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Spin waves in a periodically layered ferromagnetic nanotube (nanotube magnetopho-
tonic crystal) are investigated. External magnetic field is considered to be applied parallel
to the nanotube symmetry axis. The linearized Landau-Lifshitz equation in magnetostatic
approximation is used, taking into account the magnetic dipole-dipole interaction, theex-
change interaction and the anisotropy effects. As a result, the local dispersion relation (for
uniform nanotube sections), the radial wave number spectrum and the longitudinal quasi-
wave number spectrum (for the entire nanotube) for spin waves in the above-described
nanotube are found. From the radial wave number spectrum, limitations on the transverse-
angular modes are defined. The longitudinal quasi-wave number spectrum in the “effective
medium” limit is shown to have the same form as for a uniform nanotube (with averaged
parameters).

WccnemoBaHbl COMHOBBIE BOJHBLI B IIEPUOIUYECKHU-CIOUCTEIX (DePPOMArHUTHBIX HAHOTPYO-
Kax (MarEuToOTOHHBIN KPUCTALI-HAHOTPYOKa). BHelllHee MarHnTHOE I[OJ€ CUMTAETCH IIa-
PAJLIEABHBIM OCH CHUMMETPUM HAHOTPYOKH. M CIO/NB30BAHO JMHEAPU30BAHHOE ypPaBHEHHE
Jlangay-JIupmuna B MArHUTOCTATUYECKOM IIPUOGIMMKEHNN ¢ YIETOM MATHHTHOTO AUIIONb-IU-
HOJIBHOT'O B3aMMOJelcTBUs, oOMeHHOro B3ammopelicrBus u a(dgdexToB anmzorponuu. B pe-
3yJABTATE MMOJYYEHO JOKAIbHOE NUCIIEPCHOHHOE OTHOIIeHUE (A58 OJHOPOAHBIX CEeKI[MI HAHOT-
PyOKM), CIEKTP PALMAaJbHBIX BOJHOBBIX YMCEJ M IPOJOJbHBIX KBA3SU-BOJHOBBIX UMcesa (IJs
BCEl HAHOTPYOKM) AJIs CIIMHOBBIX BOJIH B BBHIIIEONMCAHHOU HAaHOTPYyOKe. U3 cmexTpa pamu-
aJbHBIX BOJHOBBIX UMCEJ OIIPE/eJIeHbl OTPAHMYEHHUS HA IIOIIePeUYHO-yriIoBble Mogbl. Ilokasza-
HO, YTO KBA3HM-BOJHOBOE UWCJO B NpuOammxeHny oQPPEKTHUBHONU cpembl’ NMEET TaKOM xe
BUL, KAK M IJA OZHOPOAHON HAHOTPYOKH (¢ yCPeIHEeHHBIMH IapaMeTpPaMu).

Hunonvno-o6minni cninogi xéuni y nepioduino-uwapyéamii ¢epomazhimuii Hanom-
pyo6yi. I0.I.I'opobeyv, B.B.Kyaiw.

Hocaigsxeno cminoBi xBuJl y mnepioguuHo-mapyBaTtux (PepoMarHiTHMX HAHOTPYOKax
(margiTo@oTOHHUI KpuCTAI-HAHOTPYOKA). 30BHiIlIHE MarHiTHe [MOJe BBAXKAECTHCH Mapaliesib-
HUM [0 oci cumerpii mamoTpyOru. BuxopucroByerbcd JiHeapusoBaHe piBHAHHA Jlammay-
Jlibuiniig y MargirocrarTuvyHOMY HAOMMIMKEHHI 3 ypaxyBaHHAM MAartiTHOI IHIIOJb-IHUIIOJIBHOL
B3aemopii, obmimuoi B3aemopaii Ta ederrie amizorpomii. B pesyiabrari oTpHMaHO JIOKAaJbHE
aucnepcitine BigHomenHd (Aas OTHOPIAHMX CeKIiil HAHOTPYOKH), CIEKTP pajiaJbHUX XBU-
JILOBUX UHCEJ Ta MMOSIOBMKHIX KBasi-XxBUIbOBUX umcel (1A Beiel HaHOTPYOKM) AAs CHiHOBUX
XBHJIb y BHUIIEOIMCAHIA HamoTpyOii. 3i cuekTpa pamialbHHMX XBUJIBOBUX YHCEJ BU3HAUEHO
o0MerXeHHs Ha I0IepeuHo-KyToBi momu. Ilokasano, m[0 KBasi-XBUJIBOBE YHCIO y HaAOIU-
sKeHHI "e()eKTUBHOTO CepefoBUINA’ Ma€ TAKHM JKe BATIAM, AK 1 114 ogHOPigHOI HAHOTPYOKM
(3 ycepelHEHNMHU IIapaMeTpaMu).
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1. Introduction

In recent vyears, researchers of spin
waves (magnetization excitations in mag-
netically ordered materials [1]), pay special
attention to spin waves in nanoscale sys-
tems. Spin waves in thin ferromagnetic
films [2—4], micron-sized magnetic quantum
dots [6—7], nanowires [8-11] and other
nanosystems are of special interest for
practical applications (for instance, in new
magnetic storage devices [12—-14]).

Spin waves characteristics are known to
depend strongly on the system shape and
size. Therefore, it is necessary to investi-
gate spin waves in different kinds of sys-
tems individually. In particular, synthesized
recently metal nanotubes (including -car-
bonic nanotubes or dielectric nanowires
with metal shells [15, 16], nanotubes em-
bedded in porous template [17] and so on)
comprised of magnetic material [17-22] are
of special interest to study. They have
found a wide range of applications, particu-
larly in magnetobiology [28, 24]. Still, little
attention has been devoted to the spin
waves in magnetic nanotubes, and known
papers on this subject investigate mostly
spin solitons [25] and waves on magnetic
domains interfaces [26].

It is known that periodic nanoscale mag-
netic composites — magnetophotonic crys-
tals [27] — exhibit anomalous optical and
magneto-optical properties [27—29]. They
are of particular interest for practical appli-
cations, mostly in magneto-optical devices
(optical isolation devices [30], magneto-
optic spatial light modulators [27] and so
on). In particular, spin waves in such sys-
tems are studied intensively [31—-35]. There-
fore, study of spin waves in nanotube mag-
netophotonic crystals (periodically modu-
lated magnetic nanotubes) is an actual and
promising area of the physiecs of nanostruc-
tures.

In this article, we studied spin waves in
a periodically layered (in the axial direc-
tion) ferromagnetic nanotube. For spin
waves in such structure we have found a
dispersion relation considering the magnetic
dipole-dipole interaction, the exchange inter-
action and the anisotropy effects. We have
also found the radial wave number and the
longitudinal quasi-wave number spectrum for
such waves.

2. Setting of the problem

Let us consider a periodically-structured
cylindrical nanotube composed of alternat-
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Fig. 1. Nanotube modeled in the article.

ing homogeneous sections consisting of two
kinds of ferromagnetic, denoted 1 and 2.
Each section of one kind of ferromagnetic
has the same length (d; for the ferromag-
netic 1, dy for the ferromagnetic 2) and
alternate, forming periodic structure with
the period d. The medium inside and out-
side the nanotube is considered as non-mag-
netic. Inner radius of the nanotube is de-
noted a, external — b (Fig. 1).

We consider the nanotube ferromagnetics
that both have uniaxial magnetic anisot-
ropy, with the magnetic anisotropy axis di-
rected along the nanotube axis. Both ferro-
magnetics are considered to have “easy
axis” type, so that the saturation magneti-
zation is also directed along the symmetry
axis of the nanotube. We assume that the
ferromagnetics are characterized by the fol-
lowing parameters: the uniaxial anisotropy
parameters ; and P, (are considered con-
stant for each section), the exchange inter-
action parameters oy and oy (an exchange
energy tensor in the general case of
uniaxial crystal is diagonal and has two in-
dependent components; we consider the case
when these components are equal — that is
true for a cubic crystal, for a polycrystal-
line ferromagnetic with small crystals,
etc.). We assume that saturation magnetiza-
tion M is constant throughout the nano-
tube volume and is directed along the nano-
tube axis. We neglect the dissipation —
and, therefore, spin waves damping in the
nanotube, discarding the relaxation terms in
the Landau-Lifshitz equation. The gyromag-
netic ratio (y; for the ferromagnetic 1, y, for
the ferromagnetic 2) is considered constant.

Let us consider a spin wave propagating
in the nanotube described above parallel to
its axis. The spin wave is considered to be
small perturbation of magnetization den-
sity and, correspondingly, of the magnetic
field. Thus, perturbation m of the magneti-
zation density (M = My + m, where M is the
overall magnetization) must satisfy the con-
dition |m| <<|[M,|.

In this work, dispersion relation, radial
wave number spectrum and longitudinal
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quasi-wave number spectrum of the above-
described spin waves is derived.

3. Theoretical background

Let us write down the Landau-Lifshitz
equation for the nanotube described in the
previous section.

We assume that deviations of the mag-
netization m and of the magnetic field h
inside the ferromagnetic from their values

in the ground state — M; and Hg) , respec-

tively — are small, therefore we can use
linearized form of the Landau-Lifshitz
equation. Let us direct an axis Oz along the
symmetry axis of the system. Then, the
saturation magnetization and (because of
our system symmetry) the ground state
magnetic field inside each of the ferromag-
netic sections are directed along the anisot-
ropy axis of the system and, consequently,
along the axis Oz. So, for m and h written
in the periodic by time form

m(r,t) = my(rexp(int), 1)
h(r,t) = hy(r)exp(int)

we, after omitting the damping term, obtain

the linearized Landau-Lifshitz equation
(see, e.g., [36]) in the form
iomg = ®

Hfp)

~(Pi+ 3z o))

here Hf)e) is an external field (outside the

nanotube), j= 1,2 denotes sections of the
ferromagnetic 1 and 2, respectively, e, is a
unit vector of the axis Oz.

In order to solve the Landau-Lifshitz
equation we need one more relation between
magnetization and magnetic field. Let us use
the magnetostatic approximation [36] for spin
waves in the nanotube. In this approximation,
field deviation h is a potential field so that
h=-V®, hy = V&, where ® is potential and
® = Py(r)exp(iwt). Then, from the Maxwell
equation divh =—4mn-divm we obtain the
sought relation:

0%my,
= Y,(Moez X (ho + och 92
i

2

A® - 4n div m = 0. (3)

Equations (2) and (3) give us necessary
relationship between m and h. Using this
equations system, we can find the disper-
sion relation and the wave number spectrum
inside each of the nanotube sections.
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3.1 Dispersion relation and
radial wave number spectrum

Let us find the dispersion relation for spin
waves on the homogeneous sections of the
nanotube, using equation system (2), (3).

The system of equations (2), (3) (after
taking into account m,, = 0) after elimina-
tion of magnetization perturbation m can be
reduced to the following equation for mag-
netic potential:

(1)2 HBE) (4)
'YZM%_ FO-I—BJ._O(J.A X

Hf)
X M, + B |+ 4n - oA | ADg +
Hf) 020,

Let us use the cylindrical coordinate sys-
tem (p, 0, 2). Then, equation (4) has solu-
tions in the form

d =
(5)
= (A, (k p) + AyN,(k plexp(i(nd + kjz — wty),

here A; and Ay are constants, J,(k p) is the
Bessel function, N,(k p) is the Neumann

function, & Lis a transverse wave number, n
is a transverse-angular mode number; £ and

n are equal along all the nanotube sections.
(This form of the solution becomes evident
if we write down the relation
AD = —(kJ2_+ k]%pd) for the potential given by

(5)). After substituting the solution (5) into
equation (4) we obtain dispersion equation
in the form

oZ(kf + k23 + 204(B; + 2m)(kF + EDD) + (1)
- 2 . )
(Bj(Bj + 4m) — —YJZM% - 4moy; ]%D(k]%‘ +k2) -
- 47'[6‘]]3]%‘ = O,
H
M,

sponds to the following a dispersion rela-
tion:

where Bj: +B]~. This equation corre-

©= (8)

— 2,4 e LR n 2 ]
= ijO\/aj k; + 20,2m + Bk + Biam + B) - 4nkﬂ(o¢j + k—;) y

7
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where the total wave number ka = k]%| + k2.

Note that the result obtained matches the
dispersion relation obtained in [8, 31] for cy-
lindrical nanowires. Thus, the transition from
nanowires to nanotubes does not change the
spin waves pattern in the system.

Let us find the transverse wave number
spectrum. We can do this by imposing the
boundary conditions for the magnetization
perturbation on the outer border of the
nanotube. In the absence of magnetic mo-

ment outside the nanotube we obtain
m|p=a,b =0, %_m = 0. Maxwell equation
P p=a,b

(4) allows us to rewrite these boundary con-
ditions for the symmetry of our system as
Aq)| —ab= = 0. From the other side, the con-
d1t10n ACD| —ab = =0 can be rewritten as
k3 <D0|ab = 0 after using the following prop-

erty of the Bessel functions

1d d n? 9
LE0 Ly = (k2 + ). ©)
pdp dp P
So, for k;# 0 we can rewrite A®|,_, , =0
as (I)0|£l,b’ or
AT (k@) + AyN (k@) = (10)

= A (k) + AyN ,(k b) = 0

For a wide nanotube, so that ka>1, or

for a nanotube that is thin compared to its
width, so that bd—a/a <<1, the expression
for the transverse wave number spectrum
(10) can be simplified significantly. (Since
ka is of the same order of magnitude or

greater than 1/(b—a), for thin nanotubes,
the condition ka > 1 is satisfied). Since for

such nanotubes we can use the Bessel funec-
tions asymptotics and rewrite

cC . .
Dy(r) = N sin(kr + d)exp(i(nd + k]-Hz)),
where C is a normalization constant and § is

an initial phase, from the boundary condi-
tions (10) we can obtain k in the form

nn (11)

k .
-a

J_:b

The transverse wave number spectrum
for thin nanotube (11) is analogous to the
spectrum for a particle in one-dimensional
potential well, so the problem becomes
quasi-one-dimensional for the thin nano-
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tube. Note that the thin nanotube condition
b—a/a <<1 that allows for the transverse
wave number to be written in the simplified
form (11) is satisfied for typical nanotubes.

3.2 Wave number spectrum in
the entire nanotube

Let us find an effective longitudinal
quasi-wave number spectrum in the entire
nanotube. To do this, we — similarly to the
method used in [31, 37] — apply the spatial
periodicity condition (the Bloch theorem) to
the spin waves in the nanotube. According
to this theorem, the quasi-wave number K
must satisfy the relation

m(z) = exp(iKd)m(z + d). (13)

After applying the Bloch theorem and
the boundary conditions on the layers inter-
faces z,,

8m|

om  (14)
gzm+0 |

= 05, 12,-0
to a superposition of direct and reflected
traveling spin waves

m|2m+0 = m|2m—0’ o

my = C1(p,0)exp(iKz) + Co(p,0)exp(—iKz) (15)

we obtain an expression for the quasi-wave
number of the spin wave in the nanotube
that is analogous to the expression obtained
in [31, 87] for a periodically-structured
nanowire and a multilayer film:

cos(Kd) = cos(kydy)coskydy) —  (16)

Ook
_ ; Gafa
Oy

Hence we obtain for the quasi-wave num-
ber

ok Ratial|

| Sln(ledl)Sln(k2”d2)
Caka)

K= arcco{%(cos(kldl)cos(k2”d2)_

1[ Ooko|  Oqky
- + sin(kqdq)sin(kyds) | |,
E[(xlkl oy u

(17)
where the local longitudinal wave numbers
ki, kg| can be derived from the dispersion
relation (8).

More simple and physically clear expres-
sion for the effective wave number can be
obtained from expression (16) in the "effec-
tive medium” limit, see [2, 37]. In this ap-
proximation, the spin wave wavelength is
much greater than the characteristic size of
the medium inhomogeneities, in our case —
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of the system spatial period: k]-‘d <<1,
Kd <<1. In this limit the medium can be
considered as quasi-one-dimensional, and
the effective — average — parameters are
used for its description. Thus, using the
conditions ijd <<1, Kd <<1, we can re-
write (16) in the form

(Kad)? _ (kd)?  (hyd* — (18)
2 2 + 9

ook
p Yoot

or after obvious transformations

& - \L Ao+ P30y kga  (19)
a dy +dy o’

k1|d1 koda

-1
-1 -1
0(1 dl + 0(2 d2

here ao=|————| ,
dy +dy )
——  E%dioq + kZido0
kfoc= 117 2”2 2, — effective aver-
dq +dg

aged parameters of the ferromagnetic nano-
tube.

4. Discussion

So far, we obtained local dispersion rela-
tion (given by (8)) for spin wave on the
homogeneous nanotube sections as well as
the transverse wave number spectrum
(given by (10), (11)) and longitudinal quasi-
wave number spectrum (given by (19)) for
spin wave in the entire periodically layered
nanotube. Note that if the nanotube is thin
(thickness b—a is small compared to the
characteristic length of the exchange inter-
action: b—a <<|lex), so that we can put k=0

(the magnetization is considered uniform
along the nanotube thickness), the local dis-
persion relation (8) transforms as follows:

H
O = Mo offi+ Jro B o @0

HY)
o vMo - Mo

The local dispersion relation for a thin
nanotube (20) agrees with the dispersion re-
lation for a thin ferromagnetic film and for
a thin cylindrical nanowire, see, e.g., [8,
31]. This implies that the spin wave pattern
is similar for small enough (by one or two
dimensions) ferromagnetic nanoobjects.

Let us make numerical evaluations for
the spin wave frequency given by (8) in the

520

absence of external magnetic field, assum-
ing that the local longitudinal wave number
is restricted, on the one hand, by the nano-
tube length (which makes unities or tens of
micrometers for typical nanotubes), and, on
the other hand, by the continuous medium
approximation (so that the wavelength must
be considerably greater than the interatomic
distance) and by the exchange interaction
length (has the order of several nanometers
for typical ferromagnetics). Similar restric-
tions are imposed on the transverse wave
number, with the addition that the latter
vanishes when n = 0. Thus, both the local
longitudinal wave number k” and the total
wave number k; for a typical nanotube
change from 102] em! to 106 em™! by the
order of magnitude. For a typical ferromag-
netic nanotube B]- ~1, ol ~ 1012 em 2, so
for a nanotube sections consisting of mate-
rial with the gyromagnetic ratio Y=
107 Hz/Gs and the saturation magnetiza-
tion M, = 103 Gs spin wave frequency o,
according to (8), has the order of magnitude
of 1019 Hz throughout all the wave num-
bers range.

As one can see from (11), the transverse
wave number increases when the nanotube
thickness is decreased. (Note that expres-
sion for the transverse wave number spec-
trum we obtained for a periodically layered
nanotube is true for a uniform nanotube as
the sections’ parameters doesn’t enter it.)
As typical nanotubes are thin, this fact puts
a limitation on the mode number n (because
of the transverse wave number k exchange

length limitations). In particular, when the
nanotube thickness is small compared to the
exchange length (b—a <<l,,), the magnetiza-
tion is uniform on the nanotube thickness,
so we can put k= 0; therefore, for very

thin tubes (b—a < ,,) only zero transverse-
angular mode is possible (n = 0). For typical
nanotubes that have a thickness of tens of
nanometers, the number of possible transverse-
angular modes has an order of (b—a)/i,, ~ 10.

From the expression (19) for the quasi-
wave number spectrum in an entire nano-
tube we can see that when the spin wave
wavelength is much greater than the char-
acteristic size of the nanotube inhomogenei-
ties, an effective wave number in the whole
nanotube can be found by averaging the
local wave numbers in the tube sections.
Moreover, for a thin nanotube (the thick-
ness b—a is small compared to the charac-
teristic length of the exchange interaction,
so relation (8) transforms into (20)) expres-
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sion (19) for the effective wave number
agrees with the dispersion relation obtained
in [31] for a thin periodically structured
cylindrical nanowire:

N

o YM M, -
-1 R
where 7= Y1 dy + V3°dy 3 Bidy + Bads
dy +dy ’ dy+dy

As one can see, this expression agrees alsoc
with expression (20) for a local wave num-
ber of a thin nanotube after the ferromag-
netic parameters that enter (20) are re-
placed with averaged parameters of the en-
tire nanotube. So, in this case the spin wave
in a periodically structured nanotube is de-
scribed by the same dispersion relation as
the wave in a uniform nanotube, with the
difference that instead of the parameters of
one ferromagnetic the dispersion relation
contains effective (averaged) parameters of
two nanotube ferromagnetics.

5. Conclusions

In this paper, we have investigated spin
waves in a periodically layered ferromag-
netic nanotube comprised of alternating lay-
ers of two kinds of ferromagnetic. We have
studied the case when both ferromagnetics
have "easy axis” type. We have obtained
the radial (transverse) wave number spec-
trum and the longitudinal quasi-wave num-
ber spectrum for the spin wave in such sys-
tem as well as the local dispersion relation
(in the nanotube sections). We have shown
that the local dispersion relation for a cylin-
drical nanotube passes (for a thin nanotube)
into the known dispersion relation for a
thin ferromagnetic nanowire. For a nano-
tube that is thin compared to the charac-
teristic exchange interaction length, we
have shown that the local dispersion rela-
tion becomes quadratic in the wave number.
We have also shown that for a nanotube
that is thin so that its thickness is much
less than its inner radius (which is true for
a typical nanotube) the wave number levels
become equidistant, and the distance be-
tween them is inversely proportional to the
nanotube thickness.

We have shown that for spin waves in
typical nanotubes — both continuous and
periodically layered — only the first N
transverse-angular modes can be excited,
where the number N ~ (b—a)/l,, (here a and
b are the inner and the outer radii of the
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nanotube, respectively, [,, is the charac-
teristic exchange interaction length) has an
order of 10 for a typical nanotube.

We have simplified expression for the
quasi-wave number spectrum for the case
when spin wave wavelength is much greater
than the spatial period of the system (the
"effective medium” limit), obtaining more
simple and physically clear expression. Ana-
lyzing this expression, we have shown that
the spin wave in such system is described by
the same dispersion relation as the wave in
a uniform nanotube (after averaging the
local longitudinal wave number by the nano-
tube sections, or — for a thin nanotube —
substituting effective averaged parameters
of two ferromagnetics into the dispersion
relation for a uniform nanotube).
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