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We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and
nonrelativistic heavy particles. Using the non-equilibrium Green’s function technique in many-particle QED, we
show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-
Lorentzian) parts that describe resonant (propagating) photons and off-shell parts corresponding to virtual
photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions
and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons
with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are
essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma
effects on radiative processes are discussed.
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1. Introduction

It was about sixty years ago that N.N. Bogolyubov developed a method for deriving kinetic
equations more general than the Boltzmann equation or its simplest modifications. His famous
monograph [1] considerably affected the further evolution of kinetic theory. At present, the most
highly developed methods for treating kinetic processes in many-particle systems from first princi-
ples are the density matrix method [2–4] and the real-time Green’s function method [5–7]. Of the
two methods, the former can be viewed as a direct extension of Bogolyubov’s approach. Although
the Green’s function method seems to start from quite different ideas, it should be noted that some
essential ingredients of this method are closely related to the fundamental Bogolyubov’s boundary
condition of weakening of initial correlations[7,8].

In this talk based on our recent work [9], we present a general kinetic framework for studying
radiative processes in many-component plasmas with relativistic electrons. The interest to the
theory of nonequilibrium relativistic plasmas has been regenerated by current developments in
ultra-short high-intensity laser technology and recent progress in laser-plasma experiments [10].
Radiative processes contribute to stopping power for highly relativistic electron beams in laser-
plasma systems, and they present interest as an example of fundamental QED processes in a
medium [11]. Note also that the measurement of angular distribution of γ rays in laser-plasma
experiments has been found to be a powerful diagnostic tool [12].

A systematic approach to nonequilibrium QED plasmas based on the Green’s function technique
was developed by Bezzerides and DuBois [13]. Within the weak coupling approximation, they
derived a covariant particle kinetic equation involving electron-electron collisions and Cherenkov
emission and absorption of plasmons. Note, however, that the kinetics of transverse photons and
radiative phenomena are mainly related to higher-order processes, like bremsstrahlung or Compton
scattering. Although these processes have been studied in great detail within the framework of
vacuum QED, they have not been studied to sufficient generality and clarity in many-particle
nonequilibrium QED when plasma effects are of importance. It is our purpose to perform the still
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missing formulation of photon kinetics which includes relativistic and plasma effects, and, where
appropriate, recovers the results of vacuum QED.

For the problems under consideration, there is a preferred frame of reference, the rest frame of
the system, in which heavy particles (protons and ions) are nonrelativistic. It is thus convenient
to choose the Coulomb gauge, allowing a description of electromagnetic fluctuations in terms of
longitudinal and transverse (photon) modes. Throughout the paper we use the system of units
with c = ~ = 1 and the Heaviside’s units for electromagnetic field, i. e., the Coulomb force is
written as qq′/4πr2. Although we work in the Coulomb gauge and in the rest frame of the system,
many formulas are represented more compactly in the relativistic four-notation. The signature of
the metric tensor gµν is (+,−,−,−). Summation over repeated Lorentz (Greek) and space (Latin)
indices is understandable. We use the usual abbreviation 6 a = γµaµ for any four-vector aµ. Our
convention for the matrix Green’s functions on the time-loop Schwinger-Keldysh contour follows
Botermans and Malfliet [7].

2. Functional description

The dynamics of particles and electromagnetic fluctuations in a plasma can be described by
using the following formal device [13]. Let us assume that the system was perturbed from its
initial state by some prescribed c-number external four-current J (ext) µ(r, t) =

(
% (ext),J(ext)

)
, where

% (ext)(r, t) is the external charge density and J(ext)(r, t) is the external current density. The plasma
is assumed to be weakly coupled, so that the effects of initial correlations die out after a few
collisions. In this case the Bogolyubov condition of complete weakening of initial correlation may
be used, i. e., all ensemble averages may be calculated at t → −∞ with a statistical operator %0

admitting Wick’s decomposition. The basic quantities are the field and particle Green’s functions
defined on the time-loop Schwinger-Keldysh contour C which runs from −∞ to +∞ along the
chronological branch C+ and then backwards along the antichronological branch C− [7]. From
now on, the underlined variables k = (t k, rk) indicate that t k lies on the contour C, while the
notation (k) = (tk, rk) is used for space-time variables. With this convention the evolution operator
describing the interaction with the external current can be written as

S = TC exp

{
−i

∫

C

d1 Âµ
I (1) J (ext)

µ (1)

}
, (1)

where Âµ
I (1) =

(
φ̂I(1), ÂI (1)

)
is the four-potential operator in the interaction picture, and TC

is the path-ordering operator on the contour C. It is convenient to treat the external charge and
current on different branches of the contour C as independent quantities and formally define the
ensemble average O(1) for any Heisenberg operator Ô(1) as [13]

O(1) =
〈
TC

{
S ÔI(1)

}〉/
〈S〉. (2)

At the end of calculations the physical limit is implied: % (ext)(1+) = % (ext)(1−) and J(ext)(1+) =

J(ext)(1−). In this limit 〈S〉 = 1, and expression (2) goes over into the usual ensemble average of a
Heisenberg operator.

The field Green’s functions are defined as functional derivatives of the averaged four-potential
Aµ(1) = 〈Âµ(1) with respect to the external current:

Dµν(1 2) = δAµ(1)
/
δJ (ext)

ν (2). (3)

In the Coulomb gauge, where ∇·Â = 0, the componentsDij(1 2) andD00(1 2) describe respectively
the transverse (photon) and longitudinal (plasmon) field fluctuations in the plasma. In the physical
limit, these Green’s functions are given by

Dij(1 2) = − i
〈
TC ∆Âi(1) ∆Âj(2)

〉
, (4)

D00(1 2) = −i
〈
TC ∆φ̂(1) ∆φ̂(2)

〉
+

δ
(
t 1 − t 2

)

4π
∣∣ r1 − r2

∣∣ , (5)
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with ∆Â(1) = Â(1) −A(1) and ∆φ̂(1) = φ̂(1) − φ(1).
To describe field-matter interactions, we also need to introduce the particle Green’s functions.

Since our main interest is in problems where electrons may be relativistic, we define the electron
Green’s function in terms of the Dirac field operators:

G(1 2) = −i
〈
TC [S ψI(1)ψ̄I (2)]

〉/
〈S〉 . (6)

Note that each of the contour components of G(1 2) is a 4 × 4 spinor matrix. Heavy particles
(protons and ions) in real laboratory plasmas are nonrelativistic, so that it is natural to define the
corresponding Green’s functions as

GB(1 2) = −i
〈
TC [SΨBI(1)Ψ†

BI(2)]
〉/

〈S〉 , (7)

where the index “B” labels the particle species, and the operators ΨB(r, t) and Ψ†
B(r, t) obey Fermi

or Bose commutation rules for equal time arguments.
The first step in developing kinetic theory of multi-component plasmas makes use of Dyson’s

equations for the field and particle Green’s functions [9,13]. In the Coulomb gauge, Dyson’s equation
for the field Green’s function (3) reads1

−∆µ
λ(1)Dλν(1 2) = δµν(1 − 2) + Πµ

λ(1 1′)Dλν(1′ 2), (8)

where

∆µ
ν(1) =




∇2
1 0 0 0

0 �1 0 0
0 0 �1 0
0 0 0 �1


 , (9)

� = ∇2 − ∂2/∂t2 is the wave operator, and the matrix δµν(1 − 2) is given by

δµν(1 − 2) =

(
δ(1 − 2) 0

0 −δT
ij(1 − 2)

)
(10)

with the transverse delta function satisfying ∇1i δ
T
ij(1 − 2) = 0, ∇2j δ

T
ij(1 − 2) = 0.

The key quantity describing interactions between the field and the particles is the polarization
matrix

Πµν(1 2) = δJµ(1)
/
δAν(2). (11)

The components of the four-vector Jµ(1) =
(
%(1),JT (1)

)
are the induced charge density and the

induced transverse current density. The matrix Πµν(1 2) thus characterizes the system response to
variations of the total electromagnetic field.

Dyson’s equation for the electron Green’s function (6) follows directly from equations of motions
for the Dirac field operators [9,13]. In the physical limit we have

(i 6∂1 − e 6A(1) −m)G(1 2) − Σ(1 1′)G(1′ 2) = δ(1 − 2) (12)

with the matrix self-energy

Σ(1 2) = −ie γµG(1 1′) δG−1(1′ 2)
/
δJ (ext)

µ (1). (13)

Finally, nonrelativistic Dyson’s equation for the ion Green’s function (7) is easily derived by using
the equations of motion for the ion field operators ΨB(1) in the Heisenberg picture. Since in all
practical applications the ion transverse current is very small compared to the electron transverse
current, we shall neglect the direct interaction between ions and the transverse field A. Within
this approximation, one obtains Dyson’s equation for the heavy particles (no summation over B)

(
i
∂

∂t1
+

∇2
1

2mB

− eBφ(1)

)
GB(1 2) − ΣB(1 1′)GB(1′ 2) = δ(1 − 2), (14)

1Here and in what follows integration over “primed” variables is understood.
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where
ΣB(1 2) = −ieBGB(1 1′) δG−1

B (1′2)
/
δ%(ext)(1) (15)

are the ion self-energies.
A convenient way of analysing the polarization matrix and the particle self-energies is to express

them in terms of vertex functions. The electron and ion four-vertices are defined as

Γµ(1 2 ; 3) = −δG−1(1 2)
/
δAµ(3), ΓBµ(1 2 ; 3) = − δG−1

B (1 2)
/
δAµ(3). (16)

Using these definitions, one obtains [9]:

Πµν(1 2) = −i trD

[
Γ(0)

µ (1′ 2′; 1)G(2′ 3′)Γν(3′ 4′; 2)G(4′ 1′)
]

− i
∑

B

trS

[
Γ

(0)
Bµ(1′ 2′; 1)GB(2′ 3′)ΓBν(3′ 4′; 2)GB(4′ 1′)

]
, (17)

Σ(1 2) = i Γ(0)
µ (1 1′; 4′)G(1′ 2′) Γν(2′ 2; 3′)Dνµ(3′ 4′), (18)

ΣB(1 2) = i Γ
(0)
Bµ(1 1′; 4′)GB(1′ 2′) ΓBν(2′ 2; 3′)Dνµ(3′ 4′). (19)

The symbols trD and trS denote the trace over the Dirac spinor indices and the ion spin indices,
respectively. The bare four-vertices are given by

Γ(0)
µ (1 2 ; 3) = e δ(1 − 2) δµν(1 − 3) γν , Γ

(0)
Bµ(1 2 ; 3) = eB δ(1 − 2) δµ0(1 − 3). (20)

Formulas (18) and (19) relate the self-energies to the vertices. There are, however, two other
relations between Γµ, ΓBµ, Σ, and ΣB . Using Dyson’s equations (12), (14), and recalling (16), it
is easy to show that

Γµ(1 2 ; 3) = Γ(0)
µ (1 2 ; 3)+δΣ(1 2)

/
δAµ(3), ΓBµ(1 2 ; 3) = Γ

(0)
Bµ(1 2 ; 3)+δΣB(1 2)

/
δAµ(3). (21)

Equations (8), (12), (14), (17) – (19), and (21), together with Maxwell’s equations for the av-
eraged four-potential Aµ(r, t), provide a basis for studying various transport processes in a many-
component plasma with relativistic electrons. Although this set of equations is too complicated to
solve it in a general form, some self-consistent and tractable approximations can be formulated for
weakly coupled plasmas , where collisional interactions are taken into account to lowest orders. As
discussed by Bezzerides and DuBois [13], the weak-coupling approximation for a plasma should be
regarded as an expansion in terms of the field Green’s functions Dµν which are intensity measures
for fluctuations of the electromagnetic field, rather than being an asymptotic expansion of vacuum
electrodynamics in powers of the fine structure constant α = e2/~c. This scheme applies if several
conditions are fulfilled. The first condition reads λpl � 1, where λpl = 1/(ner

3
sc) is the plasma

parameter. Here, ne is the electron number density and rsc is the screening (Debye) length. The
second condition, e2/(~v) � 1, where v is a characteristic particle velocity, ensures the validity of
the Born approximation for scattering processes. The above conditions are usually fulfilled for rel-
ativistic plasmas. Finally, it is assumed that the plasma modes are not excited considerably above
their local equilibrium level. This condition is not satisfied for a strongly turbulent regime. In the
present work we assume that the system can be described within the weak-coupling approximation.

For a weakly coupled plasma, the vertices can be represented by the Feynman diagrams shown
in figure 1. This approximation for the vertices generates the corresponding self-energies and the

Γµ(1 2 ; 3) = ΓBµ(1 2 ; 3) =

Figure 1. Lowest order diagrams for the vertices. The first terms are the bare vertices, straight
and doubled lines denote respectively G and GB. Dashed lines denote iDλσ.
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Σ(1 2) =

ΣB(1 2) =

iΠµν(1 2) =

Figure 2. Lowest order diagrams for the electron self-energy (first line), the ion self-energies
(second line), and the polarization matrix. The ion contribution to Πµν is obtained as a sum of
the last two diagrams over the species index B.

polarization matrix shown in figure 2.
It is, of course, clear that even in the weak-coupling case equations for the field and particle

Green’s functions are prohibitively difficult to solve, so that one has to introduce further reasonable
approximations, depending on the character of the problem. In the present work our interest is with
kinetic description of radiative processes in a nonequilibrium relativistic plasma. This description
is adequate if the medium is approximately isotropic on the scale of the characteristic wavelengths
of field fluctuations and therefore the transverse (photon) and longitudinal (plasmon) modes do
not mix. We assume this condition to be satisfied. In this case the field Green’s function Dµν and
the polarization matrix Πµν can be taken in block form:

Dµν(1 2) =

(
D(1 2) 0

0 Dij(1 2)

)
, Πµν(1 2) =

(
Π(1 2) 0

0 Πij(1 2)

)
. (22)

Here D ≡ D00 and Π ≡ Π00 are the longitudinal (plasmon) components, whereas Dij and Πij are
the transverse (photon) components. Note, however, that the direct coupling between transverse
and longitudinal field fluctuations described by the components D0i and Π0i may be important for
long-wavelength and low-frequency modes in plasmas with relativistic electron beams [14,15].

3. Resonant and virtual photons in plasmas

Due to the block structure (22) of Dµν and Πµν , one obtains from (8) the following equation
of motion for the photon Green’s functions:

�1Dij(1 2) = δT
ij(1 − 2) + Πik(1 1′)Dkj(1

′ 2). (23)

The adjoint of this equation reads

�2Dij(1 2) = δT
ij(1 − 2) +Dik(1 1′) Πkj(1

′ 2). (24)

A standard way of handling such equations is using the so-called “canonical form” for any function
F (1 2) [7]

F (1 2) =

(
F (1+2+) F (1+2−)
F (1−2+) F (1−2−)

)
=

(
F<(12) + F+(12) F<(12)

F>(12) F<(12) − F−(12)

)
(25)

with the space-time “correlation functions” F
≷
(12) and the retarded/advanced functions F±(12)

(usually called the “propagators”). In what follows the canonical components of Dij(1 2) will be

denoted by d
≷

ij(12), d±ij(12), and the canonical components of Πij(1 2) by π
≷

ij(12), π±
ij (12).

When written in terms of the canonical components, equations (23) and (24) can be transformed
into the Kadanoff-Baym equations for the field correlation functions

�1 d
≷

ij(12) = π+
ik(11′) d

≷

kj(1
′2) + π

≷

ik(11′) d−kj(1
′2), (26a)

�2 d
≷

ij(12) = d
≷

ik(11′)π−
kj(1

′2) + d+
ik(11′)π

≷

kj(1
′2), (26b)
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and the equations for the photon propagators

�1 d
±
ij(12) = δT

ij(1 − 2) + π±
ik(11′) d±kj(1

′2), (27a)

�2 d
±
ij(12) = δT

ij(1 − 2) + d±ik(11′)π±
kj(1

′2), (27b)

where the primed space-time variables are integrated according to the rule

∫
d1′ . . . =

∫ ∞

−∞

dt′1

∫
d3r′1 . . . .

Within the framework of kinetic theory, one has to go to the phase description of photon
dynamics. This can be achieved by using the Wigner representation for any space-time quantity
F (12) ≡ F (x1, x2):

F (X, k) =

∫
d4x eik·x F (X + x/2, X − x/2) , (28)

where k · x = kµxµ = k0t − k · r. In order that the kinetic approach may be applicable to elec-
tromagnetic fluctuations, it is necessary that the variations of the field Green’s functions and the
polarization matrix in the space-time variable Xµ = (T,R) are slow on the scales of λ and 1/ω,
where λ and ω are respectively some characteristic radiation wavelength and frequency. We shall
assume these conditions to be satisfied. Then, going over to the Wigner representation in equations

for d
≷

ij(12) and d±ij(12), we keep only terms to the first order in X-gradients2.
We will not write down the Wigner transformed equations (26) and (27) because it is more con-

venient to deal with the equivalent transport and the so-called mass-shell equations. The transport

equation for d
≷

ij(X, k) is obtained by taking the difference of equations (26a) and (26b), whereas
the mass-shell equation is obtained by taking their sum. In just the same way the transport and
mass-shell equations for the propagators d±ij(X, k) can be constructed. By analogy with vacuum
QED it is natural to introduce the local principal-axis representation using photon polarization
states labelled by s (s = 1, 2). In this representation we have

d
≷

ij(X, k) =
∑

s

εsi(X, k) d
≷

s (X, k) εsj(X, k) (29)

and the analogous expressions for other tensors in terms of the polarization vectors εs(X, k).
Although some care is needed to define properly the local polarization states in an inhomogeneous
medium, we will not go here into a detailed discussion of this point (see, e. g., references [9,13]).

Let us now summarize the resulting first-order gradient equations for the photon modes s in the
principal-axis representation. The transport and mass-shell equations for the correlation function
read (the arguments X and k are omitted for brevity)

{
k2 − Reπ+

s , d
≷

s

}
+

{
Re d+

s , π
≷

s

}
= i

(
π>

s d<
s − π<

s d>
s

)
, (30a)

{
Imπ+

s , d
≷

s

}
+

{
Im d+

s , π
≷

s

}
= 2

(
k2 − Reπ+

s

) (
d

≷

s −
∣∣ d+

s

∣∣2 π
≷

s

)
, (30b)

where

{F1(X, k), F2(X, k)} =
∂F1

∂Xµ

∂F2

∂kµ

−
∂F1

∂kµ

∂F2

∂Xµ

(31)

is the four-dimensional Poisson bracket. The transport and mass-shell equations for the propagators
have a simpler form: {

k2 − π±
s , d

±
s

}
= 0,

(
k2 − π±

s

)
d±s = 1. (32)

2Note that the gradient expansion scheme is a usual way of deriving kinetic equations in the Green’s function
formalism [5–7,13].
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Note that in the last equation the gradient corrections cancel each other, so that one readily finds
the “explicit” expression for the propagators

d±s (X, k) =
1

k2 − Reπ+
s (X, k) ± i k0Γs(X, k)

(33)

with the k-dependent damping width for the photon mode

Γs(X, k) = − k−1
0 Imπ+

s (X, k). (34)

It is clear that the first of equations (32) is automatically satisfied due to the identity {A, f(A)} = 0.
Equation (30a) may be regarded as a particular case of the gauge-invariant transport equation

derived by Bezzerides and DuBois [13] if the polarization states are chosen in accordance with the
Coulomb gauge. The mass-shell equation (30b) was ignored in reference [13]. There is no reason,
however, to do this because the field correlation functions must satisfy both equations. The mass-
shell equation is in a sense a constraint for approximations in the transport equation.

In the Green’s function formalism, transport equations like (30a) are usually regarded as gen-

eralized kinetic equations since, in the quasiparticle representation for correlation functions, the
left-hand side of a transport equation can be transformed into the drift term, and the right-hand
side corresponds to the collision integral. Note, however, that the physical meaning of equation

(30a) remains to be seen because the field correlation functions d
≷

s (X, k) involve contributions
from resonant (propagating) and virtual photons. Since a kinetic equation describes only resonant
photons, there is a need to pick out the corresponding terms from the field correlation functions.
Our analysis of this problem parallels the approach discussed previously by Špička and Lipavský
in the context of solid state physics [16,17].

Recalling the definition (31) of the Poisson bracket, it is easy to see that {k2 −Reπ+
s , d

≷

s } has
the structure of the drift term in a kinetic equation for quasiparticles with energies given by the
solution of the dispersion equation k2 − Reπ+

s = 0. But, as was first noted by Botermans and
Malfliet [7], terms like the second one on the left-hand side of equation (30a) also contribute to the
drift. In the case of photons we have [9]

{
Re d+

s , π
≷

s

}
=−

{(
k2 − Reπ+

s

)
, π

≷

s Re
(
d+

s

)2
}

+
{
k0Γs, π

≷

s Im
(
d+

s

)2
}
, (35)

where the first term dominates for weakly damped photon modes. Inserting this expression into

equations (30) and introducing new functions d̃
≷

s (X, k) through the relation

d
≷

s (X, k) = d̃
≷

s (X, k) + π
≷

s (X, k) Re
[(
d+

s (X, k)
)2

]
, (36)

we obtain the transport and mass-shell equations for d̃
≷

s (X, k):

{
k2 − Reπ+

s , d̃
≷

s

}
+

{
k0Γs, π

≷

s Im
(
d+

s

)2
}

= i
(
π>

s d̃<
s − π<

s d̃>
s

)
, (37a)

{
k0Γs, d̃

≷

s

}
+

{
k2 − Reπ+

s , π
≷

s Im
(
d+

s

)2
}

+ 2
{
k0Γs, π

≷

s Re
(
d+

s

)2
}

= −2
(
k2 − Reπ+

s

) (
d̃

≷

s − 2
∣∣ d+

s

∣∣4 (k0Γs)
2
π

≷

s

)
. (37b)

It is remarkable that the contributions from the last term of expression (36) to the right-hand side
of equation (37a) (collision integral) cancel identically . Physically, this observation suggests that
the first term in expression (36) may be regarded as the “resonant” part of the field correlation
functions, whereas the second term represents the “off-shell” part which may be identified as the
contribution of virtual photons. We would like to emphasize, however, that this interpretation
makes sense only in the case of small damping. Formally, the decomposition (36) in itself is not
related of course to any interpretation.
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It is instructive to consider the spectral properties of d̃
≷

s (X, k). We first recall that the conven-
tional full spectral function is defined in terms of correlation functions or propagators (see, e. g.,
reference [7]). For the photon modes, the full spectral function is given by

as(X, k) = i
(
d>

s − d<
s

)
= i

(
d+

s − d−s
)
. (38)

We now introduce the resonant spectral function

ãs(X, k) = i
(
d̃>

s − d̃<
s

)
. (39)

Using formulas (33) and (36), we find that

as(X, k) =
2k0Γs(

k2 − Reπ+
s

)2
+ (k0Γs)

2
, ãs(X, k) =

4 (k0Γs)
3

[(
k2 − Reπ+

s

)2
+ (k0Γs)

2
]2 . (40)

Here two important observations can be made. First, it is easy to check that both spectral functions
take the same form in the zero damping limit:

lim
Γ

s
→0

as = lim
Γ

s
→0

ãs = 2πη(k0) δ
(
k2 − Reπ+

s

)
, (41)

where η(k0) = k0/|k0|. Second, for a finite Γs, the resonant spectral function falls off faster than
the full spectral function. In other words, ãs has a stronger peak and smaller wings than as. Thus,
for weakly damped modes, the first term in formula (36) dominates in the vicinity of the photon
mass-shell (k2 ≈ Reπ+

s ), while the second term dominates in the off-shell region where it falls as
(k2 − Reπ+

s )−2. This supports the above interpretation of decomposition (36).
Expression (40) for ãs may look not too familiar since quasiparticle spectral functions are usually

taken in the Lorentzian form like as. Note, however, that the spectral function ãs also occurs in
the self-consistent calculation of thermodynamic quantities of equilibrium QED plasmas. As shown
by Vanderheyden and Baym [18], the resonant spectral function rather than the Lorentzian-like
full spectral function determines the contribution of photons to the equilibrium entropy. That
is why in reference [18] ãs was called “the entropy spectral function”. We have seen, however,
that this function has a deeper physical sense; it characterizes the spectral properties of resonant
(propagating) photons in a medium. Therefore, we prefer to call ãs the resonant spectral function.

4. Kinetic equation for resonant photons

In order to convert equation (37a) into the photon kinetic equation, we introduce the following
representation for the resonant parts of the field correlation functions:

d̃<
s (X, k) = −i ãs(X, k)N

<
s (X, k), d̃>

s (X, k) = −i ãs(X, k)N
>
s (X, k), (42)

where new functions N
≷

s (X, k) satisfy N>
s (X, k) −N<

s (X, k) = 1. It is also convenient to use the
representation

N<
s (X, k) = θ(k0)Ns(X, k) − θ(−k0) [1 +Ns(X,−k)] ,

N>
s (X, k) = θ(k0 [1 +Ns(X, k)] − θ(−k0)Ns(X,−k), (43)

which serves as the definition of the local photon distribution function Ns(X, k) in four-dimensional
phase space. In the above relations θ(x) is the conventional step function, i. e., θ(x) = 0 for x < 0,
and θ(x) = 1 for x > 0.

For our purposes, it suffices to consider only equation (37a) for d̃<
s (X, k) since the transport

equation for d̃>
s (X, k) leads to the same kinetic equation. Using representation (42) and expression

(40) for the resonant spectral function, some algebra detailed in reference [9] gives

ãs

[{
k2 − Reπ+

s , N
<
s

}
−
k2 − Reπ+

s

k0Γs

{
k0Γs, N

<
s

}
− i

(
π>

s N
<
s − π<

s N
>
s

)]
= 0. (44)
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The desired photon kinetic equation is obtained by setting the expression in square brackets equal
to zero. Applying the same procedure to the mass-shell equation (37b) leads to

(
k2 − Reπ+

s

)
ãs [. . .] = 0 (45)

with the same expression in square brackets as in equation (44). We see that in the present approach
the mass-shell equation is consistent with the kinetic equation.

We have seen that ãs(X, k) is a sharply peaked function of k0 near the effective photon frequen-
cies, ωs(X,k), which are solutions of the dispersion equation k2−Reπ+

s (X, k) = 0. For definiteness,
we assume that the photon frequencies are positive solutions. If k0 = ωs(X,k) is such a solution,
then, using the property [π+

s (k)]
∗

= π+
s (−k), it is easy to check that the corresponding negative

solution is k0 = −ωs(X,−k). In the small damping limit, the resonant spectral function may be
approximated as (see equation (41))

ãs(X, k) = 2π η(k0) δ
(
k2 − Reπ+

s

)
. (46)

Then, integrating equation (44) over k0 > 0, we arrive at the kinetic equation

(
∂

∂T
+
∂ωs(X,k)

∂k
·
∂

∂R
−
∂ωs(X,k)

∂R
·
∂

∂k

)
ns(X,k) = iZs(X,k)π<

s (X,k) [1 + ns(X,k)]

− iZs(X,k)π>
s (X,k)ns(X,k), (47)

where

ns(X,k) = Ns(X, k)
∣∣∣
k
0
=ω

s
(X,k)

(48)

is the on-shell photon distribution function, π
≷

s (X,k) = π
≷

s (X, k)
∣∣
k
0
=ω

s
(X,k)

, and the “wave-

function renormalization” Zs(X,k) is given by

Z−1
s (X,k) =

∂

∂k0

(
k2 − Reπ+

s (X, k)
) ∣∣∣

k
0
=ω

s
(X,k)

. (49)

The photon kinetic equation (47) was derived many years ago by DuBois [19] for nonrelativis-
tic plasmas. The generalization to relativistic plasmas is obvious until the polarization functions

π
≷

s (X, k) are specified. There was a reason, however, to discuss here the derivation of the pho-
ton kinetic equation. As we have seen, the kinetic equation is only related to the resonant parts

of the transverse field correlation functions while their off-shell parts are represented by the last
term in formula (36). The photon distribution function is usually introduced through the relations

d
≷

s = −iasN
≷

s with the full spectral function as which is then taken in the singular form (46) (see,

e. g., reference [19]). In doing so, the off-shell corrections to d
≷

s are missing. As we shall see below,

these corrections contribute to the transverse polarization functions π
≷

s determining the photon
emission and absorption rates.

The first and the second terms on the right-hand side of equation (47) are respectively the
photon emission and absorption rates. We recall that these kinetic results imply the singular ap-
proximation (46) for the resonant spectral function. It is possible, however, to derive a general
expression for the average electromagnetic energy production, in which the finite width of ãs(X, k)
is taken into account [9]. The quantity of special interest is the differential radiating power associ-
ated with the photon production:

dR(X, k)

d4k
=

i

(2π)4
k0

∑

s

ãs(X, k)π
<
s (X, k) [1 +Ns(X, k)] , (50)

where k0 > 0 is implied. It is seen that, for a fixed k, the ãs(X, k) is just the weight function
that determines the emission profile. This supports once again the interpretation of ãs(X, k) as the
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spectral function for propagating photons in a plasma. Within approximation (46), the differential
radiating power can be expressed in terms of the three-momentum k:

dR(X,k)

d3k
=

i

(2π)3

∑

s

ωs(X,k)Zs(X,k)π<
s (X,k) [1 + ns(X,k)] . (51)

As one would expect, this expression is consistent with the photon production rate in the kinetic
equation (47).

5. Transverse polarization functions

The transverse polarization functions π
≷

s (X, k) are key quantities in computing radiation effects.
Here we shall restrict our discussion to the polarization function π<

s (X, k) that determines the local
radiating power. The starting point for the calculation of this function is the polarization matrix
Πµν(1 2) represented by the diagrams shown in figure 2. Recalling the definition (20) of the bare ion

Figure 3. Space-time diagrams for iπ<
ij(12). The ± signs indicate the branches of the contour C.

vertex, it is easy to verify that the last two diagrams do not contribute to Πij(1 2). Its component
π<

ij(12) = Πij(1+2−) is thus given by the diagrams shown in figure 3, where we have introduced
the transverse bare vertex

Γi(12; 3) = ≡ −e δ(1 − 2) δT
ij(1 − 3) γj . (52)

The next step is to compute the diagrams in figure 3 by Wigner transforming all functions and
then using the principal-axis representation (29) for π<

ij (X, k). Since the polarization functions will
be used for the calculation of the local radiating power, the X-gradient corrections to Green’s
functions can be omitted. Then the contribution of the first (one-loop) diagram in figure 3 to
π<

s (X, k) is

π< (1)
s (X, k) = −ie2

∫
d4p

(2π)4
trD

{
6εs(k)G

<(X, p) 6εs(k)G
>(X, p− k)

}
(53)

with the polarization four-vectors εµs (X, k) = (0, εs(X, k)).
The computation of the diagrams in the second line of figure 3 requires a more elaborate

analysis. Some of these diagrams give small corrections to the one-loop expression (53) and therefore
may be omitted. For a detailed discussion of this point we refer to the paper [9]. The contribution of
relevant diagrams describing higher-order radiative processes (e. g., bremsstrahlung and Compton
scattering) is given by (the fixed argument X is omitted)

π<(2)
s (k) =

e4

(2π)8

∫
d4k′

4∏

i=1

d4pi δ
4(k − p2 + p3) δ

4(k′ − p3 + p4) δ
4(p1 + p3 − p2 − p4)

×
[
D<

λλ′ (k
′) trD

{
6εs(k)G

<(p1) γ̂
λ′

(k′)G−(p2) 6εs(k)G
>(p3) γ̂

λ(k′)G−(p4)
}

+ D>
λλ′(k

′) trD

{
6εs(k)G

+(p1)γ̂
λ′

(k′)G<(p2) 6εs(k)G
+(p3)γ̂

λ(k′)G>(p4)
}]

. (54)

We have introduced the notation γ̂µ(k) =
(
γ0,∆⊥

ij(k) γj
)
, where ∆⊥

ij(k) = δij − kikj/|k|
2 is the

transverse projector. Expressions (53) and (54) provide a basis for computing the local radiating
power in weakly coupled relativistic plasmas.
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6. Extended quasiparticle approximation for relativistic electrons

It is clear that explicit calculations of π<
s (X, k) require a knowledge of the electron propagators

G±(X, p) and correlation functions G
≷
(X, p). Equations for the corresponding space-time quan-

tities G±(12) and G
≷
(12) can be derived from Dyson’s equation (12) using the canonical form

(25) of the electron Green’s function G(1 2) and the self-energy Σ(1 2). The derivation follows a
standard way (see, e. g., reference [7]), so that we will not discuss it here.

Due to the spinor structure of the Wigner transformed propagators G±(X, p), they contain
first-order X-gradient corrections [9] but, in calculating the local radiating power, one can use the
local propagators

g±(X, p) =
1

6Π(X, p) −m− Σ±(X, p)
, (55)

where Πµ(X, p) = pµ − eAµ(X) is the kinematic momentum. Note that the appearance of the
vector potential in the above expression and other formulas is due to the fact that the electron
Green’s function (6) is not invariant under gauge transformation of the mean electromagnetic field.
One must be careful to distinguish between the kinematic (Π) and the canonical (p) momenta in
evaluating the drift terms in a kinetic equation for electrons, because the Poisson brackets contain
derivatives of A(X). On the other hand, for local quantities, such as the emission and absorption
rates, the vector potential A(X) drops out from the final expressions as it must be due to gauge
invariance. Formally, this can be achieved by the change of variables pi → pi + eA(X) in integrals
over the electron four-momenta, or equivalently by setting A(X) = 0 [9]. From now on we use the
latter prescription.

As for the correlation functions G
≷
(X, p), the main problem is to express them in terms of the

electron (positron) distribution functions. A simple quasiparticle ansatz for relativistic electrons
was proposed by Bezzerides and DuBois [13] (see also below) but it cannot be used to calculate

the polarization functions π
≷

s (X, k). The point is that the electron correlation functions G
≷
(X, p)

contain not only sharply peaked “quasiparticle” parts but also off-shell parts which contribute to
the emission and absorption rates. The situation is strongly reminiscent of our previous discussion
of the field correlation functions, so that it is natural to follow the same way by analyzing drift

terms in transport equations derived from the Kadanoff-Baym equations for G
≷
(X, p). This is

detailed in references [9,20]. Here we quote the resulting decomposition of the electron correlation
functions in the local approximation (cf. formula (36) for photons):

G
≷

(X, p) = G̃
≷

(X, p) +
1

2

[
g+(X, p) Σ

≷

(X, p) g+(X, p) + g−(X, p) Σ
≷

(X, p) g−(X, p)
]
. (56)

To show that the G̃
≷
(X, p) may be interpreted as the quasiparticle parts of the electron corre-

lation functions, it is instructive to consider their spectral properties. The full spectral function in
spinor space is defined as [7,21]

A(X, p) = i
(
G>(X, p) −G<(X, p)

)
= i

(
G+(X, p) −G−(X, p)

)
. (57)

In the local approximation G±(X, p) = g±(X, p). We also introduce the quasiparticle spectral

function associated with G̃
≷
(X, p):

Ã(X, p) = i
(
G̃>(X, p) − G̃<(X, p)

)
. (58)

Then, recalling formulas (55), (56), and the relation Σ> − Σ< = Σ+ − Σ−, we find that

A(X, p) = i g+∆Σ g−, Ã(X, p) = −
i

2
g+∆Σ g+∆Σ g−∆Σ g−, (59)

where ∆Σ(X, p) = Σ+(X, p)−Σ−(X, p). To gain some insight into an important difference between

the spectral functions A(X, p) and Ã(X, p), let us use a simple ansatz [22–24]

Σ±(X, p) = ∓ i (Γp/2)γ0, (60)
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where Γp > 0 is a “spectral width parameter”. Then, assuming Γp � Ep, where Ep =
√

p2 +m2,
some spinor algebra leads to [9]

A(X, p) ≈
2p0Γp(

p2
0 −E2

p

)2
+

(
p0Γp

)2 (6p+m) , Ã(X, p) ≈
4

(
p0Γp

)3

[(
p2
0 −E2

p

)2
+

(
p0Γp

)2
]2 (6p+m) . (61)

In the limit Γp → 0 both spectral functions take the same form

lim
Γ

p
→0

Ã = lim
Γ

p
→0

A = 2π η(p0) δ(p
2 −m2) (6p+m) (62)

but, for a finite Γp, the quasiparticle spectral function falls off faster than the full spectral function.

In other words, the “collisional broadening” of Ã(X, p) function is considerably smaller than that of
A(X, p). This has much in common with the properties of the resonant and full spectral functions
for transverse field fluctuations (cf. expressions (40)).

In analogy with the kinetic description of resonant photons in section 4, it is reasonable to

introduce the electron (positron) distribution functions through relations between G̃
≷
(X, p) and

the quasiparticle spectral function. As shown in reference [9], for small quasiparticle damping and
equal probabilities of the spin polarization these relations can be taken in the form

G̃
≷

(X, p) = ∓ i Ã(X, p)f
≷

(X, p), (63)

where the f
≷
(X, p) are expressed in terms of the distribution functions for electrons (fe−) and

positrons (fe+):

f<(X, p)|p
0
>0 = fe−(X,p), f<(X, p)|p

0
<0 = 1 − fe+(X,−p),

f>(X, p)|p
0
>0 = 1 − fe−(X,p), f>(X, p)|p

0
<0 = fe+(X,−p).

(64)

Neglecting the second (off-shell) term in formula (56), i. e., identifying G̃
≷
(X, p) with the full

correlation functions, and using the singular form (62) for Ã(X, p) in relation (63), we recover the
relativistic quasiparticle approximation used by Bezzerides and DuBois [13]. This approximation is
sufficient to derive a particle kinetic equation in which the collision term involves electron-electron
(electron-positron) scattering but, as shown below, is inadequate to describe radiative processes

(e. g., Compton scattering and bremsstrahlung). Therefore, the off-shell parts of G
≷
(X, p) are to

be taken into account.
To the first order in the field fluctuations, we have [9]

Σ
≷

(X, p) = ie2

∫
d4k

(2π)4
γ̂µ(k)G

≷

(X, p+ k) γ̂ν(k)D
≶

νµ(X, k). (65)

We see that formula (56) is in fact an integral equation for G
≷
(X, p). Retaining only terms linear

in D
≶

µν(X, k) yields

G
≷

(X, p) = G̃
≷

(X, p) + i
e2

2

∫
d4k

(2π)4
D

≶

νµ(k)
[
g+(p)γ̂µ(k)G̃

≷

(p+ k)γ̂ν(k)g+(p)

+ g−(p)γ̂µ(k)G̃
≷

(p+ k)γ̂ν(k)g−(p)
]
. (66)

In non-relativistic kinetic theory, an analogous decomposition of correlation functions into the
quasiparticle and off-shell parts is called the “extended quasiparticle approximation” [16,17,25].
Expression (66) may thus be regarded as the extended quasiparticle approximation for relativistic

electrons .
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7. Photon production: elementary processes

We can now express the relevant contributions to π<
s (X, k) in terms of the quasiparticle parts

of the electron correlation functions. Since our consideration is restricted to the lowest order in the
field fluctuations, the full electron correlation functions G

≷
(X, p) entering expression (54) are to

be replaced by G̃
≷
(X, p). Note, however, that in formula (53) one must keep first-order off-shell

corrections to the electron correlation functions coming from the integral term in equation (66).
These corrections are to be combined with the term (54). Collecting all contributions to π<

s (X, k),
it is convenient to eliminate the field correlation functions D>

µν(X, k) with the help of the symmetry
relation D>

µν(X, k) = D<
νµ(X,−k). Then some algebra gives

π<
s (X, k) = −ie2(2π)4

∫
d4p1

(2π)4
d4p2

(2π)4
δ4(p1 − p2 − k) trD

{
6εs(k) G̃

<(p1) 6εs(k) G̃
>(p2)

}

+ e4 (2π)
4
∫

d4p1

(2π)4
d4p2

(2π)4
d4k′

(2π)4
δ4(p1 + k′ − p2 − k)Kλλ′

s (p1, p2; k, k
′)D<

λλ′(k′). (67)

The explicit expression for Kλλ′

s (p1, p2; k, k
′) is rather cumbersome and therefore is not given here

(see reference [9]). We only note that it contains the Dirac traces of different terms involving the

electron propagators g± and the quasiparticle correlation functions G̃
≷
.

Let us discuss shortly some radiative processes described by the polarization function (67).
We begin with the contribution of the first term to the radiating power (51). Usually the corre-
sponding process is referred to as Cherenkov radiation. Note, however, that the energy-momentum
conserving Cherenkov emission of photons in plasmas is kinematically forbidden [13] because, for
all the expected densities, the dispersion curve for transverse ways stays above the ω = |k|. Strictly

speaking, this statement is only true when the quasiparticle spectral function Ã(p) has the singular

mass-shell form (62), i. e., all medium effects are ignored. The collisional broadening of the Ã(p)
results in a statistical energy uncertainty for electrons (positrons), and the emission of low-energy
photons becomes possible3. Neglecting the positron contribution to the radiating power and as-
suming, for simplicity, equal probabilities for the photon polarizations and the particle spin states,
one obtains [9] (the fixed argument X is omitted)

(
dR(k)

d3k

)

Cherenkov

=
e2

(2π)3
[
1 + n(k)

] ∫
d3p

(2π)3
Λ(p,k) f(p), (68)

where n(k) ≡ ns(k) and f(p) is the electron distribution function. With the parametrization
(61) of the quasiparticle spectral function, the transition probability Λ(p,k) can be calculated
analytically:

Λ(p,k) =
Γ3

p

(
p 2 − (p · k)2/k2

) {
5Γ2

p + ω2(k)
[
1 − (p · k)/(Ep ω(k))

]2
}

E2
p

{
Γ2

p + ω2(k)
[
1 − (p · k)/(Ep ω(k))

]2
}3 . (69)

Since in a plasma [1− (p ·k)/(Ep ω(k))] 6= 0 for all possible p and k, it is evident that Λ(p,k) → 0
in the limit Γp → 0 (more precisely, Γp/ω(k) → 0). Finally, we note that for fixed p and ω(k), the
quantity Λ(p,k) Γp may be regarded as the angular distribution of emitted photons. The behavior
of this distribution in the frequency region ω(k) ≈ Γp is illustrated in figure 4.

To understand the radiative processes associated with the second term in expression (67), we
note that, according to (22), the field correlation functions are represented by the block matrix

D
≷

µν(X, k) =



D

≷
(X, k) 0

0
∑

s

εsi(k) d
≷

s (X, k) εsj(k)


 . (70)

3A similar situation occurs in the case of a quark-gluon plasma [22] where the thermal broadening of the quark
spectral function is one of the mechanisms for the soft photon production.
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Figure 4. Angular distribution of emitted photons in the Cherenkov channel: (a) ω(k) = 0.1Γp;
(b) ω(k) = Γp; (c) ω(k) = 10 Γp. Here, θ is the angle between the electron momentum p and
the photon momentum k. The electron kinetic energy is assumed to be Ekin = 10 MeV.

We, therefore, have two different contributions to the radiating power arising from the interaction
of electrons (positrons) with longitudinal and transverse fluctuations of the electromagnetic field.
The contribution to the radiating power coming from the resonant term in decomposition (36)
corresponds to Compton scattering and electron-positron annihilation in the plasma [9]. It is im-
portant to emphasize that the cross section for these processes (the Klein-Nishina formula) known
from vacuum QED [26] is recovered if the collisional broadening of the electron propagators g±(p)

and the quasiparticle spectral function Ã(p) is neglected. There is another contribution to the
radiating power associated with the second (off-shell) part of the field correlation function d<

s (k)
given by equation (36). Since the transverse polarization effects are caused by current fluctuati-
ons, this contribution may be interpreted physically as coming from the scattering of electrons by
current fluctuations in the plasma. Finally, the contribution to the radiating power coming from
the longitudinal field correlation function D<(X, k) corresponds to the scattering of electrons by
ions (bremsstrahlung), one-photon electron-positron annihilation, and the scattering of electrons
by charge fluctuations (plasmons). The vacuum QED cross section for bremsstrahlung emission of
photons (the Bethe-Heitler formula) [26] is recovered if the medium effects are neglected. For a
detailed discussion of all these points we refer to the work [9].

8. Summary

One of the most important features of photon kinetics is the crucial role played by the off-shell
parts of the particle and field correlation functions in the derivation of the photon emission rate.
Note that in vacuum QED the separation of on-shell and off-shell states is in fact trivial, since
the on-shell states correspond to incoming or outgoing particles in a scattering process while the
off-shell (virtual) states occur in the calculation of the S-matrix. In kinetic theory, however, one is
dealing with ensemble averaged correlation functions involving both the resonant (quasiparticle)
and off-shell parts. We have seen that, for weakly coupled plasmas, the structure of drift terms in
the gradient-expanded transport equations provides a useful guide to separate the quasiparticle and
off-shell contributions to the correlation functions. Note that off-shell transport is also a problem
of great interest for a proper dynamical treatment of stable particles and broad resonances in a
dense nuclear medium [27], but in that case it is hard to separate unambiguously the quasiparticle
and off-shell contributions to correlation functions because of strong medium effects.
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Отримано 24 червня 2009 р.

Представлено кiнетичну теорiю радiацiйних процесiв у багатосортнiй плазмi з релятивiстськими
електронами та нерелятивiстськими важкими частинками. З використанням нерiвноважних функ-
цiй Ґрiна для квантової електродинамiки (КЕД) показано, що поперечнi польовi кореляцiйнi функцiї
можна природнiм чином розбити на нелоренцiвську частину з гострим максимумом, яка описує ре-
зонанснi (пропагаторнi) фотони, та поза-оболонкову складову, яка вiдповiдає вiртуальним фотонам
середовища. Аналогiчне розбиття отримано для поздовжнiх польових кореляцiйних функцiй та ко-
реляцiйних функцiй релятивiстських електронiв. Отримано кiнетичне рiвняння для резонансних фо-
тонiв зi скiнченою спектральною шириною та показано, що поза-оболонкова складова кореляцiйних
функцiй частинок i полiв є суттєвою для коректного розрахунку локальної потужностi випромiнюван-
ня в плазмi та вiдтворення результатiв вакуумної КЕД. Обговорюється вплив плазмових ефектiв на
процеси випромiнювання.

Ключовi слова: багаточастинкова квантова електродинамiка, нерiвноважнi функцiї Ґрiна,
релятивiстська плазма

PACS: 52.20.-j, 52.25Dg, 52.38Ph, 52.25Os, 52.27Ny
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