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Monte Carlo (MC) analysis of the Goldstone mode singularities for the transverse and the longitudinal correla-
tion functions, behaving as G, (k) = ak™. and G (k) = bk~ in the ordered phase at k — 0, is performed
in the three-dimensional O(n) models with n = 2,4,10. Our aim is to test some challenging theoretical pre-
dictions, according to which the exponents 1, and A are non-trivial (3/2 <A, <2 and 0 <A <1 in three
dimensions) and the ratio bM2/a® (where M is a spontaneous magnetization) is universal. The trivial standard-
theoretical values are A =2 and A = 1. Our earlier MC analysis gives 1, = 1.955+0.020 and A about 0.9
for the O(4) model. A recent MC estimation of 1, assuming corrections to scaling of the standard theory, yields
A| =0.69£0.10 for the O(2) model. Currently, we have performed a similar MC estimation for the O(10) model,
yielding A} = 1.9723(90). We have observed that the plot of the effective transverse exponent for the O(4)
model is systematically shifted down with respect to the same plot for the O(10) model by AA; =0.0121(52).
It is consistent with the idea that 2 — A | decreases for large n and tends to zero at n — oo. We have also veri-
fied and confirmed the expected universality of bM? / a? for the O(4) model, where simulations at two different
temperatures (couplings) have been performed.
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1. Introduction

Our work is devoted to the Monte Carlo (MC) investigation of the Goldstone mode effects in n-com-
ponent vector-spin models (O(n) models), which have O(n) global rotational symmetry at zero external
field h. The Hamiltonian # is given by

J—sz—ﬁ(Zsisj+Zhsi), (1.1

(ij) i

where T is temperature, s; = s(X;) is the n—component vector of unit length, i. e., the spin variable of the
i-th lattice site with coordinate x;, and g is the coupling constant. The summation takes place over all
nearest neighbors in the lattice with periodic boundary conditions.

The Fourier-transformed longitudinal and transverse correlation functions are

G Ny Ge =, 1.2)

G N'Y GLwe ™, (1.3)

where G” (x) and G, (x) are the corresponding two-point correlation functions in the coordinate space.
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In the thermodynamic limit below the critical temperature (at 8 > f.), the magnetization M(h) and
the correlation functions exhibit Goldstone mode power-law singularities:

M(h)—-M+0)x h? at  h—0, (1.4)
G (k) =ak M at h=+0and k—0, (1.5)
Gy =bk™M at  h=+0and k—0, (1.6)

where a and b are the amplitudes.

There exist different theoretical predictions for the values of the exponents in these expressions. In
a series of theoretical works (e. g., [147]), it has been claimed that these exponents are exactly p =1/2 at
d=3,11 =2and A =4-d. Here, d is the spatial dimensionality 2 < d < 4. These theoretical approaches
are further referred to as the standard theory.

More non-trivial universal values are expected according to [8], such that

dl2<A; <2, 1.7
/1” =21, —-d, (1.8)
p=(dIA)-1 (1.9)

hold for 2 < d < 4. These relations were obtained in [8] by analyzing self-consistent diagram equations
for correlation functions without cutting the perturbation series. As introduced in [9, [10], we will call
this approach the GFD (grouping of Feynman diagrams) theory. Apart from the mathematical analysis,
certain physical arguments were also provided [8] to show that 1| =2 could not be the correct result for
the XY model (n =2) within 2 < d < 4.

Several MC simulations were performed in the past [11-14] to verify the compatibility of MC data with
some standard-theoretical expressions, where the exponents are fixed. In recent years, we performed a
series of accurate MC simulations [10,15,16] for remarkably larger lattices than previously with an aim
to reexamine the theoretical predictions by evaluating the exponents in (.)-(.9). In particular, lattices
of the linear sizes L <512 for n =2 and L < 350 for n = 4 were simulated in our papers [10,[15] and [16],
respectively. These L values remarkably exceed the largest sizes simulated by other authors, i. e., L =160
for n=2in [13] and L =120 for n =4 in [12,14]. In the current work, the O(10) model is simulated up to
L=1384.

The relations and are consistent with MC simulation results for the 3D O(4) model [16],
where an estimate A; = 1.955+ 0.020 was found. It was also stated that the behavior of the longitudinal
correlation function is well consistent with A about 0.9 rather than with the standard-theoretical value
A = 1. According to (1.9), we have 1/2 < p <1 in three dimensions. It is consistent with the MC estimate
0 =0.555(17) for the 3D XY model [15], which corresponds to A; =1.929(21) according to (I.9). A clear
MC evidence that the behavior of Gj (k) is not quite consistent with the standard-theoretical predictions
has been recently provided [10], where an estimate A = 0.69 £ 0.10 has been obtained for the 3D XY
(i. e., 3D O(2)) model (at 8 = 0.55), assuming corrections to scaling of the standard theory.

In the actual study, we have extended our MC simulations and analysis to include the n = 10 case
and to test the n-dependence of the exponents. Apart from the exponents, we have performed here an
extended analysis of the O(4) model to verify the expected universality of the ratio bM?/a? [8], where
M = M(+0) is the spontaneous magnetization, a and b are the amplitudes in and (6.

2. Simulation results

We simulated the 3D O(10) model by a modified Wolff cluster algorithm, used also in [15, [16], and
evaluated the Fourier-transformed correlation functions by techniques described in [16]. The standard
Wolff cluster algorithm [17] was modified to enable simulations at nonzero external field h. Simple cubic
lattices of the linear size up to L = 384 were simulated at § =3 and &k =| h |= hnpin, 2Amin, 4Pmin, Where
hmin = 0.00021875. The coupling constant 8 = 3 corresponds to the ordered phase, since the spontaneous
magnetization M(+0) is about 0.467 in this case — see section [l for details. This value of M(+0) is com-
parable with those for the O(2) and O(4) models in our previous MC simulations [15,/16]. The simulation
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Figure 1. Log-log plots of the transverse correlation function G, (k) at = hy,j, = 0.00021875 and L = 350
(solid circles), h = hyin and L = 256 (pluses), h = 2hyin, and L = 384 (empty circles), as well as at h =
4hpmin and L = 384 (empty diamonds). Statistical errors are about the symbol size or smaller. The lower
value k* of the wave vector magnitude, used in estimations of the exponent A |, is indicated by a vertical
dashed line.

results for the correlation functions G| (k) and Gy (k) in the (100) crystallographic direction at the three
values of h and different sizes L are illustrated in figures[lland[2] It is important for an estimation of the
exponents A; and A to ensure that the finite-size as well as finite-h effects are small. This condition is
satisfied for k > k*, where the values of k* are indicated in the figures by vertical dashed lines.
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Figure 2. Log-log plots of the longitudinal correlation function G (k) at h = hyjn = 0.00021875 and L =
350 (solid circles), h = hpyin and L = 256 (pluses), h = 2hyip, and L = 384 (empty circles), as well as at
h = 4hpin and L = 384 (empty diamonds). Statistical errors are about the symbol size. The lower value
k* of the wave vector magnitude, used in estimations of the exponent A, s indicated by a vertical dashed
line.
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3. Estimation of the exponents

Here we estimate the exponents A; and A, describing the behavior of the correlation functions in the
limit k — 0, h — 0, L — oo, taking the limit L — oo at first, followed by h — 0. For this purpose, first we find
good approximations of the effective exponents at i — 0, L — oo, and then fit these k-dependent effective
exponents to evaluate their asymptotic values at k — 0. By comparing the simulation results for different
L and h, we conclude that the largest-L and smallest-k data for k > k* with a good enough accuracy
correspond to the thermodynamic limit at & = +0, i. e, h — 0, L — co. We have tested this precisely by
looking how the estimates of the effective exponents depend on L and h. This method of analysis was
applied in [10, [16]. The effective transverse exponent A (k) for the O(4) model was evaluated in [16]
from the slope of the In G (k) vs In k plot within [k,4k]. Here we use a wider interval — [k, 6k], because
we have found that the Aqs(k) data in this case can be perfectly fit by a parabola

Aefe(k) = A1 + a1k + axk? (3.1)

the finite-size and finite-# effects being very small. The ansatz is consistent with the general state-
ment limy_gAegr(k) = A1 (in the thermodynamic limit at 7 = +0) and with corrections to scaling of the
standard theory, where the correlation functions are supplied with correction factors in the form of an
expansion in powers of k*~% and k%2 [1,/5]. Some of the fit results are shown in figure 3l We have per-
formed a series of fits at different sizes L for the smallest-/ value i = hpi, = 0.00021875. At the largest
size L = 350 for this h, the effective exponent Aqs(k) was fit within k € [ks, k25], where ky = 21¢/350
are the possible discrete values of k. Similar fit intervals were chosen for all L. These fits to (3.1) give us
A1 =1.9680(84) at L =128, 1; =1.9840(98) at L =192, 1, = 1.9727(86) at L =256 and 1, = 1.9723(90)
at L = 350. As we can see, the finite-size effects are smaller than the statistical error bars. The Aeg(k)
data for L = 350 and L = 256 at h = hyj, are shown in figure Bl by solid circles and exes, respectively.
The corresponding fit curves lie practically on top of each other. Therefore, only that one for L = 350 is
shown by solid line. The fit curves for h = 2hpin and k = 4hnyin at L = 384 (the largest size) are also de-
picted here to see the finite-# effects. These fits give us A} =1.9251(86) at h = 4hpin and A = 1.9666(91)
at h = 2hpiy. A rather fast convergence to the i = +0 limit is evident. According to this discussion, the
fit result 1, = 1.9723(90), obtained at h = hpyjn, and L = 350, with a good accuracy corresponds to the
thermodynamic limit at # = +0. Besides, the systematical errors due to finite-size and finite-% effects are
probably smaller than the statistical error bars.
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Figure 3. The transverse effective exponent Aqs(k), evaluated from the In G, (k) vs In k fits within [k, 6k]
at h = hpip = 0.00021875 and L = 350 (solid circles), h = hyin and L =256 (exes), h = 2hpyj, and L =384
(empty circles), as well as at h = 4hyi, and L = 384 (empty diamonds). The fits to (31D of the largest-L
data at h = hpip, b = 2hpin and k = 4k, are shown by solid, dashed and dotted lines, respectively.
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Another possible source of systematical errors is the existence of non-trivial corrections to scaling,
which are not included in 3.1). These are corrections to scaling of the GFD theory [8], represented by
an expansion in powers of kz"h, K= and KM, Nevertheless, the actual estimation, where only the
standard-theoretical corrections have been included, is well justified as a test of consistency of the stan-
dard theory. The existence of a small correction-to-scaling exponent 2 — A, can make the extrapolation
of the Afr(k) plots unreliable. However, since the Aes(k) data are really well described by a parabola,
it might be true that the amplitude of such a correction term is small and the estimate 1, = 1.9723(90)
is quite reasonable. In any case, this estimation shows a small deviation from the standard-theoretical
picture, where should hold at small enough k with A; = 2. This deviation can be indeed small at
n =10, since 1, — 2 is expected in the limit 7 — oo, corresponding to the known behavior of the spheri-
cal model [18].

We have also attempted to evaluate the longitudinal exponent A from the Gy (k) data within k > k*,
where k* is indicated in figureRlby a vertical dashed line. We have found that the longitudinal effective
exponent, extracted from the data within [k, 4k], can be perfectly approximated by a parabola. It leads to
an estimate A = 0.85+ 0.06. The error bars indicated here include a statistical standard error as well as
a systematical error due to finite-h effects. However, due to a rather large extrapolation gap (from =~ 1.17
to = 0.85), we consider this estimation as a preliminary one.
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Figure 4. The plots of the transverse effective exponent Ags(k), evaluated from the InG, (k) vs Ink fits
within [k,6k]. The results of the O(10) model at § = 3 are shown by solid circles, whereas those of the
O(4) model at § = 1.1 — by empty circles.

We have reexamined the largest-L (L = 350) and smallest-/ (h = 0.0003125) data of the O(4) model
[16] at § = 1.1 with an aim to evaluate the transverse effective exponent in the same way as for the O(10)
model. Like in the n = 10 case, we have verified that the thermodynamic limit at # = +0 is practically
reached in this estimation. Besides, we have found a surprising similarity of the A (k) plots, where the
effective exponent in both cases was evaluated by fitting the G (k) data within [k, 6k] (fits within [k, 4k]
were used in [16]). As we can see from figure [ the plot for the O(4) model is systematically shifted
down by an almost constant value relative to the same plot for the O(10) model. This similarity might be
partly caused by the fact that the values of spontaneous magnetization are rather similar in these two
cases, i. e., M = M(+0) = 0.484475(48) for the O(4) model at § = 1.1 and M = 0.467 (see section [5) for
the O(10) model at § = 3. The overall fit to (3.) is less perfect for the O(4) model as compared to the
0(10) model. However, the systematical shift between two plots is very well approximated by a constant
value within the statistical error bars for the eight smallest k data points in figure[l It yields an estimate
AA] = (A1) p=10— (A1) =4 = 0.0121(52), where (A1,),-19 and (11),—4 are the values of 1, in n =10 and
n = 4 cases. According to the behavior of plots in figure @ and this estimation, it is quite plausible that a
transverse exponent A of the O(10) model is somewhat larger than that of the O(4) model. It is consistent
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with the idea that 2— A decreases for large n and tends to zero at n — oo. This behavior is fully consistent
with the predictions of [8], but not so well consistent with the standard theory, according to which A
is always 2 and, therefore, AA; = 0 is expected. According to our estimates (A}),-19 = 1.9723(90) and
AA; =0.0121(52), we have A; = 1.960(10) for n = 4. It perfectly agrees with our earlier estimate A; =
1.955+0.020 [16].

4. The ratio universality test

We have extended the MC analysis of our earlier data [16] for the O(4) model at two different cou-
plings, = 1.1 and 8 = 1.2, to test the expected (according to [8]) universality of the ratio bM?/a?, dis-
cussed already in the end of section [Il According to (L.35D, and (L8), the universality of bM?/a?
implies that the quantity
k™4 M? Gy (k)

Rk =
k) Gz(k)

4.1

tends to some universal constant at k — 0, i. e., hm R(k) = bM?/a?. We have tested this property by

comparing the R(k) plotsat f=1.1and f=1.2, where R(k) = R(J k) in the (100) direction. Note that the
quantities in (4.J) are determined in the thermodynamic limit at # = +0. We have verified that this limit is
practically (within the statistical error bars) reached within k = k4 (Where k, = 27¢/350) for the largest
lattice size L = 350 and the smallest external fields & = 0.0003125 and % = 0.0004375 at which simulations
were performed. The estimates of spontaneous magnetization obtained in [8], i.e., M = 0.484475(48) at
B=1.1and M = 0.560178(40) at f = 1.2, are used here. The calculated plots are depicted in figure 5l The
results for both /2 = 0.0003125 and /& = 0.0004375 are available at § = 1.1. As we can see from figure[5]
the corresponding two plots of R(k) (solid circles and diamonds) lie practically on top of each other,
indicating that the finite-h effects are negligibly small. The range h > 0.0004375 is considered for = 1.2
in [16]. Fortunately, the finite-h effects at = 1.2 are similar to those at § = 1.1, so that the estimate
of R(k) at h = 0.0004375 is valid at 8 = 1.2. The corresponding plot (empty circles) in figure [5 slightly
deviates from the two plots at § = 1.1. However, all three plots merge within the statistical error bars at
the smallest wave vector magnitudes k considered here. This confirms the expected universality of the
ratio bM?/a?. The plot of empty circles in figure 5l apparently saturates at a value about 0.166 for small
wave vectors. Taking into account the two other plots, we can judge that 0.16 < R(0) < 0.18 most probably
holds for the asymptotic value R(0) = kin}) R(k). Thus, we have an estimate R(0) =0.17 +0.01.

R(k)V"'%"""""A
0.16- %i%ﬁ%ﬁ%ﬁ %@ ; i

Gid
0.141 é f%’

0.121 ﬁggg .

T T
‘i
1 L

0.1

1 l 1 l 1 l 1 l 1 l
0O 02 04 06 08 1 12 k
Figure 5. The R(k) plots of the 3D O(4) model, evaluated from the MC data for the lattice of size L = 350 at

B =1.1and k =0.0003125 (solid circles), f = 1.1 and h = 0.0004375 (diamonds), as well as at § = 1.2 and
h =0.0004375 (empty circles).
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5. Spontaneous magnetization

We estimated the spontaneous magnetization of the 3D O(10) model at 8 = 3 based on our mag-
netization data M(h, L) depending on & and L. We observed a rather fast convergence to the thermo-
dynamic limit, e. g., M(hmin, L) = 0.31658(46), 0.45286(23), 0.470839(90), 0.471959(38), 0.472151(23),
0.472148(16) at L = 32,64,128,192,256 and 350, respectively. According to this, we can take the largest-
L value as a good approximation for M(hpin) = limz—.co M(hmin, L). Using this method, we obtained
M (hpin) = 0.472148(16), M(2hpyin) = 0.4742786(98) and M (4hyin) = 0.4772753(76). According to (1.4),
we fit these data to the ansatz M(h) = M(+0) + a; h° with p = 0.5211(69), evaluated from by inserting
here 1, =1.9723(90) obtained in section[3 It yields M = M(+0) = 0.467343(99). Assuming the standard-
theoretical value p = 1/2, we obtain M = 0.467030(26). Fits to a refined ansatz M(h) = M(+0)+a; h’+ax h
yield M = 0.46711(14) at p = 0.5211(69) and M = 0.46696(14) at p = 1/2. Since we have only three data
points for M(h), this can be considered as a raw estimation yielding M = 0.467. However, this estimation
is accurate enough to see that § = 3 corresponds to the ordered phase with M > 0.

6. Conclusions

In the actual work, the previous MC studies [10, [16] of the transverse and longitudinal correlation
functions in the 3D O(n) models with n =2 and n = 4 have been extended, including the n = 10 case
(sections 2land [3). It gives us an important information about the behavior of the exponent 1, at large
n. According to our MC analysis, a self-consistent (within the standard theory) estimation of 1, for n =
10 shows a small deviation from the standard-theoretical prediction A, = 2, yielding A; = 1.9723(90)
(section[3). The fact that this deviation is quite small can be well understood, since 1, — 2 is expected at
n — oo according to the known results for the spherical model, corresponding to this limit. Comparing
the plots of the effective transverse exponent at n = 10 and n = 4, it has been stated that these plots
are surprisingly similar, i. e., only slightly shifted with respect to each other. The estimation of this shift
suggests that the transverse exponent for n = 10 is larger than that for n = 4 by an amount of Al; =
0.0121(52) (section [3). It is consistent with the idea that 2— A, decreases for large n and tends to zero
at n — oco. We have also verified and confirmed the expected universality of the ratio bM?/a? for the
O(4) model by analyzing the correlation functions at two different couplings, i. e., f=1.1 and = 1.2
(section[4).

The actual MC results are fully consistent with the predictions of the GFD theory [8] (see section [1)
and not so well consistent with the standard theory, according to which A is always 2.
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CUHTYyNnspHOCTI ronAacToyHiBCbKUX Mmoa B O(n) moaensx

1. Kaynysd® p.B.H. MenbHii&€, 1. Pimcand®@

L IHCTUTYT MaTeMaTVKL Ta KOMMHOTEPHUX HayK, YHiBepcuTeT J1aTail,
6ynbBap . PaiiHica, 29, LV-1459 Pura, /laTsist

2 [HCTUTYT MaTeMaTUYHMX HayK Ta iHGOpMaLiiHKX TexHonoriiA, YHiBepcuTeT M. Jlienas,
Byn. Nliena, 14, LV-3401 Jlienas, Jlatsis

3 YHiBepcuTeT im. Binbppesa Jlopbe, Batepnoo, OHTapio, KaHaga, N2L 3C5

Y tpuBumipHux O(n) mogensx 3 n = 2,4,10 3giiicHeHo aHani3 metogom MoHTe Kapno (MK) cmHrynspHo-
CTeil rONACTOYHIBCbKUX MOJ A/t MOMepPeYHOoi i NO340BXHbOI KOPensaLinHuX GYHKUiA, ki NOBOAATL cebe K
G (k) =ak M G (k) = bk~M y BNopsiAKoBaHiii ¢pasi npy k — 0. Haloto MeToto € nepeBipnTH LiikaBsi Teo-
peTnuHi NepeabaueHs, 3rigHo akuX iHaekcn A i Ay € HeTpusianbHUMK (3/2< A <2i0< A <1y TpbOX BU-
mipax) i koediLlieHT bM?/a? (ae M € CNOHTaHHOK HaMarHiueHicTIo) € yHiBepcanbHiA. TpuBianbHi CTaHAaPTHI
TeOpeTMyHi 3HaueHHs € A | =21 A) = 1. Haw nonepeaHiii MK aHani3 gae 1) = 1.955+0.020 i 4| npubansHo
pieHe 0.9 ana O(4) mogeni. HegaBHa MK ouiHka )L”, AKa AOMyCcKa€e NoMNpaBKW ANs CKeliHIa CTaHAAPTHOI MoJe-
ni, pae l” =0.69+0.10 ana O(2) mogeni. Tenep mu 3giicHAN Nogi6HY MK ouiHky ana O(10) mogeni, Aka Aae
A1 =1.9723(90). My nobaumnu, LWo rpadik edpekTMBHOro norepeyHoro iHaekca ans O(4) mogeni € cucreMa-
TUYHO 3CYHYTWIA BHU3 MO BigHOLWeHHI Ao rpadika ans O(10) mogeni Ha AL = 0.0121(52). Lle y3rogxyeTbcst
3 JYMKOO, WO 2 — A | 3MEHLUYETLCA ANS BEUKUX 71 i MPAIMYE A0 HYAs NpU 1 — oo. MU Takox nepesipuan i
NiATBEPAVIN OYiKyBaHy yHiBepCanbHiCTb bM? | a? ana O(4) mogeni, ana akoi 6yn0 34iiCHEHO cMMyAsALii Npu
[BOX Pi3HWNX TeMnepaTypax.

KntouoBi cnoBa: mMogenosaHHs MoHTe Kap/io, n-KOMIOHEHTHI BEKTOPHI MOAENI, KOPenayiiHi QyHKuii,
CUHTYNSPHOCTI FONACTOYHIBCbKUX MOJ
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