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Monte Carlo (MC) analysis of the Goldstone mode singularities for the transverse and the longitudinal correla-

tion functions, behaving as G⊥(k) ≃ ak−λ⊥ and G∥(k) ≃ bk−λ∥ in the ordered phase at k → 0, is performed

in the three-dimensional O(n) models with n = 2,4,10. Our aim is to test some challenging theoretical pre-

dictions, according to which the exponents λ⊥ and λ∥ are non-trivial (3/2 < λ⊥ < 2 and 0 < λ∥ < 1 in three

dimensions) and the ratio bM2/a2 (where M is a spontaneous magnetization) is universal. The trivial standard-

theoretical values are λ⊥ = 2 and λ∥ = 1. Our earlier MC analysis gives λ⊥ = 1.955±0.020 and λ∥ about 0.9

for the O(4) model. A recent MC estimation of λ∥ , assuming corrections to scaling of the standard theory, yields

λ∥ = 0.69±0.10 for the O(2) model. Currently, we have performed a similarMC estimation for the O(10) model,

yielding λ⊥ = 1.9723(90). We have observed that the plot of the effective transverse exponent for the O(4)

model is systematically shifted down with respect to the same plot for the O(10) model by ∆λ⊥ = 0.0121(52).

It is consistent with the idea that 2−λ⊥ decreases for large n and tends to zero at n →∞. We have also veri-

fied and confirmed the expected universality of bM2/a2 for the O(4) model, where simulations at two different

temperatures (couplings) have been performed.

Key words: Monte Carlo simulation, n-component vector models, correlation functions,

Goldstone mode singularities

PACS: 05.10.Ln, 75.10.Hk, 05.50.+q

1. Introduction

Our work is devoted to the Monte Carlo (MC) investigation of the Goldstone mode effects in n-com-

ponent vector-spin models (O(n) models), which have O(n) global rotational symmetry at zero external

field h. The Hamiltonian H is given by

H

T
=−β

(

∑

〈i j 〉

si s j +
∑

i

hsi

)

, (1.1)

where T is temperature, si ≡ s(xi ) is the n–component vector of unit length, i. e., the spin variable of the

i -th lattice site with coordinate xi , and β is the coupling constant. The summation takes place over all

nearest neighbors in the lattice with periodic boundary conditions.

The Fourier-transformed longitudinal and transverse correlation functions are

G∥(k) = N−1
∑

x

G̃∥(x)e
−ikx

, (1.2)

G⊥(k) = N−1
∑

x

G̃⊥(x)e
−ikx

, (1.3)

where G̃∥(x) and G̃⊥(x) are the corresponding two-point correlation functions in the coordinate space.
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In the thermodynamic limit below the critical temperature (at β > βc), the magnetization M(h) and

the correlation functions exhibit Goldstone mode power-law singularities:

M(h)−M(+0) ∝ hρ at h → 0 , (1.4)

G⊥(k) = a k−λ⊥ at h =+0 and k → 0 , (1.5)

G∥(k) = b k−λ∥ at h =+0 and k → 0 , (1.6)

where a and b are the amplitudes.

There exist different theoretical predictions for the values of the exponents in these expressions. In

a series of theoretical works (e. g., [1–7]), it has been claimed that these exponents are exactly ρ = 1/2 at

d = 3, λ⊥ = 2 and λ∥ = 4−d . Here, d is the spatial dimensionality 2 < d < 4. These theoretical approaches

are further referred to as the standard theory.

More non-trivial universal values are expected according to [8], such that

d/2 <λ⊥ < 2 , (1.7)

λ∥ = 2λ⊥−d , (1.8)

ρ = (d/λ⊥)−1 (1.9)

hold for 2 < d < 4. These relations were obtained in [8] by analyzing self-consistent diagram equations

for correlation functions without cutting the perturbation series. As introduced in [9, 10], we will call

this approach the GFD (grouping of Feynman diagrams) theory. Apart from the mathematical analysis,

certain physical arguments were also provided [8] to show that λ⊥ = 2 could not be the correct result for

the X Y model (n = 2) within 2 < d < 4.

Several MC simulations were performed in the past [11–14] to verify the compatibility of MC data with

some standard–theoretical expressions, where the exponents are fixed. In recent years, we performed a

series of accurate MC simulations [10, 15, 16] for remarkably larger lattices than previously with an aim

to reexamine the theoretical predictions by evaluating the exponents in (1.7)–(1.9). In particular, lattices

of the linear sizes L É 512 for n = 2 and L É 350 for n = 4 were simulated in our papers [10, 15] and [16],

respectively. These L values remarkably exceed the largest sizes simulated by other authors, i. e., L = 160

for n = 2 in [13] and L = 120 for n = 4 in [12, 14]. In the current work, the O(10) model is simulated up to

L = 384.

The relations (1.7) and (1.8) are consistent with MC simulation results for the 3D O(4) model [16],

where an estimate λ⊥ = 1.955±0.020 was found. It was also stated that the behavior of the longitudinal

correlation function is well consistent with λ∥ about 0.9 rather than with the standard-theoretical value

λ∥ = 1. According to (1.9), we have 1/2 < ρ < 1 in three dimensions. It is consistent with the MC estimate

ρ = 0.555(17) for the 3D X Y model [15], which corresponds to λ⊥ = 1.929(21) according to (1.9). A clear

MC evidence that the behavior of G∥(k) is not quite consistent with the standard–theoretical predictions

has been recently provided [10], where an estimate λ∥ = 0.69± 0.10 has been obtained for the 3D X Y

(i. e., 3D O(2)) model (at β= 0.55), assuming corrections to scaling of the standard theory.

In the actual study, we have extended our MC simulations and analysis to include the n = 10 case

and to test the n-dependence of the exponents. Apart from the exponents, we have performed here an

extended analysis of the O(4) model to verify the expected universality of the ratio bM2/a2 [8], where

M ≡ M(+0) is the spontaneous magnetization, a and b are the amplitudes in (1.5) and (1.6).

2. Simulation results

We simulated the 3D O(10) model by a modified Wolff cluster algorithm, used also in [15, 16], and

evaluated the Fourier-transformed correlation functions by techniques described in [16]. The standard

Wolff cluster algorithm [17] was modified to enable simulations at nonzero external field h. Simple cubic

lattices of the linear size up to L = 384 were simulated at β = 3 and h =| h |= hmin, 2hmin, 4hmin, where

hmin = 0.00021875. The coupling constant β= 3 corresponds to the ordered phase, since the spontaneous

magnetization M(+0) is about 0.467 in this case — see section 5 for details. This value of M(+0) is com-

parable with those for the O(2) and O(4) models in our previous MC simulations [15, 16]. The simulation
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Figure 1. Log-log plots of the transverse correlation function G⊥(k) at h = hmin = 0.00021875 and L = 350

(solid circles), h = hmin and L = 256 (pluses), h = 2hmin and L = 384 (empty circles), as well as at h =

4hmin and L = 384 (empty diamonds). Statistical errors are about the symbol size or smaller. The lower

value k∗ of the wave vector magnitude, used in estimations of the exponent λ⊥ , is indicated by a vertical

dashed line.

results for the correlation functions G⊥(k) and G∥(k) in the 〈100〉 crystallographic direction at the three

values of h and different sizes L are illustrated in figures 1 and 2. It is important for an estimation of the

exponents λ⊥ and λ∥ to ensure that the finite-size as well as finite-h effects are small. This condition is

satisfied for k > k∗, where the values of k∗ are indicated in the figures by vertical dashed lines.

-4 -3 -2 -1 0
ln k

-1

0

1

ln
 G

||(k
)

Figure 2. Log-log plots of the longitudinal correlation function G∥(k) at h = hmin = 0.00021875 and L =

350 (solid circles), h = hmin and L = 256 (pluses), h = 2hmin and L = 384 (empty circles), as well as at

h = 4hmin and L = 384 (empty diamonds). Statistical errors are about the symbol size. The lower value

k∗ of thewave vectormagnitude, used in estimations of the exponent λ∥ , is indicated by a vertical dashed

line.
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3. Estimation of the exponents

Herewe estimate the exponents λ⊥ and λ∥, describing the behavior of the correlation functions in the

limit k → 0, h → 0, L →∞, taking the limit L →∞ at first, followed by h → 0. For this purpose, first we find

good approximations of the effective exponents at h → 0, L →∞, and then fit these k-dependent effective

exponents to evaluate their asymptotic values at k → 0. By comparing the simulation results for different

L and h, we conclude that the largest-L and smallest-h data for k > k∗ with a good enough accuracy

correspond to the thermodynamic limit at h = +0, i. e., h → 0, L →∞. We have tested this precisely by

looking how the estimates of the effective exponents depend on L and h. This method of analysis was

applied in [10, 16]. The effective transverse exponent λeff(k) for the O(4) model was evaluated in [16]

from the slope of the lnG⊥(k) vs lnk plot within [k,4k]. Here we use a wider interval — [k,6k], because

we have found that the λeff(k) data in this case can be perfectly fit by a parabola

λeff(k) =λ⊥+a1k +a2k2
, (3.1)

the finite-size and finite-h effects being very small. The ansatz (3.1) is consistent with the general state-

ment limk→0λeff(k) = λ⊥ (in the thermodynamic limit at h = +0) and with corrections to scaling of the

standard theory, where the correlation functions are supplied with correction factors in the form of an

expansion in powers of k4−d and kd−2 [1, 5]. Some of the fit results are shown in figure 3. We have per-

formed a series of fits at different sizes L for the smallest-h value h = hmin = 0.00021875. At the largest

size L = 350 for this h, the effective exponent λeff(k) was fit within k ∈ [k5,k25], where kℓ = 2πℓ/350

are the possible discrete values of k. Similar fit intervals were chosen for all L. These fits to (3.1) give us

λ⊥ = 1.9680(84) at L = 128, λ⊥ = 1.9840(98) at L = 192, λ⊥ = 1.9727(86) at L = 256 and λ⊥ = 1.9723(90)

at L = 350. As we can see, the finite-size effects are smaller than the statistical error bars. The λeff(k)

data for L = 350 and L = 256 at h = hmin are shown in figure 3 by solid circles and exes, respectively.

The corresponding fit curves lie practically on top of each other. Therefore, only that one for L = 350 is

shown by solid line. The fit curves for h = 2hmin and h = 4hmin at L = 384 (the largest size) are also de-

picted here to see the finite-h effects. These fits give us λ⊥ = 1.9251(86) at h = 4hmin and λ⊥ = 1.9666(91)

at h = 2hmin. A rather fast convergence to the h = +0 limit is evident. According to this discussion, the

fit result λ⊥ = 1.9723(90), obtained at h = hmin and L = 350, with a good accuracy corresponds to the

thermodynamic limit at h =+0. Besides, the systematical errors due to finite-size and finite-h effects are

probably smaller than the statistical error bars.
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Figure 3. The transverse effective exponent λeff(k), evaluated from the lnG⊥(k) vs lnk fits within [k,6k]

at h = hmin = 0.00021875 and L = 350 (solid circles), h = hmin and L = 256 (exes), h = 2hmin and L = 384

(empty circles), as well as at h = 4hmin and L = 384 (empty diamonds). The fits to (3.1) of the largest-L

data at h = hmin, h = 2hmin and h = 4hmin are shown by solid, dashed and dotted lines, respectively.
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Another possible source of systematical errors is the existence of non-trivial corrections to scaling,

which are not included in (3.1). These are corrections to scaling of the GFD theory [8], represented by

an expansion in powers of k2−λ⊥ , kλ⊥−λ∥ and kλ∥ . Nevertheless, the actual estimation, where only the

standard-theoretical corrections have been included, is well justified as a test of consistency of the stan-

dard theory. The existence of a small correction-to-scaling exponent 2−λ⊥ can make the extrapolation

of the λeff(k) plots unreliable. However, since the λeff(k) data are really well described by a parabola,

it might be true that the amplitude of such a correction term is small and the estimate λ⊥ = 1.9723(90)

is quite reasonable. In any case, this estimation shows a small deviation from the standard-theoretical

picture, where (3.1) should hold at small enough k with λ⊥ = 2. This deviation can be indeed small at

n = 10, since λ⊥ → 2 is expected in the limit n →∞, corresponding to the known behavior of the spheri-

cal model [18].

We have also attempted to evaluate the longitudinal exponent λ∥ from the G∥(k) data within k > k∗,

where k∗ is indicated in figure 2 by a vertical dashed line. We have found that the longitudinal effective

exponent, extracted from the data within [k,4k], can be perfectly approximated by a parabola. It leads to

an estimate λ∥ = 0.85±0.06. The error bars indicated here include a statistical standard error as well as

a systematical error due to finite-h effects. However, due to a rather large extrapolation gap (from ≈ 1.17

to ≈ 0.85), we consider this estimation as a preliminary one.
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Figure 4. The plots of the transverse effective exponent λeff(k), evaluated from the lnG⊥(k) vs lnk fits

within [k,6k]. The results of the O(10) model at β = 3 are shown by solid circles, whereas those of the

O(4) model at β= 1.1 — by empty circles.

We have reexamined the largest-L (L = 350) and smallest-h (h = 0.0003125) data of the O(4) model

[16] at β= 1.1 with an aim to evaluate the transverse effective exponent in the same way as for the O(10)

model. Like in the n = 10 case, we have verified that the thermodynamic limit at h = +0 is practically

reached in this estimation. Besides, we have found a surprising similarity of the λeff(k) plots, where the

effective exponent in both cases was evaluated by fitting the G⊥(k) data within [k,6k] (fits within [k,4k]

were used in [16]). As we can see from figure 4, the plot for the O(4) model is systematically shifted

down by an almost constant value relative to the same plot for the O(10) model. This similarity might be

partly caused by the fact that the values of spontaneous magnetization are rather similar in these two

cases, i. e., M ≡ M(+0) = 0.484475(48) for the O(4) model at β = 1.1 and M ≈ 0.467 (see section 5) for

the O(10) model at β = 3. The overall fit to (3.1) is less perfect for the O(4) model as compared to the

O(10) model. However, the systematical shift between two plots is very well approximated by a constant

value within the statistical error bars for the eight smallest k data points in figure 4. It yields an estimate

∆λ⊥ = (λ⊥)n=10 − (λ⊥)n=4 = 0.0121(52), where (λ⊥)n=10 and (λ⊥)n=4 are the values of λ⊥ in n = 10 and

n = 4 cases. According to the behavior of plots in figure 4 and this estimation, it is quite plausible that a

transverse exponent λ⊥ of theO(10) model is somewhat larger than that of theO(4) model. It is consistent

43005-5



J. Kaupužs, R.V.N. Melnik, J. Rimšāns

with the idea that 2−λ⊥ decreases for large n and tends to zero at n →∞. This behavior is fully consistent

with the predictions of [8], but not so well consistent with the standard theory, according to which λ⊥

is always 2 and, therefore, ∆λ⊥ = 0 is expected. According to our estimates (λ⊥)n=10 = 1.9723(90) and

∆λ⊥ = 0.0121(52), we have λ⊥ = 1.960(10) for n = 4. It perfectly agrees with our earlier estimate λ⊥ =

1.955±0.020 [16].

4. The ratio universality test

We have extended the MC analysis of our earlier data [16] for the O(4) model at two different cou-

plings, β = 1.1 and β = 1.2, to test the expected (according to [8]) universality of the ratio bM2/a2, dis-

cussed already in the end of section 1. According to (1.5), (1.6) and (1.8), the universality of bM2/a2

implies that the quantity

R(k) =
k−d M2G∥(k)

G2
⊥

(k)
(4.1)

tends to some universal constant at k → 0, i. e., lim
k→0

R(k) = bM2/a2. We have tested this property by

comparing the R(k) plots at β= 1.1 and β= 1.2, where R(k) ≡ R(| k |) in the 〈100〉 direction. Note that the

quantities in (4.1) are determined in the thermodynamic limit at h =+0. We have verified that this limit is

practically (within the statistical error bars) reached within k Ê k14 (where kℓ = 2πℓ/350) for the largest

lattice size L = 350 and the smallest external fields h = 0.0003125 and h = 0.0004375 at which simulations

were performed. The estimates of spontaneous magnetization obtained in [8], i.e., M = 0.484475(48) at

β= 1.1 and M = 0.560178(40) at β= 1.2, are used here. The calculated plots are depicted in figure 5. The

results for both h = 0.0003125 and h = 0.0004375 are available at β = 1.1. As we can see from figure 5,

the corresponding two plots of R(k) (solid circles and diamonds) lie practically on top of each other,

indicating that the finite-h effects are negligibly small. The range h Ê 0.0004375 is considered for β= 1.2

in [16]. Fortunately, the finite-h effects at β = 1.2 are similar to those at β = 1.1, so that the estimate

of R(k) at h = 0.0004375 is valid at β = 1.2. The corresponding plot (empty circles) in figure 5 slightly

deviates from the two plots at β= 1.1. However, all three plots merge within the statistical error bars at

the smallest wave vector magnitudes k considered here. This confirms the expected universality of the

ratio bM2/a2. The plot of empty circles in figure 5 apparently saturates at a value about 0.166 for small

wave vectors. Taking into account the two other plots, we can judge that 0.16 < R(0) < 0.18 most probably

holds for the asymptotic value R(0) = lim
k→0

R(k). Thus, we have an estimate R(0) = 0.17±0.01.

0 0.2 0.4 0.6 0.8 1 1.2 k

0.1

0.12

0.14

0.16

R(k)

Figure 5. The R(k) plots of the 3D O(4) model, evaluated from the MC data for the lattice of size L = 350 at

β= 1.1 and h = 0.0003125 (solid circles), β= 1.1 and h = 0.0004375 (diamonds), as well as at β= 1.2 and

h = 0.0004375 (empty circles).
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5. Spontaneous magnetization

We estimated the spontaneous magnetization of the 3D O(10) model at β = 3 based on our mag-

netization data M(h,L) depending on h and L. We observed a rather fast convergence to the thermo-

dynamic limit, e. g., M(hmin,L) = 0.31658(46), 0.45286(23), 0.470839(90), 0.471959(38), 0.472151(23),

0.472148(16) at L = 32,64,128,192,256 and 350, respectively. According to this, we can take the largest-

L value as a good approximation for M(hmin) = limL→∞ M(hmin,L). Using this method, we obtained

M(hmin) = 0.472148(16), M(2hmin) = 0.4742786(98) and M(4hmin) = 0.4772753(76). According to (1.4),

we fit these data to the ansatz M(h) = M(+0)+a1hρ with ρ = 0.5211(69), evaluated from (1.9) by inserting

here λ⊥ = 1.9723(90) obtained in section 3. It yields M ≡ M(+0) = 0.467343(99). Assuming the standard-

theoretical value ρ = 1/2, we obtain M = 0.467030(26). Fits to a refined ansatz M(h) = M(+0)+a1hρ+a2h

yield M = 0.46711(14) at ρ = 0.5211(69) and M = 0.46696(14) at ρ = 1/2. Since we have only three data

points for M(h), this can be considered as a raw estimation yielding M ≈ 0.467. However, this estimation

is accurate enough to see that β= 3 corresponds to the ordered phase with M > 0.

6. Conclusions

In the actual work, the previous MC studies [10, 16] of the transverse and longitudinal correlation

functions in the 3D O(n) models with n = 2 and n = 4 have been extended, including the n = 10 case

(sections 2 and 3). It gives us an important information about the behavior of the exponent λ⊥ at large

n. According to our MC analysis, a self-consistent (within the standard theory) estimation of λ⊥ for n =

10 shows a small deviation from the standard-theoretical prediction λ⊥ = 2, yielding λ⊥ = 1.9723(90)

(section 3). The fact that this deviation is quite small can be well understood, since λ⊥ → 2 is expected at

n →∞ according to the known results for the spherical model, corresponding to this limit. Comparing

the plots of the effective transverse exponent at n = 10 and n = 4, it has been stated that these plots

are surprisingly similar, i. e., only slightly shifted with respect to each other. The estimation of this shift

suggests that the transverse exponent for n = 10 is larger than that for n = 4 by an amount of ∆λ⊥ =

0.0121(52) (section 3). It is consistent with the idea that 2−λ⊥ decreases for large n and tends to zero

at n → ∞. We have also verified and confirmed the expected universality of the ratio bM2/a2 for the

O(4) model by analyzing the correlation functions at two different couplings, i. e., β = 1.1 and β = 1.2

(section 4).

The actual MC results are fully consistent with the predictions of the GFD theory [8] (see section 1)

and not so well consistent with the standard theory, according to which λ⊥ is always 2.

Acknowledgements

This work was made possible by the facilities of the Shared Hierarchical Academic Research Com-

puting Network (SHARCNET:www.sharcnet.ca). It has been performed within the framework of the ESF

Project No. 1DP/1.1.1.2.0/09/ APIA/VIAA/142, and with the financial support of this project. R. M. acknowl-

edges the support from the NSERC and CRC program.

References

1. Lawrie I.D., J. Phys. A, 1981, 14, 2489; doi:10.1088/0305-4470/14/9/041.

2. Lawrie I.D., J. Phys. A, 1985, 18, 1141; doi:10.1088/0305-4470/18/7/021.

3. Hasenfratz P., Leutwyler H., Nucl. Phys., 1990, B343, 241; doi:10.1016/0550-3213(90)90603-B.

4. Täuber U.C., Schwabl F., Phys. Rev. B, 1992, 46, 3337; doi:10.1103/PhysRevB.46.3337.

5. Schäfer L., Horner H., Z. Phys. B, 1978, 29, 251; doi:10.1007/BF01321190.

6. Anishetty R., Basu R., Hari Dass N.D., Sharatchandra H.S., Int. J. Mod. Phys. A, 1999, 14, 3467;

doi:10.1142/S0217751X99001615.

7. Dupuis N., Phys. Rev. E, 2011, 83, 031120; doi:10.1103/PhysRevE.83.031120.

8. Kaupužs J., Prog. Theor. Phys., 2010, 124, 613; doi:10.1143/PTP.124.613.

43005-7

www.sharcnet.ca
http://dx.doi.org/10.1088/0305-4470/14/9/041
http://dx.doi.org/10.1088/0305-4470/18/7/021
http://dx.doi.org/10.1016/0550-3213(90)90603-B
http://dx.doi.org/10.1103/PhysRevB.46.3337
http://dx.doi.org/10.1007/BF01321190
http://dx.doi.org/10.1142/S0217751X99001615
http://dx.doi.org/10.1103/PhysRevE.83.031120
http://dx.doi.org/10.1143/PTP.124.613


J. Kaupužs, R.V.N. Melnik, J. Rimšāns
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Я. Каупузс1,2, Р.В.Н. Мельнiк3, Я. Рiмсанс1,2

1 Iнститут математики та комп’ютерних наук, Унiверситет Латвiї,

бульвар Я. Райнiса, 29, LV–1459 Рига, Латвiя

2 Iнститут математичних наук та iнформацiйних технологiй, Унiверситет м. Лiєпая,

вул. Лiєла, 14, LV–3401 Лiєпая, Латвiя
3 Унiверситет iм. Вiльфреда Лорьє, Ватерлоо, Онтарiо, Канада, N2L 3C5

У тривимiрних O(n) моделях з n = 2,4,10 здiйснено аналiз методом Монте Карло (МК) сингулярно-

стей голдстоунiвських мод для поперечної i поздовжньої кореляцiйних функцiй, якi поводять себе як

G⊥(k) ≃ ak−λ⊥ i G∥(k) ≃ bk−λ∥ у впорядкованiй фазi при k → 0. Нашою метою є перевiрити цiкавi тео-

ретичнi передбаченя, згiдно яких iндекси λ⊥ i λ∥ є нетривiальними (3/2 < λ⊥ < 2 i 0 < λ∥ < 1 у трьох ви-

мiрах) i коефiцiєнт bM2/a2 (де M є спонтанною намагнiченiстю) є унiверсальний. Тривiальнi стандартнi

теоретичнi значення є λ⊥ = 2 i λ∥ = 1. Наш попереднiй МК аналiз дає λ⊥ = 1.955±0.020 i λ∥ приблизно

рiвне 0.9 для O(4) моделi. Недавня МК оцiнка λ∥ , яка допускає поправки для скейлiнга стандартної моде-

лi, дає λ∥ = 0.69±0.10 для O(2) моделi. Тепер ми здiйснили подiбну МК оцiнку для O(10) моделi, яка дає

λ⊥ = 1.9723(90). Ми побачили, що графiк ефективного поперечного iндекса для O(4) моделi є система-

тично зсунутий вниз по вiдношенню до графiка для O(10) моделi на ∆λ⊥ = 0.0121(52). Це узгоджується

з думкою, що 2−λ⊥ зменшується для великих n i прямує до нуля при n → ∞. Ми також перевiрили i

пiдтвердили очiкувану унiверсальнiсть bM2/a2 для O(4) моделi, для якої було здiйснено симуляцiї при

двох рiзних температурах.

Ключовi слова: моделювання Монте Карло, n-компонентнi векторнi моделi, кореляцiйнi функцiї,
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