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Modified four-sublattice model for Rochelle salt by taking into account piezoelectric interactions with shear
strain ε4, ε5 and ε6 is proposed. Components of polarization vector and static dielectric permittivity tensor
for both mechanically clamped and free crystals, their piezoelectric characteristics and elastic modules are
derived in the mean field approximation. A comprehensive study of transverse field effect on phase transition
temperatures, dielectric and elastic properties of Rochelle salt has been performed for the first time.
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1. Introduction

Rochelle salt (Rs) is a special ferroelectric hydrogen bonded compound. Some details of its
structure and a precise mechanism of the phase transitions are still unclear. The crystal structure
of Rochelle salt and its properties are described in [1,2]. The most peculiar to Rochelle salt is
the presence of two Curie points. The phase transitions are of the second order. The ferroelectric
phase, existing in the temperature range between 255 and 297 K, is monoclinic and belongs to
the space group C2

2–P21. The spontaneous polarization is directed along the a axis. In the low-
temperature and high-temperature paraelectric phases the crystal has an orthorhombic space group
D3

2–P212121. The unit cell contains four formula units.
Structural studies do not completely clarify the microscopic origin of the phase transitions in

Rochelle salt. The microwave dielectric relaxation and a critical slowing down near the transition
points indicate the order-disorder type phase transition [5]. On the contrary, the soft mode observed
in infrared reflectivity spectra, by Raman scattering in the low-temperature paraelectric phase [6],
and by microwave dielectric measurements [7] indicates the phase transition of a displacement
type. The soft mode in the paraelectric phase is related to the changes in the crystal structure
(displacements of the oxygen atoms O(8) along the axis a and rotation of the water molecules
bonded to ions O(9) and O(10)) taking place at the transition to the ferroelectric phase [8]. This
picture is also confirmed by inelastic neutron scattering data [9]. The static displacements produce
additional dipole moments of the structural elements of Rochelle salt at the ferroelectric phase
transitions. Such displacements can be also treated as changes in the ratio of populations within
double positions in the disordered paraelectric structure, revealed in [10,11], whereas large values
of anisotropic structure factors can be related to the local disorder [12]. The existence of double
atomic positions was explored within the so-called split-atom model for Rochelle salt [13].

The order-disorder scenario for phase transitions in Rochelle salt underlies the half-microscopic
Mitsui model [14] that takes into account the two key effects: asymmetry of population of two local
atom positions and compentation of the electric dipole moments in paraelectric phases. Despite a
simplified approach (two sublattices only), the Mitsui model even in the mean field approximation
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permits, at a proper choice of the theory parameters, to explain the existence of two Curie points
in Rochelle salt and to describe the behavior of its dielectric characteristics and heat capacity.
Later [5,15] the Mitsui model was formulated in terms of pseudospin operators. In [15–17] the
thermodynamic characteristics of Mitsui model were calculated in the mean field approximation.
In [16,17] tunneling of the ordering units was taken into account. Relaxational phenomena in
ferroelectrics described by the Mitsui model were explored in [15,18]. In [15] using the stochastic
Glauber [19] model and in [18] using the Bloch equation method [20] the relaxation times for
deuterated and pure Rochelle salt were calculated.

The main purpose of the above mentioned works was to determine whether the Mitsui model
was capable of describing the experimental data for some selected physical properties of Rochelle
salt. The other characteristics were not always calculated with the account of the obtained values
of the theory parameters. Therefore, it was not firmly established whether the Mitsui model is
applicable to Rochelle salt or not. Also, in [16] a necessity of a thorough study of possible phase
transitions in the Mitsui model was indicated, and a very approximate phase transition of the
model without tunneling was constructed. Later, the phase diagrams for the Mitsui model (also
with tunneling) were more thoroughly studied in [21,22]. The complete phase diagram of the Mitsui
model, also with tunneling, was constructed only in [23]. In [24–26] the thermodynamic and (using
the stochastic Glauber model [19]) dynamic characteristics of pure and deuterated Rochelle salt
were calculated, and the values of the theory parameters providing a fair description of the available
experimental data were obtained for several physical characteristics of the crystals.

Crystals of Rochelle salt are non-centrosymmetric and piezoelectric in paraelectric and ferro-
electric phases. This fact essentially affects their physical properties. Prior to work [31], the model
consideration of dielectric response in Rochelle salt had been restricted to the static limit and to
the microwave region. Qualitatively correct results for high-frequency characteristics can be ob-
tained only within a model that does take into account the piezoelectric coupling. The conventional
Mitsui model does not distinguish free and clamped crystals in the static limit and is not capable
of reproducing the effect of crystal clamping by high-frequency electric field. It permits to calcu-
late [24–26] the dielectric permittivity and relaxation times of a free crystal only. It was obtained,
however, that the relaxation time, exhibiting a critical slowing down at the Curie points, actually
diverges at these points, whereas experiments [5] indicate that it should be large but remain finite.
Also, the calculated permittivity has a sharp minimum at all frequencies which qualitatively differs
from the experimentally observed behavior.

A proposed [27,28] modification of the Mitsui model takes into account the piezoelectric coupling
with the shear strain ε4. It allows one to calculate the piezoelectric and elastic characteristics of
Rochelle salt as well as susceptibilities of both free and clamped crystals and to obtain a correct
temperature behavior of the relaxation times and longitudinal dynamic permittivity near the Curie
points.

One should also mention a modification of the phenomenological Landau theory [29] for the
systems with a double critical point that describes the properties of Rochelle salt in a wide temper-
ature, pressure, and composition (when K is replaced by NH4) ranges. Also, in [30] the thermody-
namic, longitudinal dielectric, piezoelectric, and elastic characteristics of the disordered modified
Mitsui model were calculated. A thorough analysis of the obtained results was performed; possible
changes in the physical characteristics of Rochelle salt with deuterated were discussed.

In [31], within the framework of the modified Mitsui model, a dynamic dielectric response of
Rochelle salt was considered, with taking into account the dynamics of the piezoelectric strain.
The phenomena of crystal clamping by high-frequency electric field, piezoelectric resonance, and
microwave dispersion were described. Ultrasound velocity and attenuation were calculated, and
peculiarities of their temperature dependence at the Curie points were described. The existence of
a cutoff frequency in the frequency dependence of attenuation was shown.

Within the model proposed in [27], the effect of the shear stress σ4 [32], longitudinal electric
field [33], and hydrostatic pressure [34] on the physical characteristics of Rochelle salt was ex-
plored. A satisfactory agreement with experimental data was obtained for the field effect on the
static dielectric permittivity near the lower Curie temperature. At the upper Curie temperature,
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an effective field should be used in calculations to describe the experiment. A possible role of
space-charge build-up in the screening of the external field at high temperatures is discussed. The
effect of the longitudinal electric field on the dynamic dielectric, elastic, piezoelectric, and acoustic
characteristics of Rochelle salt was studied. It was shown that the temperature behavior of the
permittivity in the resonance region can be qualitatively changed by the external field; this is due
to the increase of the resonance frequencies with the field. It was also established that the longi-
tudinal field strongly increases the cutoff frequency, as well as the microwave dielectric relaxation
frequency. These effects are due to the decrease of the relaxation time with the field.

In [34], the effect of hydrostatic pressure on the physical characteristics of Rochelle salt is explo-
red. The available experimental data and dependences of temperature and pressure variation of
the physical characteristics on the theory parameters are analysed. An optimal set of the model
parameters is obtained, allowing one to calculate the temperature dependences of dielectric, elas-
tic, piezoelectric, and thermal characteristics at different pressures and to describe the available
experimental data.

In [35], within the framework of the modified Mitsui model, the effect of tunnelling on thermo-
dynamic, dielectric, piezoelectric, and elastic characteristics of Rochelle salt were explored. It was
shown that tunneling hardly affects the calculated quantities, but improves an agreement between
the theory and experiment for spontaneous polarization. It would be interesting to study the effect
of tunneling on the dynamic characteristics of Rochelle salt within this model. Important is a struc-
tural investigation of Rochelle salt crystals, aimed at answering the question whether tunneling of
the ordering units takes place here indeed.

Hence, the modified Mitsui model [27] made possible a proper description of longitudinal di-
electric, piezoelectric, and elastic characteristics of Rochelle salt and its behavior in the presence
of longitudinal electric field and hydrostatic pressure. However, this model oversimplifies the real
structure of the crystal, postulating the direction of the ferroelectric axis among the three possible
second order axes. As a result, the approach becomes essentially “one-dimensional” and does not
permit a complete description of all dielectric, piezoelectric, and elastic characteristics of the crys-
tal. A possible generalization of the Mitsui model by its transformation to a “three-dimensional”
model that takes into account all four translationally non-equivalent groups of atoms in a unit cell
was proposed in [36]. Within the framework of the order-disorder scenario, the equilibrium posi-
tions of non-equivalent atomic groups are simulated by a four-sublattice pseudospin model that
allows one too calculate all components of the tensors of the crystal characteristics, and to explore
the effects of transverse (perpendicular to the ferroelectric axis a) electric fields. Within the mean
field approximation it has been shown that the transverse electric field Ey partially suppresses
the spontaneous polarization and narrows the temperature range of the ferroelectric phase (this
roughly corresponds to the experimentally observed effect [37]), and gives rise to the jumps of the
transverse dielectric permittivity at the transition points, the jump magnitude being proportional
to E2

y .

If properly generalized, the model proposed in [36] can be used in order to calculate the compo-
nents of the tensors of static and dynamic dielectric permittivities and components of the tensors of
piezoelectric and elastic coefficients of Rochelle salt, and their behavior in the presence of transverse
and longitudinal electric fields.

Therefore, in this paper we propose a modified four-sublattice pseudospin model for Rochelle
salt, where the piezoelectric coupling with the shear strains ε4, ε5, and ε6 are taken into account.
In the mean field approximation, the thermodynamic and transverse dielectric, piezoelectric, and
elastic characteristics of Rochelle salt are calculated. The effect of the transverse electric field on
these characteristics is explored.

2. A four-sublattice model: the Hamiltonian

In order to describe the phase transitions in Rochelle salt and its thermodynamic characteristics
we use the “three-dimensional” model [36] that takes into account the presence of four transla-
tionally non-equivalent groups of atoms in a unit cell, whose positions are related by elements
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of the paraelectric point group [3,4]. These structural units are non-centrosymmetric. We assign
them dipole moments dqf (f = 1, . . . , 4). In the paraelectric phase, the sum of these moments is
zero. Changes ∆dqf in these dipole moments are responsible for the appearance of spontaneous
polarization in the ferroelectric state. The vectors dqf are oriented at certain angles to the crys-
tallographic axes and have both longitudinal and transverse components with respect to the axis
a (figure 1).
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Figure 1. Orientations of dipole moments creating the net polarization in a primitive cell of
Rochelle salt crystals: conventional Mitsui model (left) and the proposed model (right). In the
paraelectric phase all absolute values of pseudospins are equal in all sublattices.

The pseudospin variables
σq1

2 , . . . ,
σq4

2 describe the changes associated with reordering of dipole
moments of structural units: dqf = µf

σqf

2 . The mean values 〈σ2 〉 = 1
2 (na − n6) are related to the

differences in populations of the positions in a two-minima representation of the vectors dqf , whose
orientation in the paraelectric phase is shown in figure 1 (right).

In pseudospin representation, the model Hamiltonian, being a generalization of the proposed
in [36] Hamiltonian with the piezoelectric coupling and the lattice “seed” part taken into account
is, at the same time, a generalization of the [27] Hamiltonian to the “three-dimensional” model
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. (2.1)

The first nine terms in (2.1) correspond to the seed part of the Hamiltonian, which is indepen-
dent of the quasispin subsystem and corresponds to the lattice. The “seed” energy includes the
elastic, piezoelectric, and dielectric parts, expressed in terms of the electric fields Ei (i = 1, 2, 3)
and strains εj (j = 1+3). cE0

jj , e0ij , χ
ε0
ii are the “seed” elastic constants, coefficients of piezoelectric

stress, and dielectric susceptibilities, N is the number of primitive cells, v = v̄kB is the primitive
cell volume, kB is the Boltzmann constant. In (2.1) Jff (qq

′) and Kff ′(qq′) are constants of in-
teractions in the same and in different sublattices, respectively. The internal field ∆ describes the
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asymmetry of populations of two positions. The last three terms in (2.1) describe the coupling of
the quasispin system with components of external electric field Ei and molecular fields induced by
piezoelectric coupling linear over strains εj , µi are the effective dipole moments per one quasispin;
ψj are the deformation potentials. In (2.1) σqf is a quasispin, whose eigenvalues σqf = ±1 corre-
spond to an ionic group being in a certain minimum of the double asymmetric potential well in
the f -th sublattices in a cell with the position vector Rq.

Performing an identity transformation

σqf = ηf + (σqf − ηf ), (f = 1, 2, 3, 4), (2.2)

neglecting quadratic fluctuations and taking into account the symmetry of interaction constants,
we present the system Hamiltonian in the mean field approximation in the form

Ĥ = U + Ĥs , (2.3)

where

U =
N

2
vcE0

44 ε
2
4 +

N

2
vcE0

55 ε
2
5 +

N

2
vcE0

66 ε
2
6 −Nve014ε4E1 −Nve025ε5E2 −Nve036ε6E3

−
N

2
vχε011E

2
1 −

N

2
vχε022E

2
2 −

N

2
vχε033E

2
3 +

1

8
J(η2

1 + η2
2 + η2

3 + η2
4) +

1

4
K12(η1η2 + η3η4)

+
1

4
K13(η1η3 + η2η4) +

1

4
K14(η1η4 + η2η3), (2.4)

Ĥs = −
∑

q

(
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In (2.5) the following notations are used
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Hence, the mean values of quasispins
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where the self-consistent fields Hf are given by expressions
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and

γ1 = β

(
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and

J1 = J +K12 +K13 +K14 , J2 = J −K12 −K13 +K14 ,

J3 = J −K12 +K13 −K14 , J4 = J +K12 −K13 −K14 .

Parameters ξ1, ξ2, and ξ3 describe the dipole ordering along the a, b, and c-axes, respectively,
and the parameter σ describes the quasispin ordering in the paraelectric phases.

In the paraelectric phases at Ei = 0 and σj = 0 the mean values of quasispins are η1 = η2 =
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If E2 6= 0 and σ5 6= 0, then η1 = −η3 = η13, η2 = −η4 = η24 and ξ1p(2) = ξ3p(2) = 0,
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If E3 6= 0 and σ6 6= 0 η1 = −η4 = η14 and η2 = −η3 = η23. As a result
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To go to the Mitsui model we need to go from the four-sublattice model to the two-sublattice
one (vM = v/2) and at E2 = E3 = 0 in all phases ξ2(0) = 0 and ξ3(0) = 0. Also JM = J +K12

and KM = K13 +K14.

3. Thermodynamic characteristics of Rochelle salt

To obtain expressions for dielectric, piezoelectric, elastic characteristics of Rochelle salt we use
a thermodynamic potential per one unit calculated cell in the mean field approximation
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where J̃i =
Ji
kB

.

From the conditions of equilibrium
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Substituting (3.4) into (3.2), we get
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Using expressions (2.8) and (3.3), we calculate static dielectric susceptibilities of mechanically
clamped crystal of Rochelle salt
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The static dielectric susceptibilities along the a and b axes, dependent on the stress σ5 and field
E2, in the paraelectric phase read
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where
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2p(3))βJ3

4
βJ4

4

,

and ρ1p(3) = 1 − ξ23p(3) − σ2
p(3), ρ2p(3) = 2ξ3p(3)σp(3).

In the ferroelectric phase

χε11s(σ5, E2)=χ
ε0
11 +

µ2
1

v
βF11s(ξ1s(2), ξ2s(2), ξ3s(2), σs(2)),

χε22s(σ5, E2)=χ
ε0
11 +

µ2
2

v
βF12s(ξ1s(2), ξ2s(2), ξ3s(2), σs(2)), (3.9)

where

F11s(ξ1s(2) , ξ2s(2) , ξ3s(2) , σs(2)) =
∆ε

1(2)

∆ε(2)
,

F12s(ξ1s(2) , ξ2s(2) , ξ3s(2) , σs(2)) =
∆ε

2(2)

∆ε(2)
,

and

∆ε(2) =

∣

∣

∣

∣

∣

∣

∣

∣

1 − ρ1s(2)βJ1

4 ρ2s(2)βJ2

4 ρ3s(2)βJ3

4 ρ4s(2)βJ4

4

ρ2s(2)βJ1

4 1 − ρ1s(2)βJ2

4 ρ4s(2)βJ3

4 ρ3s(2)βJ4

4

ρ3s(2)βJ1

4 ρ4s(2)βJ2

4 1 − ρ1s(2)βJ3

4 ρ2s(2)βJ4

4

ρ4s(2)βJ1

4 ρ3s(2)βJ2

4 ρ2s(2)βJ3

4 1 − ρ1s(2)βJ4

4

∣

∣

∣

∣

∣

∣

∣

∣

,

∆ε
1(2) =

∣

∣

∣

∣

∣

∣

∣

∣

ρ1s(2) ρ2s(2)βJ2

4 ρ3s(2)βJ3

4 ρ4s(2)βJ4

4

−ρ2s(2) 1 − ρ1s(2)βJ2

4 ρ4s(2)βJ4

4 ρ3s(2)βJ4

4

−ρ3s(2) ρ4s(2)βJ2

4 1 − ρ1s(2)βJ3

4 ρ2s(2)βJ4

4

−ρ4s(2) ρ3s(2)βJ2

4 ρ2s(2)βJ3

4 1 − ρ1s(2)βJ4

4

∣

∣

∣

∣

∣

∣

∣

∣

,

∆ε
2(2) =

∣

∣

∣

∣

∣

∣

∣

∣

1 − ρ1s(2)βJ1

4 −ρ2s(2) ρ3s(2)βJ3

4 ρ4s(2)βJ4

4

ρ2s(2)βJ1

4 ρ1s(2) ρ4s(2)βJ3

4 ρ3s(2)βJ4

4

ρ3s(2)βJ1

4 −ρ4s(2) 1 − ρ1s(2)βJ3

4 ρ2s(2)βJ4

4

ρ4s(2)βJ1

4 −ρ3s(2) ρ2s(2) 1 − ρ1s(2)βJ4

4

∣

∣

∣

∣

∣

∣

∣

∣

,

where the following notations are used

ρ1s(2) = 1 − ξ21s(2) − ξ22s(2) − ξ23s(2) − σ2
s (2),

ρ2s(2) = 2ξ1s(2)ξ2s(2) + 2ξ3s(2)σs(2),

ρ3s(2) = 2ξ1s(2)ξ3s(2) + 2ξ2s(2)σs(2),

ρ4s(2) = 2ξ2s(2)ξ3s(2) + 2ξ1s(2)σs(2),

and ξ1s(2), . . . , σs(2) are obtained from (2.8) at

γ1(2)=β

(

J1

2
ξ1s(2) − 2ψ4ε4

)

, γ2(2)=β

(

J2

2
ξ2s(2) − 2ψ5ε5 + µ2E2

)

,

γ3(2) =
βJ3

2
ξ3s(2), δ(2) = β

(

J4

2
σs(2) + ∆

)

.
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Similarly

χε11s(σ6, E3)=χ
ε0
11 +

µ2
1

v
βF11s(ξ1s(3), ξ2s(3), ξ3s(3), σs(3)),

χε33s(σ6, E3)=χ
ε0
33 +

µ2
3

v
βF13s(ξ1s(3), ξ2s(3), ξ3s(3), σs(3)), (3.10)

where

F11s(ξ1s(3) , ξ2s(3) , ξ3s(3) , σs(3)) =
∆ε

1(3)

∆ε(3)
,

F13s(ξ1s(3) , ξ2s(3) , ξ3s(3) , σs(3)) =
∆ε

3(3)

∆ε(3)
,

and

∆ε
3(3) =

∣

∣

∣

∣

∣

∣

∣

∣

1 − ρ1s(3)βJ1

4 ρ2s(3)βJ2

4 −ρ3s(3) ρ4s(3)βJ4

4

ρ2s(3)βJ1

4 1 − ρ1s(3)βJ2

4 −ρ4s(3) ρ3s(3)βJ4

4

ρ3s(3)βJ1

4 ρ4s(3)βJ2

4 ρ1s(3) ρ2s(3)βJ4

4

ρ4s(3)βJ1

4 ρ3s(3)βJ2

4 −ρ2s(3) 1 − ρ1s(3)βJ4

4

∣

∣

∣

∣

∣

∣

∣

∣

.

Expressions for ξ1s(3), . . . , σs(3), entering ρfs(3), are obtained from (2.8) at

γ1(3) = β

(

J1

2
ξ1s(3) − 2ψ4ε4

)

, γ2(3) = β
J2

2
ξ2s(3),

γ3(3) = β

(

J3

2
ξ3s(3) − 2ψ6ε6 + µ3E3

)

, δ(3) = β

(

J4

2
σs(3) + ∆

)

.

From relations (2.8) and (3.3) we derive expressions for the coefficients of piezoelectric stress
eij of deuterated Rochelle salt

eijp(σ5, E2) =

(

∂Pi
∂εj

)

Ei

= e0ij −
µi
v

2ψjβF1ip(ξ2p(2), σp(2)), (i = 1, 2),

eijp(σ6, E3) =

(

∂Pi
∂εj

)

Ei

= e0ij −
µi
v

2ψjβF1ip(ξ3p(3), σp(3)), (i = 1, 3),

eijs(σ5, E2) = e0ij −
µi
v

2ψjβF1is(ξ1s(2), ξ2s(2), ξ3s(2), σs(2)), (i = 1, 2),

eijs(σ6, E3) = e0ij −
µi
v

2ψjβF1is(ξ1s(3), ξ2s(3), ξ3s(3), σs(3)), (i = 1, 3).

Differentiating (3.4) with respect to the strain at constant polarization we obtain expressions
for the constants of piezoelectric stress

hij = −

(

∂Ei
∂εj

)

Pi

=
eij
χε11

. (3.11)

Let us now calculate the contributions of the pseudospin subsystem to the elastic constants.
From (2.8) and (3.2) we obtain expressions for the elastic constants at a constant field

cEjjp(σ5, E2) =

(

∂σj
∂εj

)

Ei

= cE0
jj −

4ψ2
j

v
βF1ip(ξ2p(2), σp(2)), (i = 1, 2),

cEjjp(σ6, E3) = cE0
jj −

4ψ2
j

v
βF1ip(ξ3p(3), σp(3)), (i = 1, 3),

cEjjs(σ5, E2) = cE0
jj −

4ψ2
j

v
βF1is(ξ1s(2), ξ2s(2), ξ3s(2), σs(2)), (i = 1, 2),

cEjjs(σ6, E3) = cE0
jj −

4ψ2
j

v
βF1is(ξ1s(3), ξ2s(3), ξ3s(3), σs(3)), (i = 1, 3),
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and at a constant polarization

cPjj = cEjj + eijhij , (i = 1, 2, 3). (3.12)

Let us find the strains εj from (3.2)

εj = sE0
jj σj + d0

ijEi − 4
ψj
v
sE0
jj ξi , (3.13)

where sE0
jj = (cE0

jj )−1, d0
ij = e0ijs

E0
jj .

Substituting expressions (3.13) to (3.1), we find the Gibbs’ function

g = −
v̄

2
sE0
44 σ

2
4 −

v̄

2
sE0
55 σ

2
5 −

v̄

2
sE0
66 σ

2
6 − v̄d0

14σ4E1 − v̄d0
25σ5E2 − v̄d0

36σ6E3 −
v̄

2
χσ0

11E
2
1 −

v̄

2
χσ0

22E
2
2

−
v̄

2
χσ0

33E
2
3 − 4T ln 2 + J̃1ξ̄

2
1 + J̃2ξ̄

2
2 + J̃3ξ̄

2
3 + J̃4σ̄

2 − T

4
∑

f=1

ln ch
β

2
H̄f , (3.14)

where

χσ0
ii = χε0ii + e0ijd

0
ij ,

H̄ 1

3

=
1

β
(γ̄1 ± γ̄2 + γ̄3 ± δ̄), H̄ 2

4

=
1

β
(γ̄1 ∓ γ̄2 − γ̄3 ± δ̄),

γ̄i = β

[(

Ji
2

+ 8
ψ2
j

v
sE0
jj

)

ξ̄i − 2ψjs
E0
jj σj + (µi − 2ψjd

0
jj)

)

, δ̄ = β

(

J4

2
σ̄ + ∆

)

.

From conditions of thermodynamic equilibrium

1

v̄

(

∂g1E
∂σj

)

Ei

= −εj ,
1

v̄

(

∂g1E
∂Ej

)

= −Pi

we find relations (3.13) and

Pi = d0
ijσj + χσ0

ii Ei + 2

(

µi
v

− 2
ψj
v
d0
ij

)

ξ̄i . (3.15)

Thence

Ei = −g0
ijσj + kσ0

ii Pi +

(

4
ψj
v
g0
ij − 2kσ0

ii

µi
v

)

ξ̄i , (3.16)

where kσ0
ii = (χσ0

ii )−1, g0
ij = d0

ijk
σ0
ii .

Substituting (3.16) into (3.13), we get

εj = sP0
jj σj + g0

ijPi −

(

ψj
v
sP0
jj + g0

ij2
µi
v

)

ξ̄i , (3.17)

where
sP0
jj = sE0

jj − g0
ijd

0
ij .

Using expressions (3.15), we find static dielectric susceptibilities of mechanically free crystal of
Rochelle salt

χσiip(σ5, E2) = χσ0
ii +

µ̄2
i

v
βF2ip(ξ̄2p(2), σ̄p(2)), (i = 1, 2),

χσiip(σ6, E3) = χσ0
ii +

µ̄2
i

v
βF2ip(ξ̄3p(3), σ̄p(3)), (i = 1, 3),

χσiis(σ5, E2) = χσ0
ii +

µ̄2
i

v
βF2is(ξ̄1s(2), ξ̄2s(2), ξ̄3s(2), σ̄s(2)), (i = 1, 2),

χσiis(σ6, E3) = χσ0
ii +

µ̄2
i

v
βF2is(ξ̄1s(3), ξ̄2s(3), ξ̄3s(3), σ̄s(3)), (i = 1, 3),
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where we use the following notations

µ̄i = µi − 2ψjd
0
ij ,

F21p(ξ̄2p(2), σ̄p(2)) =
ρ̄1p(2) − (ρ̄2

1p(2) − ρ̄2
3p(2))βJ3

4

1−ρ̄1p(2)
(

βJ1

4 +4
ψ2

4

vT
sE0
44 + βJ3

4

)

+
(

ρ̄2
1p(2)−ρ̄2

3p(2)
)(

βJ1

4 +4
ψ2

4

vT
sE0
44

)

βJ3

4

,

F22p(ξ̄2p(2), σ̄p(2)) =
ρ̄1p(2) − (ρ̄2

1p(2) − ρ̄2
3p(2))βJ4

4

1−ρ̄1p(2)
(

βJ2

4 +4
ψ2

5

vT
sE0
55 + βJ4

4

)

+
(

ρ̄2
1p(2)−ρ̄2

3p(2)
)(

βJ2

4 +4
ψ2

5

vT
sE0
55

)

βJ4

4

,

ρ̄1p(2) = 1 − ξ̄2p(2) − σ̄2
p(2), ρ̄3p(2) = 2ξ̄2p(2)σ̄p(2),

ξ̄2p(2) =
1

2

[

th
β

2
(γ̄2 + δ̄) + th

β

2
(γ̄2 − δ̄)

]

,

σ̄p(2) =
1

2

[

th
β

2
(γ̄2 + δ̄) − th

β

2
(γ̄2 − δ̄)

]

;

F21p(ξ̄2p(3) , σ̄p(3)) =
ρ̄1p(3) − (ρ̄2

1p(3) − ρ̄2
2p(3))βJ2

4

1−ρ̄1p(3)
(

βJ1

4 +4
ψ2

4

vT
sE0
44 + βJ2

4

)

+
(

ρ̄2
1p(3)−ρ̄2

2p(3)
)(

βJ1

4 +4
ψ2

4

vT
sE0
44

)

βJ2

4

,

F23p(ξ̄2p(3) , σ̄p(3)) =
ρ̄1p(3) − (ρ̄2

1p(3) − ρ̄2
2p(3))βJ4

4

1−ρ̄1p(3)
(

βJ3

4 +4
ψ2

6

vT
sE0
66 + βJ4

4

)

+
(

ρ̄2
1p(3)−ρ̄2

2p(3)
)(

βJ3

4 +4
ψ2

6

vT
sE0
66

)

βJ4

4

,

where

ρ̄1p(3) = 1 − ξ̄3p(3) − σ̄2
p(3), ρ̄2p(3) = 2ξ̄3p(3)σ̄p(3),

ξ̄3p(3) =
1

2

[

th
β

2
(γ̄3 + δ̄) + th

β

2
(γ̄3 − δ̄)

]

,

σ̄p(3) =
1

2

[

th
β

2
(γ̄3 + δ̄) − th

β

2
(γ̄3 − δ̄)

]

;

F2is(ξ̄1s(2), ξ̄2s(2), ξ̄3s(2), σ̄s(2)) =
∆σ
i (2)

∆σ(2)
, (i = 1, 2),

the determinants ∆σ(2), ∆σ
i (2) are obtained from ∆ε(2), ∆ε

i (2) by replacing ρfs(2) with ρ̄fs(2),
J1 and J2 with J̄1 and J̄2, respectively, where

J̄1 = J1 + 16
ψ4ψ4

v
sE0
44 , J̄2 = J2 + 16

ψ5ψ5

v
sE0
55 ,

and ξ̄1s(2), . . . , σ̄s(2) are obtained from (2.8) at

γ̄1(2) = β

(

J1

2
+ 8

ψ2
4

v
sE0
44

)

ξ̄1s(2), γ̄2(2) = β

[(

J2

2
+ 8

ψ2
5

v
sE0
55

)

ξ̄2s(2) − 2ψ5s
E0
55 σ5 + µ̄2E2

]

,

γ̄3(2) = β
J3

2
ξ̄3s(2), δ̄(2) = β

(

J4

2
σ̄s(2) + ∆

)

;

F2is(ξ̄1s(3), ξ̄2s(3), ξ̄3s(3), σ̄s(3)) =
∆σ
i (3)

∆σ(3)
, (i = 1, 3),

the determinants ∆σ(3), ∆σ
i (3) are obtained from ∆ε(2) and ∆ε

i (2) by replacing ρfs(2) with ρ̄fs(3),
J1 and J3 with J̄1 and J̄3, where

J̄3 = J3 + 16
ψ6ψ6

v
sE0
66 ,
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whereas ξ̄1s(3), . . . , σ̄s(3) are determined from (2.8) at

γ̄1(3) = β

(

J1

2
+ 8

ψ2
4

v
sE0
44

)

ξ̄1s(3), γ̄2(3) = β
J2

2
ξ̄2s(3),

γ̄3(3) = β

[(

J3

2
+ 8

ψ2
6

v
sE0
66

)

ξ̄3s(3) − 2ψ6s
E0
66 σ6 + µ̄3E3

]

, δ̄(3) = β

(

J4

2
σ̄s(3) + ∆

)

.

Differentiating (3.15) with respect to the stress, we obtain coefficients of piezoelectric strain of
Rochelle salt

dijp(σ5, E2) = d0
14 −

µ̄i
v

2sE0
jj ψjβF2ip(ξ̄2p(2), σ̄p(2)), (i = 1, 2),

dijp(σ6, E3) = d0
14 −

µ̄i
v

2sE0
jj ψjβF2ip(ξ̄3p(3), σ̄p(3)), (i = 1, 3),

dijs(σ5, E2) = d0
14 −

µ̄i
v

2sE0
jj ψjβF2is(ξ̄1s(2), ξ̄2s(2), ξ̄3s(2), σ̄s(2)), (i = 1, 2),

dijs(σ6, E3) = d0
14 −

µ̄i
v

2sE0
jj ψjβF2is(ξ̄1s(3), ξ̄2s(3), ξ̄3s(3), σ̄s(3)), (i = 1, 3).

From (3.16) we obtain expressions for the constant of piezoelectric strain

gij =

(

∂Ei
∂σj

)

Pi

=
dij
χσii

. (3.18)

Differentiating (3.13) with respect to the stresses, we find the following relations for the com-
pliances of Rochelle salt at a constant field

sEjjp(σ5, E2) = sE0
jj + 4

ψ2
j

v
(sE0
jj )2βF2ip(ξ̄2p(2), σ̄p(2)), (i = 1, 2),

sEjjp(σ6, E3) = sE0
jj + 4

ψ2
j

v
(sE0
jj )2βF2ip(ξ̄3p(3), σ̄p(3)), (i = 1, 3),

sEjjs(σ5, E2) = sE0
jj + 4

ψ2
j

v
(sE0
jj )2βF2is(ξ̄1s(2), ξ̄2s(2), ξ̄3s(2), σ̄s(2)), (i = 1, 2),

sEjjs(σ6, E3) = sE0
jj + 4

ψ2
j

v
(sE0
jj )2βF2is(ξ̄1s(3), ξ̄2s(3), ξ̄3s(3), σ̄s(3)), (i = 1, 3).

The transition temperatures Tc1 and Tc 2 are determined from the condition that the inverse
static dielectric susceptibility of free crystal χσ11(0) vanishes at T → Tc1 and T → Tc 2.

4. Discussion

To calculate the temperature and field Ei dependences of the dielectric, piezoelectric, elastic,
and thermal characteristics of Rochelle salt we have to set the values of the following parameters:
interaction constants J , K12, K13, K14; parameter ∆; deformation potentials ψj ; effective dipole
moments µi; and the “seed” dielectric susceptibilties χε022, χ

ε0
33, coefficients of piezoelectric stress

e0ij , elastic constants cE0
jj .

The unit cell volume is a linear function of temperature, since the lattice constants of Rochelle
salt are also almost linear functions of temperature [38,39]. The volume thermal expansion coeffi-
cient, according to [38,39] equals 0.00014cm3/K and 0.00013cm3/K, respectively. Using the data
of [39], we find the temperature dependence of the unit cell volulme of Rochelle salt

v = 1.0438[1 + 0.00013(T − 190)] · 10−21 cm3.

In order to determine the values of J , K, ∆ and ψ4 in [27] a line on the (a, b) phase diagram
was found, where

a =
K − J

K + J + 8
v
ψ2

4s
E0
44

, b =
8∆

K + J + 8
v
ψ2

4s
E0
44

.
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For the points of this line, two second order phase transitions take place at Tc1 = 255.02 K and
Tc 2 = 296.86 K. With a and b decreasing along this line, the maximal value of ξ1 increases. The
terminal point of this line was chosen (a = 0.295, b = 0.648), that is, such values of a and b,
when the value of ξ1 is maximal. Hence, the following values of the parameters were determined
(J +K12)/kB = 797.36 K, K13 +K14)/kB = 1468.83 K, ∆/kB = 737.33 K, ψ4/kB = −760 K. Also
[27] the effective dipole moment was determined µ1 = [2.52 + 0.0066(T − 190)] · 10−18 esu·cm.

In [27] the temperature dependences of polarization P1, inverse static dielectric susceptibilities
of clamped and free crystals χ−1

11 , elastic constant cE44, piezoelectric characteristics e14, d14, h14,
g14, and the spin contribution to the molar specific heat ∆Cσ were found. At the chosen values of
the theory parameters, the theoretical results well agree with experimental data.

In this paper, we find the values of J , K12, K13, K14, µ2, and µ3 by fitting the theoretical
curves for εε22 and εε33 to experimental points of [41]. The accepted values of the parameters are
given in the table 1.

Table 1. The optimal set of the model parameters for the Rochelle salt crystals.

J/kB K12/kB K13/kB K14/kB ∆/kB µ20 µ21 µ30 µ31

K K K K K
1 247.36 550 400 1068.83 737.33 6.5 0.0065 8.67 0.0115

At these values of the parameters, we have J̃1 = 2266.19 K, J̃2 = 366.19 K, J̃3 = −971.47 K,
J̃4 = −671, 47 K. The effective dipole moments µ2 and µ3 are taken as linear functions of temper-
ature µ2 = [µ20 + µ21(T − 298)] · 10−18esu cm, µ3 = [µ30 + µ31(T − 298)] · 10−18 esu cm.

The “seed” parameters are taken to be equal to χε022 = 0.05, χε033 = 0.05, e025 = −0.2·104esu/dyn,
e036 = 0.2 · 104esu/dyn, cE0

55 = 3.6 · 1010dyn/cm2, cE0
66 = 10 · 1010dyn/cm2.

The deformation parameters ψ5 and ψ6 are chosen by fitting all theoretical piezoelectric coeffici-
ents to experimental points given at T = 298 K in [42]. As a result, ψ5/kB=1650K, ψ6/kB=-1550K.

Let us now explore the calculated temperature curves of the physical characteristics of Rochelle
salt at different values of the electric fields E2 and E3. We should mention that the calculations
are performed at the fields up to 50 MV/m. Obviously, the experimental measurements can be
performed at much lower fields only, because so high fields can destroy the samples.

The temperature dependences of the mean values of pseudospins at E2 = E3 = 0 and in fields
E2 or E3 are shown in figure 2. In the absence of the field η1 = η2, −η3 = −η4 in the ferroelectric
phase, and η1 = η2 = −η3 = −η4 in the paraelectric phases. The electric field E2 splits the
values of pseudospins in the ferroelectric phase and narrows its temperature range, whereas in the
paraelectric phases η1 = −η3, η2 = −η4. The field E3 also splits the values of pseudospins in the
ferroelectric phase, but widens its temperature range, and η1 = −η4, η2 = −η3 in the paraelectric
phase.

The effect of electric fields E2 and E3 on the projections of the dipole moments is shown in
figures 3 and 4.

In figure 5 we show the field E2 and E3 dependences of the phase transition temperatures Tc1
and Tc 2. With increasing E2, the ferroelectric phase narrows and disappears and E2 ∼ 30 MV/m.
There is no direct experimental evidence for this dependence so far, but the results of [47], where
the relaxation phenomena in Rochelle salt were explored experimentally in a transverse electric
field, can be considered as a certain indirect confirmation of this. The field E3, on the contrary,
widens the temperature range of the ferroelectric phase.

Dependences of the transition temperatures Tc1 and Tc 2 on the fields E2 and E3 up to 5 MV/m
and on squares of the fields are given in figures 6 and 7, respectively.

As one can see, the dependences Tc1(E2

3
) and Tc 2(E2

3
) are quadratic and at fields below 5 MV/m

can be expressed as

Tc1(E2) = Tc1 + k12E
2
2 , Tc 2(E2) = Tc 2 + k22E

2
2 ,

Tc1(E3) = Tc1 + k13E
2
3 , Tc 2(E3) = Tc 2 + k23E

2
3 ,
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Figure 2. The temperature dependence of the mean values of pseudospins η1, η2, η3, η4 in
transverse fields.

where k12 = 0.009Km2

MV2 , k22 = −0.013Km2

MV2 , k13 = −0.021Km2

MV2 , k23 = 0.016Km2

MV2 .

In figure 8 we plot the temperature dependences of polarization components Pi at different
values of the fields E2 and E3. With increasing field E2 the spontaneous polarization P1 decreases
(this is observed experimentally) and the polarization P3 induced by the field E2 increases. The
latter polarization is negative and by one order of magnitude smaller than P1. The polarization
P2 induced by the field E2 has no peculiarities and is practically temperature independent at low
fields. An increase in the field E3 increases P1 as well as the polarization P2 induced by this field;
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this increase is much faster than of P3(E2). The shape of the polarization P3(E3) induced by the
field E3 is similar to P2(E2), and the magnitude of P3(E3) is almost equal to that of P2(E2).

Temperature behavior of the strains ε4, ε5, ε4 under the field E2 or E3 is similar (almost
proportional) to the temperature behavior of polarizations P1, -P2, P3 respectively [49].

Changes in the temperature curves of the inverse components of static dielectric susceptibilities
of mechanically clamped and free crystals of Rochelle salt induced by transverse electric field E2

are shown in figure 9. The values of χε11(E2)
−1, χσ11(E2)

−1 decrease with increasing field in the
ferroelectric phase and increase in the paraelectric phase. The field E3 has an opposite effect [49].
In the temperature curves of χε33(E2)

−1 and χε22(E3)
−1 there arise minima at the transition points,

deepening with increasing fields. The values of χσ33(E2)
−1 and χσ22(E3)

−1 decrease with increasing
fields and turn to zero at the transition points. The values of χε22(E2)

−1, χσ22(E2)
−1, χε33(E3)

−1,
χσ33(E3)

−1 do not depend on the fields in the paraelectric phases and decrease with the fields in
the ferroelectric phase.

The inverse susceptibilities χσ22(E2)
−1 and χσ33(E3)

−1 have jumps at the transition tempera-
tures, the jump magnitudes increasing with the fields.

The temperature dependence of inverse static permittivities of mechanically free crystal of
Rochelle salt (εσ22)

−1 in the field E2 below 5 MV/m is shown in figure 10, and that of (εσ33)
−1

in the field E3 below 5 MV/m is shown in figure 11. Jumps of ∆(εσ22)
−1 and ∆(εσ33)

−1 at the
transition points are proportional to the squares of the fields (figure 12), and

∆(ε
σ(1)
22 )−1 = k̄12E

2
2 , ∆(ε

σ(2)
22 )−1 = k̄22E

2
2 ,

∆(ε
σ(1)
33 )−1 = k̄13E

2
3 , ∆(ε

σ(2)
33 )−1 = k̄23E

2
3 ,

where k̄12 = 0.068 m2

MV2 , k̄22 = 0.048 m2

MV2 , k̄13 = 0.440 m2

MV2 , k̄23 = 0.080 m2

MV2 .

The temperature dependences of cE44, s
E
44, e14, d14, h14, and g14 at different values of the field E2

are shown in figure 13. The elastic constat cE44 increases with the field E2 in the paraelectric phases
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near the lower (left) and upper (right) transition points at different values of the electric field
E2 (MV/m): 1 – 0; 2 – 2.5; 3 – 5.

and decreases in the ferroelectric phase. The field E3 has an opposite effect [49]. An increase in
the field E2 increases the compliance sE44 and all piezoelectric coefficients in the ferroelectric phase
and decreases them in the paraelectric phases. The field E3 has an opposite effect. The effect of
the fields E2 and E3 on the values of h14 and g14 is very small.

The changes in the temperature curves of cE55, s
E
55, e25, d25, h25, and g25 with increasing fi-
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eld E2 are shown in figure 14, whereas the temperature curves of cE66, s
E
66, e36, d36, h36, g36 at

different values of E2 are given in figure 15. These characteristics with increasing field E3 are
shown in [49]. The elastic constants cE55(E2) and cE66(E3) slightly decrease with fields in the fer-
roelectric phase and are field independent in the paraelectric phase. Within the increasing fields
in the temperature curves of cE55(E3) and cE66(E2), the minima arise. The piezoelectric coeffici-
ents e25(E2), e36(E3), d25(E2), d36(E3) are field independent in the paraelectric phases, whereas
h25(E2), h36(E3), g25(E2), g36(E3) are field independent at all temperatures. In all other cases,
an increasing field E2 or E3 increases the piezoelectric coefficients. In the temperature curves of
e25(E3), e36(E2), d25(E3), d36(E2), maxima arise at the transition temperatures, increasing with
the fields. Small maxima at the transition points are also induced in the temperature dependences
of h25(E3), h36(E2), g25(E3), g36(E2). Finally, jumps of d25(E2) and d36(E3) are observed at the
transitions, with the jump values ∆d36(E3) being proportional to E2

2 and E2
3 , respectively.

The farther is temperature from Tc1 and Tc 2, the higher is the field E2 or E3 at which the
transition takes place, and the larger are the jumps ∆εσ22(E2) and ∆εσ33(E3).
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5. Concluding remarks

Within the framework of the four-sublattice pseudospin model [36] with piezoelectric coupling
with the shear strains ε4, ε5, ε6 in the mean field approximation we find the thermodynamic po-
tential and Gibbs’ function of the system. Therefrom we derive expressions for spontaneous polar-
ization, components of the static dielectric permittivity tensors of mechanically free and clamped
crystals, piezoelectric characteristics, and elastic constants. The proposed model at the proper
choice of the theory parameters permits a good quantitative description of the available experi-
mental data for Rochelle salt [40–46,49]. In contrast to the analogous longitudinal characteristics
[27], the values of the transverse characteristics of Rochelle salt are much smaller and practically
do not change at the phase transitions.

A thorough investigation of the effect of the transverse field (E2 and E3) on the phase transitions
and on physical properties of Rochelle salt is performed for the fist time. With increasing E2 the
temperature range of the ferroelectric phase narrows and disappears at E2 > Ẽ2. On the contrary,
the field E3 widens the ferroelectric phase. Dependences of the transition temperatures Tc1 and Tc 2

on the fields E2 and E3 are quadratic. The spontaneous polarization Ps and strain ε4 decrease with
an increasing field E2 (which qualitatively agrees with the experimental results [47]) and increase
with the field E3.

With an increasing field E2 , the values of the inverse susceptibilities (χε,σ11 )−1 decrease in
the ferroelectric phase and increase in the paraelectric phases. With an increasing E2 , (χε,σ22 )−1

decreases in the ferroelectric phase and is field independent in the paraelectric phase.
In the temperature curve (χε33)

−1 there arise minima, gradually deepening with an increasing
E2. With an increasing E3 , the values of (χε,σ33 )−1 increase in the ferroelectric phase and decrease
in the paraelectric phases.

In the temperature curves of (χε22)
−1 there also arise minima, deepening at an increasing E3.

In the paraelectric phase, (χε,σ33 )−1 are independent of the field E3, and decrease with the field in
the ferroelectric phase. The values of the jumps of (εσ22)

−1 and (εσ33)
−1 at the phase transitions are

315



R.R.Levitskii et al.

proportional to the squares of the fields. Analogous results were obtained in [48,50] in their studies
of the transverse electric field dependence of the transverse dielectric susceptibility of glycinium
phosphite.
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Вплив поперечних електричних полiв на дiелектричнi,
п’єзоелектричнi, пружнi i тепловi властивостi сегнетової солi
NaKC4H4O6 · 4H2O

Р.Р.Левицький1 , I.Р.Зачек2, А.С.Вдович1, I.В.Стасюк1

1 Iнститут фiзики конденсованих систем НАН України вул. Свєнцiцького, 1, Львiв, 79011, Україна,
2 Нацiональний унiверситет “Львiвська полiтехнiка”, вул. С. Бандери 12, 79013, Львiв, Україна

Отримано 26 травня 2009 р.

Запропоновано модифiковану чотирипiдграткову модель сегнетової солi шляхом врахування п’є-
зоелектричних взаємодiй зi зсувними деформацiями ε4, ε5 i ε6. В наближеннi молекулярного поля

отримано компоненти вектора поляризацiї та тензора статичної дiелектричної проникностi меха-
нiчно затиснутого i вiльного кристалiв, їх п’єзоелектричнi характеристики i пружнi сталi. Вперше

проведено ґрунтовне дослiдження впливу поперечних полiв на температури фазових переходiв, дi-
електричнi та пружнi властивостi сегнетової солi.

Ключовi слова: сегнетоелектрики, сегнетова сiль, п’єзоелектричнi модулi

PACS: 77.84.-s, 64.60.Cn, 77.22.-d, 77.80.-e, 77.80.Bh, 77.65.Bn

317



318


