

1

2

∫

d~r′Φ(|~r − ~r′|)〈ψ+(~r, t)ψ+(~r′, t)ψ(~r′, t)ψ(~r, t)〉.

In the system of reference where condensate is motionless the energy density is

E(~R, t) =
1

2m

∫

d~p

(2π)3
(~p+m~vs)

2G~p(~R, t) +
1

2

∫

d~r′Φ(|~R− ~r′|)

∫

d~p

(2π)3
D

(1)
~p (~R,~r′; t),

or

E = E0 +~j0~vs +
1

2
ρv2

s , (21)
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where

E0 =
1

2m

∫

d~p

(2π)3
p2G~p(~R, t) +

1

2

∫

d~r′Φ(|~R − ~r′|)

∫

d~p

(2π)3
D

(1)
~p (~R,~r′; t). (22)

By analogy to previous subsections we find

∂E

∂t
+ div~Q = 0. (23)

The energy flow is given by

~Q =

(

E0 +~j0~vs +
1

2
ρv2

s

)

~vs +
1

2
v2
s
~j0 + ~Π0~vs + ~Q0 , (24)

where

Q0k =
1

2m

∫

d~p

(2π)3
p2pkG~p(~R, t) +

1

2m

∫

d~r′Φ(r′)

∫

d~p

(2π)3
pkD

(1)
~p (~R,~r′; t)

−
1

2m

∫

d~r′
∂Φ(r′)

∂r′j
r′k

∫

d~p

(2π)3
pjD

(1)
~p (~R,~r′; t). (25)

The set of equations (15), (16), (18) and (23) form a complete system of two-fluid hydrodynamic
equations for superfluid helium-4.

3. Calculation of the hydrodynamical flows

In the previous section there was obtained a system of balance equations. These equations are
incomplete, because the flows (17), (20) and (25) are unknown. When we have an explicit expression
for G-function, then finding the hydrodynamical flows is realized by calculating the momentum
integrals. In the case of superfluid helium,it is impossible to find the G-function. Therefore, we
should develop some “indirect” method of finding the flows (17), (20) and (25).

In this article, to find the hydrodynamic flows, we used an explicit expression for the local equi-
librium statistical operator. In contrast to paper by Morozov [3] we construct a statistical operator
in the system of reference where the condensate is motionless, which provides some simplification.

The local equilibrium statistical operator that describes a superfluid helium in the system of
reference where condensate is motionless is as follows

%̂ = exp

{

∫

d~rβ(~r)
[

Ω(~r) − Ĥ0(~r) − ~u ~̂P0(~r) −
µ

m
ρ̂(~r)

]

}

. (26)

In the local frame of reference moving with ~vs the superfluid component is stopped, then the
total current is carried by the normal component.

Therefore,

~j0 = 〈 ~̂P0〉 = −
∂Ω

∂~u
≡ ρn~u. (27)

Here, ρn is the normal fluid density.
Substituting from (27) into (17) we find the momentum density (mass flow)

~j = ~j0 + ρ~vs = ρn(~vn − ~vs) + ρ~vs = ρn~vn + (ρ− ρn)~vs ≡ ρn~vn + ρs~vs , (28)

where ρs = ρ− ρn is superfluid density.
To find the stress tensor we use a very elegant “scale transformation” method introduced by

Bogolyubov [2]. As simple calculation gives

Π0ik = ρnuiuk + δikP , (29)
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where P = ρ
∂Ω

∂ρ
– is pressure.

The final form of a stress tensor is

Πik = Π0ik + vsij0k + vskj0i + ρvsivsk = ρsvsivsk + ρnvnivnk + δikP. (30)

To calculate the energy flux we employ an obvious identity [3]:

〈[A, Ŝ]〉 = 0, (31)

where A is some dynamic quantities and Ŝ is an entropy operator, that defined by relationship
%̂ = exp{−Ŝ}.

Substituting in (31) A = H and using (26), (29) we find

~Q0 =
(

ρnu
2 +

ρµ

m
+ TS

)

~u. (32)

Finally, expressions for hydrodynamical flows have the form:

~j = ρs~vs + ρn~vn, ~vn ≡ ~u+ ~vs, Πik = ρnvnivnk + ρsvsivsk + δikP,

~Q =
(

v2

s

2 + µ
m

)

~j + TS~vn + ρn~vn(~vn · (~vn − ~vs)). (33)

These hydrodynamical flows coincide with the ones in two-fluid hydrodynamics of Landau [1].
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Мiкроскопiчна побудова дворiдинної моделi для
надплинного гелiю

П. Шигорiн, А. Свiдзинський

Волинський нацiональний унiверситет iм. Лесi Українки, Луцьк 43025, пр. Волi, 13, Україна

Отримано 24 червня 2009 р., в остаточному виглядi – 30 вересня 2009 р.

Використовуючи систему гайзенбергiвських рiвнянь руху для нормальної та аномальної кореляцiй-
них функцiй побудовано дворiдинну гiдродинамiку для надплинного гелiю-4. Виведення базується

на розкладi за градiєнтами точних рiвнянь руху для кореляцiйних функцiй поблизу локальної рiвно-
ваги разом з використанням явного вигляду для локально-рiвноважного статистичного оператора

для надплинного гелiю в системi вiдлiку, де конденсат нерухомий.

Ключовi слова: дворiдинна гiдродинамiка, кореляцiйна функцiя, надплинний гелiй-4, статистичний

оператор

PACS: 67.25.dg
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