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Recent development of the multi-density integral equation approach and
its application to the statistical mechanical modelling of a different type of
association and clusterization in liquids are reviewed. The effects of pair-
ing, polymerization, solvation, formation of the network bonds and self-
assembling are discussed. The numerical and analytical solutions of the
integral equations in the multi-density formalism are used for the descrip-
tion of the association phenomena in the electrolyte and polyelectrolyte
solutions, water, polymers, microemulsions and other fluids. The applica-
tion of the multi-density integral equation approach for the treatment of the
percolation phenomena, the adsorption of fluids in porous media and the
description of electronic structure of associative fluids are illustrated.
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1. Introduction and background

For the last decades the integral equation methods have been intensively used
in the modern liquid state theory. This technique is based on the analytical or
numerical calculation of the pair distribution function g(r) by the solution of the
Ornstein-Zernike (OZ) equation within different closures: the Percus-Yevick (PY)
approximation, the hypernetted chain (HNC) one, the mean spherical approximation
(MSA) and its different modifications [1]. It was shown that such closures are efficient
enough for the fluids having not so strong interparticle attraction but they break
down with the increase of the interparticle attraction which leads to the clustering of
atoms or molecules into pairs and into larger groups such as chains, networks, self-
assembling aggregates etc. Due to the clustering the d-like intraparticle distribution
function appears in the distribution function which can be divided into the intra

© M.F.Holovko 205



M.F.Holovko

and interparticle parts
g(r) = g™ (r) + g™ (r). (1)
The situation will be more clear if we use the function of the corresponding
running integration numbers.

n(R) = 47Tp/7’2d7’g(7’), (2)

which describes the average number of particles in the sphere of radius R surrounding
one of them which is found in the center of this sphere, p is the number density of
particles. Resulting from clusterization, n(R) divides into bounded (intra) and non-
bounded (inter) parts

n(R) = nintra<R) + ninter(R)- (3)

Due to the saturation of bounding

nintra(R) < Nbond (4)

where the number of bonds ny0nq is fixed. Specifically, for pairs nyonq = 1, for chains
Npond = 2, for network nyonq = 4 ete.

The background of the traditional closure relations in the integral equations
technique is connected with diagram analysis of the Mayer density expansions of
the pair distribution function which are not adapted correctly for the description
of the clusterization phenomena. The clusterization is caused by the attraction part
of interparticle interaction and to describe their contribution it is more convenient
to use the activity expansions. In particular, in order to reproduce the correct low-
density limit for the fluids with strong clusterization, an infinite number of terms
in the density expansion must be included, while only a few terms of the activity
expansion are sufficient for this purpose [2,3]. Consider, for example, the series in
the activity Z for the pressure P and density p terminated at a second order terms

BP =7+ b,7°, p= 7+ 20,7% (5)

where by is the attraction part of the second virial coefficient and 8 = 1/(kT).
Elimination of Z from the equations (5) yields

PZ o4y . (6)
p 2 8bap

The more familiar corresponding virial equation of state is obtained from (6) by
expanding in the power series of p

P
%:1—62p+4b§p2—20b§p3+... : (7)

For the systems with weak attraction by — 0 and both expressions (6) and (7)
reproduce the ideal gas equation of state SP/p = 1. However in the limit of strong

206



Theory of complex liquids

attraction between pairs, by — 0o and correct equation of state for an ideal gas
of pairs SP/p = 1/2 follows directly from equation (6) and in order to obtain this
result from equation (7) the infinite number of terms should be included.

In a more general case

BP = Z+4bZ%+...4+b,2"+ ...,
p = Z+20:7%+. . A nb "+ ..., (8)

where b, is the attraction part of the nth virial coefficient. Hence, the strong inter-
particle attraction Z < 1 and in the limit Z — 0, b,, — o0

1 Z 2 1
b2t = —p— 2 g2 D
n n n

bn_lZ"_l —

p- (9)

S|+

After elimination of Z from equations (8) we obtain the equation of state which
will be changed from the ideal gas equation SP/p = 1 to the equation of ideal gas of
pairs BP/p = 1/2, ideal gas of trymers fP/p = 1/3,..., and in general the ideal gas
of n-mers fP/p = 1/n. Moreover the summation of the infinite series in (8) leads to
the possibility of the self-assembling in the system. In approximation b, = b3~ the
expansions (8) reduce to the following form

A A

P:i = ————
=T P U=tz

(10)

which is well known in the thermodynamical theory of micellization [4]. For this
reason Z = pgy can be identified with the monomer density of amphiphilic molecules
and the divergence point Z. = p. = 1/by has the sense of the critical micelle con-
centration (CMC).

Considering this, it might be expected that a theory which combines the activity
and density expansions would be advantageous. The second and higher terms in
the expansion (8) can be interpreted as the dimers density p; = b, Z2,..., n-mers
density p,_1 = b,Z™ correspondly. Such interpretation suggests the possibility of
the description of clusterization by introducing the multi-density formalism for this
purpose. Recently a consistent integral equation theory for the description of the
clusterization in liquids has been proposed [5,6]. This is based on the multi-density
formalism in which the description in terms of the activity and density expansions
are combined.

The theory has been applied to describe clusterization of various type in the
fluids modelled by hard spheres with a number of off-centre square-well bonding sites
embedded into the hard-core region. The multi-density formalism was reformulated
in order to treat the effects of clusterization in fluids with spherically symmetric
attraction and it was applied for ionic systems [3,7-13]. The multi-density integral
equation approach was used to describe the chain [14-16] and network [17] formation
fluids, molecular and macromolecular liquids [18], the fluids with the multi-arm
star polymerization [19] etc. The multi-density formalism was also adopted for the
treatment of the percolation phenomena in the network forming fluids [20], for the
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adsorption of associative fluids in porous media [21,22] and for the description of
electronic structure of associative fluids [23].

The recent progress in the application of the multi-density integral equation ap-
proach in the theory of complex liquids will be reviewed in this report. The general
scheme of this approach in the framework of the two-density formalism including the
applications to ionic systems will be considered in the second section. In the third
section the possibility of the multi-density formalism for the description of polymer-
ization and network formation are presented. Some applications and conclusions will
be considered in the fourth section.

2. Two-density approaches: The application to ionic systems

The general idea of the multi-density formalism is connected with the separation
of the potential of interparticle interaction U(r) into the bonding and non-bonding
parts

U(’T’) = Ubond<r> + Unonb<r>7 (11)

where Upona(r) is some short-range attractive part of interaction and includes at least
the potential energy minimum of U(r). The nonbonding part Uy, (r) includes a
repulsion part and a long-range tail of U(r). The diagrams appearing in the activity
expansions of the one-point density are classified with respect to the number of
associative bonds incident with the labelled white circle. Thus, the total number
density of the system is separated into two densities, the density of nonbonding
particles (monomers) po and the density of bonding particles p;:

p(1) = po(1) + pa(1). (12)

Similarly the pair distribution function will be splitting into four terms.

p(12) = p(1)g(12)p(2)
= p(1)goo(12)p(2) + p(1)go1(12)p0(2)
+ po(1)g10(12)p(2) + po(1)g11(12)po(2) (13)

g(r) = goo(r) + 2g10(r) + 2901 (1) + 2% 911 (1), (13a)

where = = pg/p is the fraction of a nonbonding part of particles.
Due to saturation of bonding the restriction only by pair formation leads to the
self-consistent relation for x

1:x+@m%/@mmmvv%n (14)
0
where
fas(T) — o BUbond(r) _ 1 (15)
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The classification and topological reduction of the diagrams for pair correlation
function leads to a generalized version of the OZ equation

h(ris) = C(rys) + / A7 C(r13) ph(rs), (16)

where the corresponding matrices have the following form:

hoo ot Coo Co ) < P Po )
h = ’ C = ) = )
< hig  h11 ) ( Cw Cu P po O
hoo = goo — 1, ho1 = go1, hio = 910, hi1 = g1 (17)

As usual, the OZ-like equation should be supplemented by closure relations.
Among them we should distinguish the associative HNC (AHNC) closure

76Unonb +too
)

oo = € go1 = Yoolo1, G10 = goot10, 911 = Goo[tiotor+t11+ fas), (18)

where t,5 = hag — Cagp, the associative PY (APY) closure

900 — e_BUnonbyOO’ 901 — e_ﬁUnonby01’
gio = efﬁU“"“byw, gi1 = g AUnon (Y11 + fas¥oo), (19)

where o3 = gop — Cap, the associative MSA (AMSA) closure

hoo(r) = =1, ho1 = hig = h11 =0 for r>d,

C(00 = _BUnonba COI = CIO = 07 Cll = gOOfas for r < d7 (20)

where d is the diameter of particles.

The analytical solution of OZ-like equation for the dimerizing hard spheres in
APY approximation was done in [24-26]. Of special interest is the application of the
two-density formalism to ionic systems. The numerical solution of AHNC for 2-2
aqueous electrolyte solution was obtained in [3]. The different version of analytical
solution AMSA for ionic systems is done in [8-10,27]. It was shown that AHNC and
AMSA essentially improve ordinary HNC and MSA.

In [28] in the framework of AMSA to calculate the nonbonding fraction z in the
equation (14) an exponential approximation was introduced for

gOO<T> — gnonb<7,)eG’00(r)’ (21)

where ¢g"°™(r) is the pair distribution function of the reference system with the
interparticle interaction U™ (r),

Goo(r) = goo (1) = g™ (r). (22)

The approximation (21) for very dilute ionic solutions is consistent with the
intuitive idea of Bjerum [29] to introduce the concept of ionic pair to improve the
Debye-Huckel [30] treatment of ionic systems when interionic interaction increases.
It was shown [28] that the electrostatic part of the excess thermodynamic properties
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has the same form, as in ordinary MSA, but the screening parameter I" should be
changed to a new one I'g. The exponential approximation (21) was also used [31]
for the extension of the Hoye-Stell scheme [32] of the calculation of thermodynamic
properties in the framework of the two-density formalism for the fluids with arbitrary
interparticle long-range interaction. Recently it was proposed in equation (14) for
the calculation of the nonbonding fraction x together with approximation (21) for
goo(r) for fas(r) instead of (15) to put [33]

Fulr) = 1= 0 (1 U lr) + 55020, (23)

where instead of the separation (11) we divide the total potential into the repulsion
and attractive parts
U(r) = Urep(1) + Ustix (7). (24)

The choice of f.s(r) in the form (23) according to the Ebeling idea [34,35] fixes
the second virial coefficient of the system and gives the correct description of ther-
modynamic properties at least for the small concentrations. Such a scheme has been
used to describe the thermodynamical properties of nonaqueous electrolyte solutions
(33].

The generalization of AMSA results applied to ion-dipole systems has been con-
sidered [36,37].

The specific situation occurs in the case of the solutions of spherical polyelec-
trolytes, charge stabilized colloids, micelles and globular proteins which can be
viewed as highly asymmetric electrolytes, with large and highly charged polyions
and small ordinary counterions. Kalyuzhnyi and Vlachy [11,12] take into account
the fact that due to the high asymmetry in size and charge the counterions bind
to a limited number of polyions, while the polyions can bind to an arbitrary num-
ber of counterions. As a result, the density of counterions p. is separated into the
nonbonding and bonding parts

pe = po + pt, (25)

while the density of polyions p,, is nonbonding. Similar to (13) for the pair distribu-
tion functions we have

gcp(’r) - ggp(r)focgclp(T)a

9ec(r) = Gec () + TeGee (1) + TeGee (1) + Tegee (1), (26)
where for the fraction of nonbonding part of counterions z. we have the equations
1 =z +4nzp, /ggp('r’)f;s) (r)r*dr. (27)

The generalized version of OZ equation in the case considered has the form
similar to (16), where now only the matrices h.., C.. and p, have forms similar to
(17) while

1o Cy
he, = ( hlp ) , Cop = ( Clp ) ;o by =y, Cop=Chp, ppy=pp,  (28)
cp
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As for the closure relations we have forms similar to (18)—(20)

gpp (T) — e_ﬁUpp(T‘)'f'tpp(r)’ ggp(r) _ e_ﬁUé‘I;)“b(T‘)—’—tgp’
as BUee (1) 400

gclp('r) - g2p<r>( cp (T) + tip<7“)), gé)g(T) =€ BUcc( )Hcc7

gil(r) = g, gllr) = g2, (29)

in AHNC approximation,

gpp(r) = eiﬁUpp(r)ypp(T)v ggp(r) :e—ﬁUggnb(r)ygp(T)’

gop(r) = T PUETO (YL () + i (r)ydy(r),

Guc(r) = e PeyR(r), gl (r) = e POydi(r),

Jee (1) e Pyl (r), (30)

in the APY approximation,

—1, for r < dpp,
11
=1, gep = he, =0, for r < dgp,
—1, ¢ =pl=0, gl=nll=0, forr<d,, (31)

hop(r) = gpp(r) — 1
hep(r) = gep(r) =1
he(r) = ge(r)—1

Cop = —BUpp(r), for r > dyp,
Cop = —BUR™(r),  Cllr) = go(r) fi(r) for r > dop,
C¥ = —BU,(r), Cl=0, CL=0, forr>de. (32)

in the AMSA approximation.

The numerical solution of AHNC equation for highly asymmetrical ionic systems
has been solved in [11,12]. It was demonstrated that the AHNC yields accurate
structural and thermodynamical predictions for a wide range of states, including the
region where the ordinary HNC approximation does not give a convergent solution.
The analytical solution of AMSA equation for highly asymmetrical ionic systems
has been obtained in [13].

The formalism developed for the highly asymmetrical ionic systems can also be
useful for describing the ionic solvation in ion-molecular systems [38].

3. The multi-density formalism

For the particles having more than one bonding state, the formation of chains,
rings, networks and more complex aggregates is possible. Such aggregates can be
considered as a collection of monomers (segment) bonded at asymmetric attraction
sites. The multi-density formalism is needed for the description of such fluids. In gen-
eral for the particles with M bonding sites the density is separated into 2™ densities
of different bonding states. The diagram analysis leads to the generalized version of
the OZ equation which has the form similar to (16) where in the general case h, C,
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p are the matrices 2 x 2™, In general 2" — 1 self-consistent relations are needed
instead of the relation (14) for the pairing case since the total number density of the
system is separated into 2™ densities of bonding states. Some simplification can be
connected with the approximation that the bond creation between two molecules is
independent of the existence of other bonds. As a result, the fraction of the molecules
which have n < M bonded neighbours can be given by the binomial distribution

= 20— (M) (33)

where p = 1 — «, « is the fraction of particles nonbonded by one fixed site.

For the molecules with two attractive sites A and B (one is donor, the other
is acceptor) the assumption (33) leads to the ideal chain approximation (ICA) [14]
and o = 1/m, where m can be considered as the mean chain length. For this case
the matrices h, C and p have the following forms

hoo  hoa hos  hor 1 1/m 1/m 1/m?
_ | hao haa hap har - I/m 0 1/m*> 0
h = hBO hBA hBB th ’ p=r 1/m 1/m2 0 0 ’ (34)
hro hra hrg hrr 1/m?> 0 0 0

where the lower indices o denote the unbonded (v = 0), singly bonded (o = G) and
doubly bonded (a =T') states of the corresponding particles.
Similar to (13) the pair distribution function

o) = gu0(r) + — (9040) + 905(1)) + 5 (944(1) + 945(1)), (3)

where in ICA approximation gor(r) = gar(r) = gpr(r) = grr(r) = 0.

The analytical solution of the OZ-like equation in polymer PY (PPY) approxima-
tion for the chain forming fluids in ICA approximation was obtained and discussed
in [14,16]. In the ICA approximation the formation of the ring polymers is neglected.
This approximation can be used to describe a system of chain polymers, polydis-
perse in length, that is characterized by a prescribed mean chain length. Some other
approach in the framework of PPY approximation is used in [15,39]. These studies
are focused on the investigation of the polymer fluids represented by the system
of monomers that have completely associated into polymers of a fixed size, usually
into linear freely-joined chain polymers of a fixed length. Such an approach makes
it possible to consider the system at all the degrees of polymerization, including
the limit of completely dissociated and completely associated systems. The latter
limit enables us to describe molecular and macromolecular liquids in the multi-
density approach [18]. In [40,41] the multi-density formalism was applied for the
polyelectrolytes, with the flexible linear polyion chains. It was shown again that the
electrostatic part of the excess thermodynamic properties has the same form, as the
ordinary MSA, but screening parameter I' should be changed to the parameter I'g
for the chain polyelectrolytes [42]. The combination of polymer multi-density ap-
proach with the approach that was used in the theory of spherical polyelectrolytes
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(see equations (25-28)) enables us to describe the fluids of multi-arm polymer star
molecules [19].

For the molecules with four attractive sites A, B, C' and D (the two are donors
and the two are acceptors) the assumption (33) leads to the ideal network approxi-
mation (INA) [17]. The matrices h, C and p can be written in the form similar to
(34) with the difference that every matrix element is a submatrice. For example
g e
gt age gk
e b nd
W i bkl

hoy = (36)

The analytical solution of the OZ-like equation for the network forming fluids
in network PY (NPY) and INA approximation was done in [17,43]. It was shown
[16,17] that the calculated structure factors for chain and network systems exhibits a
peculiarity (a so-called pre-peak) at small wave numbers connected with the forming
of relatively large molecular aggregates. It was shown that such a peculiarity plays an
important role in describing the structure factor of liquid sulfur [44]. The possibility
of the existence of a prepeak in the structure factor of water is discussed based on
the combination of computer simulation and integral equation theory [45]. Lately,
such a peculiarity has been detected in many polymer and glassing substances and
in ionic liquids [46], where, due to the correlations between relatively large clusters,
the ordering in mesoscopic scale can appear.

The general analytical solution of the OZ-like equation in the multi-density for-
malism in PY approximation for the mixture of associating hard sphere was done
in [HP]. This result [47] was generalized for the ionic fluids [48].

The number of the bonding states of molecules can principally change the ther-
modynamic properties of fluids. For illustration we present here the generalization
of Van der Waals equation of state for the fluids of molecules with M bonding sites.
The expression for pressure P for nonionic fluids can be represented in the following
form

P PHS PMAL Patr
PP _BPT | P Lty (37)
P p p P

where SP™/p is the hard sphere contribution, SPMAL/p is the contribution con-
nected with clusterization (the mass action law), SP*"/p is the contribution con-
nected with Van de Waals attraction. To describe SPyar/p contribution we make
use of the expression

6 PMAL
P

Oln yHS(l)} (38)

Mgy hy
2 “ P dp

obtained by thermodynamic perturbation theory [6], where y!5(1) is the contact
value of the cavity distribution function y(r) = eV g(r) for the hard sphere model.
We put the term SP*"/p in Van der Waals form

ﬁpatr

= —p/nW, (39)
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where n = %Wpd3 is the hard-sphere packing fraction, W is the constant characterized
Van der Wals attraction.
After the density expansion

P M 5
%:1—7(1—04)—1—47)—EM(I—a)n—l—...—BnW (40)
If we suppose that this series creates the geometrical progression, the equation
of state can be represented in the form

e R AT e et BTN

generalized form of the Van der Vaals equation.
The simple estimation shows that in result clusterization the critical temperature
T, increases and the critical density 7. decreases compared with the corresponding

values TV and nY4" at the lack of clusterization as
T. 1 e 1-31-a) (1)
Vw1 -1 —-a) gy 1-2M(1—a)
For the pairing case M = 1 and in the limit & — 0
T Ne 8
TV — 2, v BETE (43)

For the chain formation case M = 2, a = m~! and with increasing chain length
T, increases and 7. decreases. Such a behaviour is qualitatively in agreement with
n-alkanes and n-perfluoroalkanes [49]. In the limit o — 0

7. e
TVaw — 00, v

— 0. (44)

The specific situation appears for the network formation fluids (M=4). We can
see that in the case M > 2 the limit @ — 0 in (42) is not possible. It means that
some new phenomena appear for M > 2 which is connected with the possibility of
forming the infinite cluster in case M > 2. Hence, a new mechanism of the criticality
appears in which the “ideal” term

ﬁ Pid
P

:1—%(1—04)

plays a principal role and has sense only for e > 1 — 2/M.

The criticality of the system is connected with the network formation and in this
regime the Van der Waals term (39) has no influence. More sophisticated treatment
[50] does not change the described behaviour qualitatively. The careful analysis
shows that the critical value of the compressibility factor Z. = [.P./p. changes
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from Z. ~ 1/3 for the Van der Waals fluid to Z. ~ 1/5 for the network formation
fluid which is very close to the value Z. & 0.229 for the real water [51].

The multi-density integral equation theory was reformulated for studying con-
nectedness properties [52] in order to understand such a peculiarity of the network
forming fluids. The division of the potential of interparticle interaction into the
blocked and connectedness parts

U(12) = U (12) + U*(12) (45)
leads to the similar separation also for the pair and direct correlation functions
h(12) = h*(12) + h*(12), C(12) = C*(12) + C*(12). (46)

The connectedness pair and direct correlation functions satisfy the OZ equation
similar to (16). The mean cluster size is given by

S=1+ p/dfh*('r’). (47)

As the percolation transition is approached S increases and becomes infinite at
the percolation threshold. The connectedness version of the OZ equation supple-
mented by the NPY-like closure and INA approximation was solved analytically
[52]. In these approximations

4(4+a—2a?%)

S T A gy

(48)

It is seen that S — oo when a — % From the analysis of the spinodal and
percolation curves it was shown that liquid phase including the critical point is
inside the percolation region. Such a conclusion is in accord with the recent computer
simulation for supercritical water [53].

4. Some applications and conclusions

The characteristic features of numerous complex liquids are connected with as-
sociating the molecules into different clusters caused by the strong interparticle
attraction. The starting point of the theory of such liquids is the combined cluster
expansions for pair correlation function in which the activity expansions are used
to describe the contribution of the bonding part of the interparticle interactions
while the usual density expansion is used to describe a nonbonding part of interac-
tions. The diagram analysis of these cluster expansions leads to the multi-density
integral equation approach which is flexible enough to treat different associative fea-
tures of liquids such as dimerization, polymerization, network formation, solvation,
self-assembling etc.

The possibilities of the theory developed are tested by comparing with computer
simulations. It is shown that the multi-density approach essentially improves the
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integral equation theory for ionic systems. The theory yields very good agreement
with computer simulations including the region of the parameters where usual ap-
proximations like HNC haven’t got a convergent solution. In the limited small ionic
concentration, the result of AMSA is consistent with the original Bjerrum theory
for a weakly associative case and takes into account the electrostatic contributions
from ionic pairs which are usually neglected in the Bjerrum theory and are especially
important for a strongly associative case. The multi-density integral equations are
also solved for polymerization and network formation cases and are reformulated
for studying the connectedness properties of network forming fluids. The gas-liquid
critical point is predicted to exist for network case, and a region of liquid state is
inside the percolation region.

The developed multi-density formalism was applied for describing complex lig-
uids at the solid-associative fluid interfaces. To this end, the associative analogue of
the Henderson-Abraham-Barker approach [54] was formulated [55] and it was ap-
plied to describe dymerizing fluids [55-57], polymers [58,59], the network forming
fluids [60] close to a hard and adhesive surfaces and ionic fluids close to a charged
wall [61]. The developed approach was also applied to describe the adsorption of
polymers [58,62,63] and network forming fluids [64] onto crystalline surfaces. It was
shown that the intramolecular correlations in polymer chains lead to the cooperative
increase in the surface coverage which takes place under the conditions of a strongly
diluted case. This effect was recently observed experimentally using contact-angle
measurements of polymer adsorption [63]. For the network forming fluids a new
type of the cooperative adsorption was discovered which is related to a bridging due
to tree-like clusters adsorption. To describe the adsorption of associating fluids in
porous media the associative analogues of the replica OZ equations [65] were formu-
lated [21,22]. Since in the presence of porous media the value of liquid-gas critical
temperature increases and a coexistence curve is narrower compared to the pure
fluids [66] the role of association effects in the presence of porous media increases
and it can be very important for different fluids, including simple liquids.

The multi-density formalism was also adopted to describe electronic structure of
associative fluids [23]. The approach developed is closely connected with the single
superchain-effective medium approximation [67], in which the effects of association
are explicitly built-in. The theory has been tested in a simple-minded model of alkali
metal, namely a hard sphere fluid with a one-level tight-binding Hamiltonian with
transfer matrix elements modeled by Yukawa terms. It was shown that this treatment
correctly accounts for the extreme modifications that the association induces on the
band structure. If one assigns one electron per atom basis function, like one would
have in alkali metals, the dimerization process induces a metal-insulator transition
that is correctly described by the theory.

In [68,69] a pairing sticky hard sphere model was introduced to describe the
influence of proteins on the physical properties of reverse micelles. In this model
it was assumed that the empty micelles are described by the sticky hard sphere
model and the presence of proteins is represented by an association parameter that
characterized the pair formation micelles. The association parameter was determined
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by fitting the experimental structure factors and from this parameter the decrease
in the percolation threshold and the change in the critical parameters induced by
proteins have been estimated. Thus, it has been possible to reproduce the main
effects induced by the solubilization of proteins in reverse micelles.

The multi-density integral equation approach is also useful for modelling the
effects of cation hydrolysis and polynuclear ion formation in the theory of aqueous
electrolyte solutions [70]. The cation hydrolysis is caused by the increase of bonding
between cation and oxygen of water molecules with the decrease of ionic radius
and /or the increase of their charges. At the same time the repulsion between cation
and hydrogen of water molecules increases and some part of water molecules in ionic
hydration shell can dissociate. It means that instead of hydrated ions [M(H20),]?*,
there appear the hydrated complexes [MO,, Hy,_1]* M+, where h is a molar ration
of the hydrolysis. The effect of cation hydrolysis was studied recently [71] in the
framework of the reference HNC approach and using the central force model for
water. The ionic hydration number for oxygen and hydrogen was calculated

nioz47rp0/r2drgio(r), niH:47rpH/r2drgiH(T). (49)
0 0

The molar ration of the hydrolysis was defined as
h = 2712‘0 — ;g (50)

For rigid molecules h = 0. It was shown that with the increase of ionic charge
the constant h increases. The possibility of computer simulation of hydrolysis effects
is discussed in [72]. The effects of polynuclear ion formation in aqueous solutions
of metal salts in the framework of ionic approach was mimiced by the intercationic
associative interaction [70]. The theory predicts a significant influence of the polynu-
clear ion formation on the thermodynamics and structure properties of electrolyte
solutions in a wide range of concentrations including a very dilute ecologically im-
portant concentration region.
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HabnunxeHHsa 6aratoryCTMHHUX iHTerpasbHUX PiBHAHb
B Teopii CKJ1aaHUX piavH

M.®d.lonoBko

IHCTUTYT ®i3ukn koHaeHcoBaHnx cuctem HAH Ykpainu,
290011 JlbBiB, ByN. CBEHLjUBKOrO, 1

OtpumaHo 9 kBiTHA 1999 p.

MopaeTbes ornsag, HAbNMXKEHHS BaraTtoryCTUHHUX iHTerpasbHUX PiBHAHb
i ix 3acTOCYBaHHS 419 oNuUcy acouialii Ta knactepu3aauii B pignHax. O6-
roBOPIOITLCSA edeKTU CnaploBaHHA, NoniMepu3aaLi, conbBartayii, yTBO-
PEHHS CiTKM 3B’43KiB Ta camoacoujauii. [Ana onucy acouiaTUBHUX SBULL,
B €NEeKTPONITUYHMX Ta NOAIENEKTPONITUYHUX PO3YMHAX, BOAi, NoniMepax,
MIKPOEMYJbCISIX Ta IHWKWX pignMHax BUKOPUCTOBYIOTbLCS YNCESbHI Ta aHa-
NITNYHI PO3B’A3KM iHTErpasibHUX PiBHSAHbL B 6aratoryCTMHHOMY popmanis-
Mi. INOCTPYIOTbCS 3aCTOCYBaHHSA HaOMMXEHHSA 6araToOryCTUHHUX iHTe-
rpanbHUX PIBHSAHb A ONMUCY NMEPKONSAUIMHNX ABULL, aacopOuji piouH B
MOPMCTNX CEPENOBULLAX TA ONUCY ENIEKTPOHHOI CTPYKTYPU aCOLiaTUBHUNX
piovH.

KnwoyoBi cnoBa: ckiiagHi pianHu, knactepusauis, CTPYKTypa,
TepMoavHamika, nepkossLis, Teopis 6aratoryCTuHHUX iHTerpaabHuxX
PIBHSIHb.

PACS: 05.20.-y
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