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We studied an influence of nonlinear dissipation and external perturbations on transi-
tion scenarios to the chaos in the Lorenz-Haken system. It was shown that variation in the
values of external potential parameters leads to parameters domain formation which
results in the chaos appearance. We have found that in the modified Lorenz-Haken system
transitions from the regular to chaotic dynamics can be of Ruelle-Takens scenario, Feigen-
baum scenario, or through intermittency.

Hccnemopano BamsHMe HEJIMHENHOW MUCCUIIAIIMN M BHEIIHUX BO3MYIIEHHUII Ha CIeHaApUU
mepexoma K xaocy B moaenu JlopeHna-XakeHa. YCTAHOBJIEHO, 4TO OOJAaCTH IIapaMeTpoOB
CHCTEMBI, OIPEAEIAIINX BOSHUKHOBEHE Xa0TUIECKOT0 IIOBEIEHN S, CBA3AHEI C N3MEHEHUEM
mapaMeTpoB BHEIIHEro IoreHnuaia. IlokasaHo, uro B MoguduirpoBanHoii cucreme JlopeH-
na-XaxKeHa IIePexoJ OT PeryJaspHOro I0BeIeHHSA K XAOTHUYECKOMY BO3MOXKEH IIO TPEM CIleHa-
pusiM, a ©UMeHHO, 110 cileHapuio Prosians-Takkenca, mo cueHapuo Pelirenbayma, MIu BCIE-
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CTBHUE IIEPEMEKAEMOCTH, B 3aBUCUMOCTH OT 3HAUEHHU IapaMeTPOB CHCTEMBI.

1. Introduction

One of the most actual task in the theory
of nonlinear dynamical systems is a setting
of chaotic regime generation conditions and
defining possibilities of the chaos control
[1, 2]. It is well known, that in physical
applications a control of the transition from
the chaotic to periodic mode in multicompo-
nent systems can be performed by using dif-
ferent mechanisms. For example, in laser
physics there are: negative feedback [3],
angle between two crystals which are en-
tered to the Fabry-Perot cavity [4], full
feedback intensity [1], intensity of activat-
ing (see [5, 6] and citations therein). In this
connection, from the theoretical point of
view, an actual task is to establish the
chaos control and to determine transition
characters between the chaotic and regular
dynamics.

The main goal of this work is to study an
influence of two additional nonlinearities
that arise up in the chaotic system as a
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result of different physical processes on
transitions character between the regular
and chaotic dynamics. We will consider the
modified Lorenz-Haken model which self-
consistently can describe, for example, opti-
cal bistable systems [7], systems of defects
in a solid [8, 9], etc. Due to condition of
commensurability for all three modes re-
laxation times we will set domains of the
system parameters of the chaos realization
with a help of maximal Lyapunov exponent
approach. We will obtain two different
strange chaotic attractors and set possible
transitions to the chaotic dynamics.

The paper is organized in the following
manner. In Section 2 we present a model of
our system incorporating a nonlinear dissi-
pation and external perturbation terms. Sec-
tion 8 is devoted to consideration of the
conditions for transition to the chaotic re-
gime and to determination the main charac-
teristics of the strange chaotic attractor.
The main results and prospects for the fu-
ture are presented in Conclusions.
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2. A model of the chaotic system

The Lorenz-Haken model can be written
in a form [7]:

n= _n/Tn + gnhy
h=-h/T, + gmS, @
S=(r-98) /15— ggh-

Here a point means a derivative in time;
Ty The Tg — relaxation times of the order
parameter n(t), a conjugating field A(¢) and
control parameter S(¢), accordingly; gy» 8hs
gg — positive feed-back constants; r —
pump intensity, measures an influence of
environment. First elements in the left
hand of the system Eq.(1) take into account
dissipation effects, peculiar to the syner-
getic systems. Connection between the order
parameter and conjugating field is linear
(first equation), evolution of both the conju-
gating field A(¢), and control parameter S(¢)
are determined by nonlinear feed-back rela-
tions (second and third equations, respec-
tively). It is principally important that posi-
tive feed-backs in Eq.(1) which are provided
by constant &y and g, result in increase in
conjugating field. These positive feed-backs
are compensated by negative one due to
principle of Le-Shatel’e. As a result one has
decreasing in the control parameter (see
third equation in Eq.(1)).

Let us start with the analysis of the sys-
tem (1) with passing to dimensionless vari-
ables. Such transition is arrived due to
measuring time ¢, order parameter mn, conju-
gating field #, and control parameter S in
the followings units:

t o Tny ne o (ghgs)_1/27
h, = (g2¢,89) 7Y%, S, < (g, -

Hence, dropping indexes, the system (1) be-
comes the following

n=-n+h, (2)
_csh:—h+nS,
eS=r-S)-nkh,

where Gzrh/rn, EETS/Tn. The system
Eq.(2) is written in supposition of linear
dependence of the order parameter relaxa-
tion time, as ‘cn(n):const. However, most
real physical systems are characterized by
the nonlinear relaxation processes. In this
connection let us suppose that the order pa-

rameter relaxation time T increases with an
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increase in the order parameter m by the
relation [10]:

K 3)
T =1-—,
() 1+Kk+n2
where K — positive constant which plays a

role of an dissipation intensity. From rela-
tion (3) it is seen that relaxation time Tn(n)

is independent of order parameter sign. Ex-
cept for that, relation (8) has practical ap-
plication, namely, it designs the action of
optical filter, entered into the Fabry-Perot
cavity of optically bistable system (for ex-
ample solid-state laser [11]). Such acting
provides an establishment of the stable peri-
odic radiation (or time dissipative structure
appearance) [11]. Using dependence (3),
first equation of (2) is generalized by an
additional nonlinear term f, = —(xn)/ (1 + n?).
Considering the system in external field,
one needs to take into consideration exter-
nal perturbations. In this article we will
model such perturbations by the external
potential V,. Due to the standard catastro-
phe theory such potential is given by three
types of catastrophes [12]. In general case
one has
V,=An+ %12 + %13 + %n‘l + %’qf’, (4)
where A, B, C, D, E — parameters of the theory.
For the catastrophe A, one has: B=D=E =0,
for the catastrophe Ag: C = E =0 and for
the catastrophe A,: D = 0. The modified Lo-
renz-Haken system has the form

N=-n+h+fm+£,m
h=-h+n8, (5)
S=(r-8)-nh,

where we suppose ¢ =€ =1 and fME=—dV,/dn.
Variation in parameters of both f.(n) and
fo(m) can induce a change in the attractor
topology in phase space.

3. Chaos in the modified
Lorenz-Haken system

The system Eq.(5) with nonlinear depend-
ence of order parameter relaxation time ver-
sus order parameter in a form (3) (x#0) but
with an absence of additional perturbations
(V,=0) was considered in [13]. It was
shown that in such a case the semirestricted
domain of system parameters (pump inten-
sity r and dissipation intensity k) for dissi-
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pative structure realization is formed. It
was set that in a case of linear dependence
for order parameter relaxation time versus
its values (kK = 0) the chaotic regime does
not realize. In addition, it was found the
chaos domain, and it was determined condi-
tions of the chaos control. Finally it was
defined fractal and statistical properties of
the corresponding chaotic strange attractor.

The main goal of this work is to study an
influence of external perturbation on re-
gimes of transition to the chaos in Lorenz-
Haken system, generalized by nonlinear re-
laxation time of order parameter in a form
(3). For external perturbations we will use a
potential of the fold catastrophe A,, i.e.
V=An + 1/3Cn3. To indicate the chaotic dy-
namic we will use the method of Lyapunov
exponents which is provided by the Benettin
algorithm [14]. Due to this algorithm each
of Lyaponov exponents (number is defined
by the dimension of the corresponding
phase space) determines a speed of conver-
gence/divergence of any two initially nearby
trajectories in a fixed direction in the corre-
sponding phase space, starting from points
v(t) and v(¢'). The divergence/convergence of
such trajectories is given by the dependence

dv(t) = dv(tg)en?, where Ay, is a maximal

(global) Lyapunov exponent, which is de-
fined by the relation [14]

Aps = ABY(tp)) = lim L,

T—>eoT

Sv(t)
dv(tg)

Here one takes into account an upper
limit and |v| is a norm; v="n,4,8; T — full
time. It can be concluded that in the case
A; <0, i=1, 2, 8, and accordingly A,,<0,
all of phase trajectories will coincide to the
fixed point (stable node or stable focus). At
A <0, Aj<O0and A=A, =0,i#j#k, i,
k=1, 2, 3 phase trajectories will lie down
on a stable limit circle (dissipative struc-
ture). If A; <0, A;=0 and Ay =A,>0, a
dynamics of the system is chaotic.
Lyapunov map of the modified Lorenz-
Haken system (5) at k = 25.0 and A = 0.1 is
shown in Fig. 1. Here by gradation of grey
color the wvalue of the maximal (global)
Lyapunov exponent is shown versus pump
intensity r and parameter of an external
potential C. White color determines the do-
mains of stable system behavior (phase
space is characterized by a fixed point —
stable node or a stable focus). Grey color
marks the domains of time dissipative
structure existence (more dark domains cor-
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Fig. 1. Lyapunov map of the modified Lorenz-

Haken system (5) at k = 25.0 and A = 0.1.

respond to the larger number of oscillation
periods). Domains of chaos are shown by a
black color. From Fig. 1 it is seen, that in
the case C =0 an existence of the chaotic
mode requires the large values of pump in-
tensity. In the opposite case (C#0) at |C| ~
0.1 the chaos is realized at r ~ x.

Let us analyze a picture of dynamical
regimes reconstruction of the system (5)
with € = 0 and A = 0.1 in detail. Lyapunov
map and the corresponding dependence of
maximal Lyapunov exponent versus pump
intensity at fixed value of dissipation inten-
sity k¥ with characteristic phase portraits
are shown in Fig. 2. Here due to earlier
denoted scenario values of the maximal
Lyapunov exponent are presented by grada-
tion of grey color versus pump intensity
and dissipation intensity. It is necessary to
note that dark curves (between a) and b), b)
and c) in the Lyapunov map) in the domain
of dissipation structure existence (grey
area) determine the parameter values corre-
sponding to the doubling period bifurcation.
Below the map there is a dependence of the
maximal Lyapunov exponent versus pump
intensity r at A=0.1, C =0 and x = 25.0.
The presence of two pronounced peaks in
the domain of zero values of the maximal
Lyapunov exponent (fluctuations around
zero are connected with errors of numeral
solution) determines the points of doubling
period bifurcation. Corresponding phase
portraits illustrating dissipative structure
with one, n and m > n periods are shown
with the help of insertions a), b) and c),
accordingly. It is principally, that both
transitions from a) to b), and from b) to c)
are characterized by appearance of a few
additional harmonics. As it is seen from the
dependence Ay/(r) in a point d) the maximal
Lyapunov exponent has positive value and
phase space is characterized by the irregu-
lar behavior of a trajectory. Increase in
pump intensity leads to dissipative struc-
ture formation with one period (cf. phase
portraits d) and e)). Further increase in r
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Fig. 2. Lyapunov map of the modified Lorenz-Haken system (5) at A = 0.1 and C = 0; dependence
of maximal Lyapunov exponent at A = 0.1, C = 0 and x = 25.0 and corresponding phase portraits.
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Fig. 3. Lyapunov map of the modified Lorenz-Haken system (5) at A = 0.1 and C = 0.1; dependence

of maximal Lyapunov exponent at A = 0.1, C = 0.1 and k = 25.0 and corresponding phase portraits.
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leads to positive values of A,; and phase
space is characterized by the chaos exist-
ence (corresponding phase portrait is shown
with the help of insertion f)). So, one can
conclude that at A =0.1, C=0 and k=
25.0 with an increase in pump intensity r a
transition to the chaotic regime occurs due
to Ruelle-Takens scenario, when only negli-
gible number of doubling period bifurcation
leads to the chaos [15]. With a decrease in
r (from r>r, to r<r,) the maximal
Lyapunov exponent takes positive value at r
=r, in spontaneous manner. Corresponding
transition to the chaos takes place through
an intermittency [16].

Next, let us consider the case of C#0.
Lyapunov map at A=0.1 and C=0.1 is
shown in Fig. 3. Below the map as well as
in previous case a dependence of maximal
Lyapunov exponent versus pump intensity
at A=0.1, C =0.1 and k = 25.0 and corre-
sponding phase portraits are shown. Unlike
to the previous case here with an increase
in pump intensity r a successive complica-
tion of the attractor due to doubling period
bifurcation is observed (see corresponding
phase portraits in points a), b), ¢), d) and
e)). Thus, in such a case (4 =0.1, C=0.1
and k= 25.0) an increase in r results in
transition to the chaos by Feigenbaum sce-
nario [15]. The chaotic attractor is shown
with the help of insertion f). As well as in
the previous case a decrease in r leads to
transition to the chaos at r=r, through
intermittency [16].

It is well known that dynamical systems
can realize four types of attractors in the
phase space, namely: non chaotic non
strange attractor, chaotic non strange at-
tractor, strange non chaotic attractor and
chaotic strange attractor. The attractor is
chaotic if the condition Ap; > 0 is satisfied;
strange attractor is characterized by the
fractional value of the fractal dimension D.
In [17] it was shown that the fractal dimen-
sion of the attractor which is realized in the
dynamical system, is determined with the
help of Lyapunov exponents by the relation

A
D=3+ N1-8 M
Amin
where A, ;, is the minimal Lyapunov expo-

nent. Previously in the absent of external
force, f, = 0, the full analysis of the fractal
dimension of strange chaotic attractor was
made in [18]. It was shown, that strange
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chaotic attractor is characterized by the
Lyapunov fractal dimension D > 2. For the
considered attractor in a point f) at k = 25.0,
r=98.0, A=0.1 and C = 0 (see Fig. 2) one
has: Ay, = 0.2774, A,,;, = —16.948 and, ac-
cordingly, D=2.032. For the attractor at
k=250, r=384.5, A=0.1 and C = 0.1 (see
Fig. 8) one has Ay, = 0.16545, A,,;, = —3.631
and, accordingly, D = 2.084. Thus, the at-
tractors in Fig. 2f and Fig. 3f are strange
and chaotic.

4. Conclusions

We have studied the influence of non-
linear dissipation and external perturba-
tions on transition scenarios to the chaos in
the Lorenz-Haken system. Dissipation proc-
esses are defined by the nonlinear depend-
ence of order parameter relaxation time ver-
sus its values. External perturbations are
modeled by a potential of fold catastrophe.
From a physical viewpoint we have consid-
ered the absorptive optical bistability sys-
tem [7]. At that time used nonlinear dissi-
pation relation related to the possibility of
the additional medium in the Fabry-Perot
cavity (phthalocyanine fluid, gases SFyg,
BaCls, and CO, [7]) to absorb signals with
weak intensities. Meanwhile, external per-
turbations model the influence of optical
modulator which sets additional interpho-
tons interaction processes in the Fabry-
Perot cavity.

We have considered a case of commen-
surability of relaxation times for order pa-
rameter, conjugated field and control pa-
rameter. It was shown that variation in val-
ues of external potential parameters leads
to formation of domain with r ~ K and with

r by order of magnitude greater than x of
the chaos realization. The corresponding at-
tractors are chaotic and strange. In the sys-
tem considered transitions from the regular
to chaotic dynamics can be of Ruelle-Takens
scenario, Feigenbaum scenario, or through
intermittency.
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Bnaus HesiHiMHOI Aucumailii Ta 30BHINIHiIX 30ypeHb Ha
cueHapii mepexoay A0 xaocy B moaetsi Jlopenma-XakeHa

A.B./|éopruuienko

Hocaip:xkeno BniauB HesiHiHOI aucumanii Ta soBHiIIHIX 30ypeHb Ha cieHapil mepexoxy
1o xaocy B mopeni Jlopenns-Xaxkena. BeranosieHo, 1o obisacti mapamerpiB cucremu, AKi
BU3HAYAIOTh BUHUKHEHHA XAOTHUYHOI NIOBeLiHKMW, IoB’A3aHi 31 sMiHOK mapamerpiB 30BHimI-
Hporo morenmiany. Iloxkasamo, mo y moxudikosaniii cucremi Jlopenmna-Xakena mepexin Bing
peryasapHoi HOBeNiHKM OO0 XAaOTHYHOI MOMKJIMBUU 3a TphbOMAa ClleHapiaMi, a came, 3a CIie-
Hapiem Proemna-Takkenca, sa cuemapiem @elirembayma abo yHacIAigoxk mepemimkuocri, B

3aJIeXKHOCTI BiJg 3HAUEHB IIapaMeTpPiB CHCTEMH.
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