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The exchange coupling of magnetically ordered layers (MOLs) through a nonmagnetic metallic
spacer was calculated. The induced magnetization in the spacer, taking into account the influence
of an external magnetic field, was calculated, too. This calculation shows that the energy of cou-
pling of the MOLs through the nonmagnetic metallic spacer is a long-periodic function of the
spacer’s thickness and magnetic field, i.e., the exchange coupling between the layers varies from
ferromagnetic to antiferromagnetic and vice versa depending on the spacer’s thickness and mag-
netic field. Also this calculation shows that in nonferromagnetic spacer the induced magnetization
can undergo many complete rotations depending on distance to the boundaries with the MOLs.
Moreover, absolute value of induced magnetization nonmonotonously decays with distance from
the interfaces inside the spacer. It is shown that the character of the decay of absolute value mag-
netization from the interfaces into the interior of the spacer is influenced by magnetic field.

PACS: 75.70.—1

In the last decade much effort has been dedicated to
the study of the magnetic coupling in nanoscale
multilayer systems, because ultrathin magnetic films
exhibit unusual magnetic configurations and coupling
not found in bulk systems [1,2]. In particular, in
trilayer systems like ferromagnet—nonmagnetic spa-
cer—ferromagnet (e.g., Fe /Cr/Fe, Fe /Cu/Fe, etc.)
long-periodic oscillating exchange coupling as a func-
tion of spacer thickness has been found [3,4—7]. This
means that the coupling changes from antiferromag-
netic to ferromagnetic with spacer thickness. For
deeper understanding of indirect exchange coupling
through a nonmagnetic spacer one needs to investigate
the magnetic properties of a nonmagnetic spacer in a
multilayer system. Moreover, investigation of the
magnetic properties of a nonmagnetic spacer sand-
wiched between ferromagnetic layers is very impor-
tant not only because of oscillating exchange cou-
pling, but also because the contact of a ferromagnetic
layer with a nonmagnetic spacer must change the elec-
tronic state of the nonmagnetic spacer. Also, many ex-
perimental and theoretical works are dedicated to the
study of such trilayer systems as antiferromag-
net—nonmagnetic spacer—antiferromagnet. Such sys-
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tems attract much interest of researchers because they
can be used in magneto-resistive devices, for example,
in magnetic field sensors, magnetic heads in memory
devices, etc. Taking into account the aforementioned
problems some works are dedicated to investigation of
the distribution of magnetization induced in a non-
magnetic metal spacer sandwiched between two ferro-
magnetic layers. Of great interest is the question of
the possibility of inducing magnetization in a material
which in the normal state is nonmagnetic but which
can be polarized if it boundaries with a magnetically
ordered material [8]. Magnetic polarization of a non-
magnetic material by a magnetically ordered material
is usually called the proximity effect. The experimen-
tal study of the proximity effect is described in some
works [9-11]. For example, magnetic polarization
of a nonmagnetic Au spacer in multilayer systems like
ferromagnet—nonmagnetic spacer—ferromagnet has been
measured with the help of Mgssbauer spectroscopy us-
ing probe atoms in an Au spacer [12]. A small induced
magnetic moment in Cu at the Co/Cu interface was
detected Refs. 13,14 using circular dichroism and in
[15] using NMR. The oscillating exchange coupling
between two ferromagnetic layers separated by a non-
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magnetic metal spacer is explained in some theoretical
works, usually using RKKY coupling [16]. Moreover,
oscillatory exchange coupling between two ferromag-
netic layers separated by a nonmagnetic metal spacer
layer is associated with oscillation of the magnetic mo-
ment in the nonmagnetic spacer layer [3,17—-19]. The
magnetic moment induced in a nonmagnetic metallic
spacer between two ferromagnets with magnetizations
turned at an arbitrary angle is calculated theoretically
in Ref. 17. As is shown in Ref. 17, the induced magne-
tization rotates along a complex three-dimensional
spiral and can undergo many complete rotations.

In this work we propose a phenomenological
method of calculating both the oscillating exchange
coupling of magnetically ordered layers through a
nonmagnetic metallic spacer and the induced magneti-
zation in a the nonmagnetic spacer using a spin-den-
sity model [20] similar to the Ginzburg—Landau mo-
del [21]. In comparison with Ref.17 the approach
proposed in our work allows to calculate the magneti-
zation induced in the spacer and the oscillating ex-
change coupling taking into account the influence of
external magnetic field. The approach can be used
whether the magnetically ordered layers are ferromag-
netic or antiferromagnetic. To consider the system
magnetically ordered layer—nonmagnetic metallic
spacer—magnetically ordered layer (MOL-NMMS—
MOL) in magnetic field, let us consider the case when
external magnetic field H is parallel to the z axis and
directed perpendicularly to the plane of the spacer.
The interface of the spacer with the first MOL is situ-
ated in the xy plane, the interface of the spacer with
the second MOL is situated in the z = L plane parallel
to xy. Following Ref. 20 let us define the order param-
eter for the spacer as the two-component function

_ [Py
v _[Cbz} W

in terms of which the magnetic moment density of the
spacer is written as

M = poy Favy, (2)

where p is a phenomenological parameter and ¢ are
the Pauli matrices. We suppose in our approach that
the state of the MOLs does not depend on distribu-
tion of the order parameter inside the spacer and is
characterized only by the directions of homogenous
magnetization. Using the approach of Ref. 20 and the
functional method of the Ginzburg—Landau type for
the order parameter y, we write the following Lag-
rangian function:

L= jBih(\ij/ -y ) - w(w)} dr. (3)
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Here w is the energy density written to forth-order
accuracy in powers of the function w:

w(y) = AVy " Vy + By Ty + g(uﬁw)z —roHGy ™6 ,y),

(4)

where A, B, and s are phenomenological parameters of
the spacer.
From Eq. (3) in a trivial manner we obtain

ih% = AAy - By —sGy Wy + poHS - (5)

for the order-parameter function, which depends on
time and coordinates inside the spacer. The boundary
conditions have the form

|,y =const, y|,_, = const, (6)

where the points z = 0 and z = L are the coordinates of
the interfaces (see Fig. 1). The solution of Eq. (5) is
sought in the form

_ {\V1(r) exp (10)1t)j (7)
o (1) exp (ioot) ’

By inserting Eq. (7) into Eq. (3) one obtains the
system of nonlinear equations which defines the de-
pendence of y( and w4 on the space coordinates r:

{AW +apyy —b (gl + o)y + yy =0
(8)

Ay +ayyy b (wl*+ wsol? ) wy = hyy =0

where a; = (ho; =B)/ A; b=s/A; h=pyH/A.

For simplicity of consideration we suppose that the
external magnetic field H changes the directions of
the magnetizations of the MOLs in the same ways, i.e.,
the polar angle 0, = GO(H) for the MOL magne-
tizations is the same, and the difference in their orien-
tation is described only by change of azimuth angle .
Let’s choose the constants in the boundary conditions
(6) taking into account that the magnetic moment
density of the spacer at the interfaces must be parallel
or antiparallel, respectively, to the direction of mag-
netization of the MOLs on variation of the sign of the
exchange coupling. Also we suppose that exchange
coupling between the magnetization in the spacer and
the magnetizations of the MOLs is appreciable only
within the interfacial regions (@ << L), i.e., that
MOLs influence the spacer only through the boundary
conditions (6). Let’s consider that the magnetization
in the spacer at the boundaries with the MOLs is par-
allel to the magnetization of the MOLs. The case
when the orientation is antiparallel can be considered
analogously. In accordance with the above-said, one
can write the boundary condition using a spherical co-
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X X

Fig. 1. Direction of magnetization of the spacer at the
boundary with the first MOL, z = 0 (a) and with the
boundary with the second MOL, z = L (b).

ordinate system (see Fig. 1) and Pauli matrices, in the
form

[MO Sineo =Ho (CDICDQ + CD;CD1 )| 0
z=
0= —i},L() ((DTq)z - (D;(D1 )| 0 ’ (9)
z=

My cos8 = g (DD — DyD,y )| o
z=

MO Sineo COSP = K (CDICDZ + CD;CD1)

z=

M sin 6 sing = —ipg (D;Dy — ®;®1)| L (10)
7=
LMO cos0y = g (DD — Dydy )| .
7=

where M|, is the magnitude of the magnetization at
the boundaries, which plays the role of a
phenomenological parameter of our problem. The
magnitude |[M] is chosen the same on both interfaces,
equal to My ~ o/ Vy (where Vj is the unit cell vol-

ume of near the interface of a spacer layer of thick-
ness @, V = L, L,a), taking into account the assump-
tion of the strong polarizing effect of MOLs on the
magnetization of the spacer in the immediate neigh-
borhood of the interface.

It’s easy to see using direct substitution, that

i 1 —ikyz
B16181ell4,1pe 1 el(n1t

v o= , 1)

Bzezé}gemgpe 2 ezoaQt
where k;, 8;, and ®; are real magnitudes, and
p = (x,y) satisfies the system of nonlinear equations

(8) if the following correlations between parameters
are fulfilled:

{—(K% + k) +a; -b(B} + BY) +h:0' (12)

~(x3 +k3) +ay —b(B} +B3) —h=0

To make the solution (11) satisfy the boundary condi-
tions, it is necessary that

j())1 =0y =0

0
JB1 =,/my cos70

Ky =K{=K, 0. (13)
[62 —61 =Pg tB2 Zwﬂ’l’lo sin70
2N
ki +hy =225
L
where the conditions
M
N=0+1.., my=—2 (14)
Ko

are fulfilled, too. Then the solution satisfying the sys-
tem of nonlinear equations (8) and the boundary con-
ditions (9), (10) is transformed to the form

_r iot , i(kp +8) 2L
yo=4mye e

cose—oexp i? + 2N + HoHL z
A((p + 2Nn)

Cif =0, H>0,N=0+1,...
Ro L

w = Jmge ot o) "

L

Ao +2Nn)}2] J

noHL H) (15)

0
sin—oexp ; (p+2NTl:_
2 2L

( 0 { .{Nn
COSTGXP —1i— +

2ANT

Vif =0 H>0 N=x1£2 ...

0
sin—oexp i Nm _ woHL z
2 2ANT

By inserting the solution (15) into the correlation (12) one obtains

2 2
HL
EN :B+mos+A1<2 +A((P+2iNnj +A_1[M0j , (16)
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where £y =ho. Let us assume, that Eq. (15) de-
scribes the states of quasiparticles (which we will call
magnetized electrons), which behave according to
Fermi—Dirac statistics. According to Ref. 22 let us
define the total number of magnetized electrons in the
spacer magnetopolarized by the MOLs, N as a sum
over all possible states of the distribution function.
Let’s consider, for simplicity, the case when T =0,
because the most interesting magnetoresistive proper-
ties of multilayered nanostructured systems appear at
low temperatures. Then the Fermi—Dirac distribution
function has the form

folen) Z{

1, <
TN EEE 17

0, EN ZEF

where € i is the Fermi energy of the magnetized elec-

trons. According to Eq. (17), the total number of mag-

netized electrons in the spacer is written in the form

(2 )2 Z IZanK (18)

where L, ~ L, >> L are the dimensions of the spacer
in the xy plane, and x  is the largest possible value of
the wave vector k when N is fixed. k is calculated as

o ep —Pp-—mps (¢ +2Nmn 2_ poHL 2
N A 2L A(p + 2Nm)

(19)
It is easy to obtain from Eq. (13) that
_1 2
nL=o ;K 2, (20)

where n = No /(L L, L) is the density of magnetized
electrons in the spacer. The components of the spe-
cific magnetization of magnetized electrons in a plane
with an arbitrary coordinate z inside the spacer, tak-
ing into account Eq. (2), have the form:

2N’
M, N =M,sinB cos ((erLan

M N = M;sin8; sin ((PJFLMEZJ 21

MZN = MO COS@O

The average x component of the specific magnetiza-
tion of the near-interface spacer layer of thickness a
equals

a
(M N) = LxLyIMO sinB cos ((PJranzjdz =
0
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+ 2N
LL,L,Mgsin0gsin ((anaj

¢ + 2N~n

(22)

The average y component of the specific magnetiza-
tion of the near-interface spacer layer of thickness a
equals

a
2N’
<My[\]> = LXLyJ.MO Sineo sin ((P—i_LandZ =

LLxLyMosineocos((PJernaj .
23

¢+ 2Nn

The average z component of the specific magnetiza-
tion of the near-interface spacer layer of thickness a
accordingly equals

(M,\) = L,L,Myacos®. (24)
In the limiting case when a << L, the average absolute
value of the magnetization of near-interface spacer

layer, (M) = [(Mox)? + (Myn)? + (M_p)?, equals
LyL,Mya. With the help of Eq. (17) one can find the

magnetization of the near-interface spacer layer of
thickness a:

L.L, Myt
M :2X7yoz IZﬂKdK. (25)
(27'[)2 N

Taking into account Eq. (20), one can find that
M =MgynL,L,L. Using the ratio My =pg,/(L,L,a),
one can write

M = M, (26)
a
hence:
_Ma (27)
rol

We denote ng =M /g, n =ay/L, and ay = Ma/y is
a phenomenological constant.

Taking into account Egs. (19) and (20), one ob-
tains a transcendental algebraic equation for finding
the Fermi energy ¢ g:

nL:1Z{8F -B —mgys _(cp +2Nnj2 -
2n = A 2L
2
[ moHL
[A((p +2Nn)j } (28)

where the allowed values of N are found from the in-
equality K%\] > 0. N belongs to
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N e |floor{ 2+ F2 ;—ceil M ceil{— 2 4 1 ; floor PR , (29)
2n 2m 2n 2n 27: 27: 2n 2m

st pE T "

where

Q:ﬁL\/SF —B—mOSJr\/(SF_B—mOSJZ_(“OHJZ y (31
A A A

ceil is the function that gives the maximal integer
number closest to a given real number, and floor is
the function that gives the minimal integer number
closest to a given real number. The average energy of
the spacer is defined by the standard formula

®=2 )2 Z j ke (Odic . (32)
After simple transformations, Eq. (32) transforms to:
€ _ (B + mys)nL +
L.L,
2 4
+iz ep —Pp-—mgs)" (¢ +2Nm)
4m N A 2L
moHL \' 1(poHY’
| == b (33)
Alp +2Nn) ) 2 A
where (g) /(L,L,) is the spacer’s energy per a unit
area.
0.105
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Fig. 2. Dependence of Fermi energy on the angle ¢. Da-
shed line H =800 Oe, dotted line H =400 Oe, solid line
H=00ec ¢y =AB° N3, & =ep —p—mys, L =23 A.
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By comparing the experimental data for the ex-
change coupling energy between MOLs and the maxi-
mal exchange coupling energy between the layers
[23—29] for different types of trilayer systems with the
results of numerical calculations using the given mo-
del, it was found that if the density of magnetized
electrons n equals the tabulated point for the cor-
responding metal spacer, then the parameter a ~1 A
and the parameter A may occupy the region
10730 erg cem? < A <107 erg -cm”. For example,
Eq. (28) was solved numerically for the following val-
ues of the spacer’s parameters: A =0.15 - 10730 erg - cm?,
n=59-10*2cm ™2, 0p =mn/2, a=1 A. The curves of
the Fermi energy as a function of the spacer’s thick-
ness, on magnetic field, and on the angle ¢, while the
remaining parameters are fixed, are shown, are per-
formed in Fig. 2, 3, and 4, respectively. It is obvious
from the plots that the Fermi energy has oscillating
dependence on the spacer’s thickness and on magnetic
field. These oscillations are a purely dimensional ef-
fect analogous to that described Ref. 22.

The results of numerical calculation of (&) /(L,L,)
for the spacer’s parameters, taking into account calcu-
lated numerically Fermi energy, are shown in Figs. 5
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|
15 20 25 30 35 40 45

L, A

Fig. 3. Dependence of Fermi energy on the spacer’s thick-
ness. Solid line ¢ =0, dashed line ¢ ==, H = 0.
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Fig. 4. Dependence of the Fermi energy on magnetic field.
Solid line ¢ =0, dotted linep ==, L = 23 A.

and 6. It is obvious from the Figs. 5 and 6 that both
()/(L,L,) and & also have oscillating behavior de-
pending on the spacer’s thickness and magnetic field.
()/(L;Ly) and g also have minima when ¢ =0 or
¢ = m, depending on spacer thickness, magnetic field,
and other parameters. That is, the energy-optimal con-
figuration is the parallel or antiparallel mutual orien-
tation of the projections of the magnetizations of the
MOLs on the xy plane.

As is seen from Fig. 7, the exchange coupling of the
MOLs through the metal spacer has a long-periodic
oscillatory dependence on the spacer’s thickness L,
i.e., the exchange coupling changes from antifer-
romagnetic to ferromagnetic depending on the spacer’s
thickness. As is seen from Fig. 5, the given theore-

2

3
J,10 erg/cm
&

's-10F
-151
=20
I I I I I I I I
10 20 30 40 50
L, A
Fig. 5. Dependence of exchange coupling energy

J = (s)/(LxLy)Lp:n - <8>/(LXL]/)| o o0 the spacer’s
thickness. Solid line is theoretical calculation, «o» are the
results of the experimental work [29]. It was found by
comparing these theoretical and experimental results that
they are shifted by 6 A.
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Fig. 6. Dependence of the exchange coupling energy J on
magnetic field. L = 23 A.

tical calculation shows that J = (8)/(L35Ly)|q)=1T -
- <8>/(LxLy )|(p:O descends faster than L2 with in-

crease of L. Moreover, the period of the oscillations of
J is not constant but increases with increase of L. Both
of these theoretical results agree quantitatively with
results of Ref. 29 (see Fig. 5). As is seen from Figs. 8
and 9, the theoretically obtained values of the first
three periods of oscillation of the exchange coupling
equal 10, 12, and 15 A, respectively. The experimen-
tally obtained periods of oscillation of the exchange
coupling (according to Ref. 29) equal to 11.0, 13.6
and 15.2 A with accuracy +1 A.

The components of the magnetization at a point
with an arbitrary coordinate z inside the spacer have
the form (21). Then, taking into account the Fer-
mi—Dirac statistics and the distribution functions
(17), the mean value of the magnetization components

1.0 —

0l L

1
0 5 10 15 20 25 30 35 40 45
LA

Fig. 7. Dependence of the angle when the energy of cou-
pling of the MOLs is minimal as a function of the spacer’s
thickness. H =0.
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X

0 0.2 0.4 06 0.8 1.0
z/L

Fig. 8. Magnetization component of M, (divided by the
magnetization at the z =0 boundary) as a function of z.
Solid line H =0 Oe, dotted line H =2000 Oe. The
spacer’s thickness is 23 A.

at an arbitrary point with coordinate z inside the
spacer has the form:

LoL, ~"F
(M) =272% I 2mediM
(27'[)2 N 0

L.L N
X
(M) zzﬁz IZanKMyN. (34)
KN

(275)2

L.L
M,y =21y IandKMzN
N o

It is simple to transform Eq. (34) to the form:

M
¢ x>:LZMosineocos Mz X
2n N L

L.L,
2 2
ep —Pp-—mgys (¢ +2Nm)" pwoHL
A 2L A(p +2Nm) | |/
(35)
M
My =LZMosineosin 7CP+2NT[2 X
L,L, 2n N L
2 2
ep —Pp-—mgys (¢ +2Nm)" pwoHL
A 2L A(p +2Nm) | |/
(36)
M
M) _ M cosOgnL. (37)
L.L,

The absolute value of the magnetization at a point
with coordinate z inside the spacer is calculated as

Fizika Nizkikh Temperatur, 2004, v. 30, No. 10
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s 04
0.2

0

-0.2

0 0.2 04 0.6 0.8 1.0
z/L

Fig. 9. Magnetization component of M, (divided by mag-
netization at the z = L boundary) as a function of z. Solid
line H =0 Oe, dotted line H =2000 Oe. The H = 2000 Oe
spacer’s thickness is 23 A.

M = MO+ M)? + (M) (38)

The plots of the dependences of (M) and (M,) on
coordinate z inside the spacer are performed in Figs. 8
and 9. Here the boundary conditions are chosen so
that when z = 0, the magnetization of the spacer is di-
rected along the x axis, and when z = L the magne-
tization of the spacer is directed along the y axis.
The magnitude (M), as is seen from Eq. (37), is con-
stant at all spacer thicknesses, according to our mo-
del. As seen from Fig. 10, the average value of |M]| is
maximal on the spacer’s boundaries with the MOLs
and decays from the spacer’s boundaries inside the
spacer symmetrically about of the spacer middl.

1.0+

0.8\

0.6

M|

0.4+

0.2

z/L

Fig. 10. Absolute value of M (divided by the magnetiza-
tion at the z =0 boundary) as a function of z. Solid line
H =0 Oe, dotted line H =2000 Oe. The spacer’s thickness
is 23 A.
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Discussion of results

In this paper the exchange coupling of magneti-
cally ordered layers through a nonmagnetic metallic
spacer was calculated using a spin-density model simi-
lar to the Ginzburg—Landau model. The induced mag-
netization in the spacer, taking into account the influ-
ence of an external magnetic field, was calculated,
too. This calculation shows that the energy of cou-
pling of the MOLs through the nonmagnetic metallic
spacer is an oscillating function of the spacer’s thick-
ness and magnetic field, i.e., the exchange coupling
between the layers varies from ferromagnetic to anti-
ferromagnetic and vice versa in variation of the
spacer’s thickness and magnetic field. Here the magni-
tude of the exchange coupling decreases with spacer
thickness faster than L2 and the period of oscillation
of the exchange coupling is not constant but increae-
ses with increase of spacer thickness. These results
match with the works [29—31], which were carried out
for Cu and Au spacers and for Co and Fe MOLs. Also,
this calculation shows that in a nonferromagnetic
spacer the induced magnetization can undergo many
complete rotations with variation of distance to the
boundaries with the MOLs. Moreover, the absolute
value of the induced magnetization decays nonmo-
notonically with distance from the interfaces inside
the spacer. It is shown that the character of the decay
of the absolute value of the magnetization from the in-
terfaces into the interior of the spacer is influenced by
magnetic field.

The author is grateful to Prof. V.G. Baryakhtar for
fruitful discussion of the results and to Prof. A.V.
Svidzinsky for discussion of basic aspects of the model
used in this work for calculation of the induced mag-
netization of the spacer.
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