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Within the framework of the modified proton model with taking into account the interaction with the shear
strain ¢, a dynamic dielectric response of ND4D2PO4 type antiferroelectrics is considered. Dynamics of
the piezoelectric strain is taken into account. Experimentally observed phenomena of crystal clamping by
high frequency electric field, piezoelectric resonance and microwave dispersion are described. Ultrasound
velocity and attenuation are calculated. Character of behaviour of attenuation in the paraelectric phase and
the existence of a cut-off frequency in the frequency dependence of attenuation are predicted. At the proper
choice of the parameters, a good quantitative description of experimental data for longitudinal static dielectric,
piezoelectric and elastic characteristics and sound velocity for ND4D2PO4 and NH4H2POy4 is obtained in the
paraelectric phase.
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1. Introduction

Ferroelectric compounds of the MD2XO4 (M=K, Dy; x=P, As) type crystallize in the 4-m class
of the tetragonal syngony (space group I42d with non-centrosymmetric point group Dag) in the
paraelectric phase and possess piezoelectric properties. When appropriate electric fields and shear
stresses are applied, one can explore the role of piezoelectric coupling in the phase transition and
in the formation of physical characteristics of the crystals. Theoretical investigations of the role of
piezoelectricity in the KHyPOy type ferroelectricity were initiated in [1], where the Slater theory
[2] was modified by taking into account the splitting of the lowest ferroelectric energy level of the
proton subsystem due to the strain eg.

Important results for strained ferroelectric compounds of the KH,PO,4 type were obtained in
[3-11]. In [3,4] the proton ordering model was modified by taking into account the ¢ contributions
to the proton subsystem energy linear in strain. The obtained Hamiltonian contains a deformati-
onal molecular field and takes splitting of lateral proton configurations into account. Later [5-7]
all possible splittings of proton configuration energies by the strain € were taken into account.
In [5] a phase transition in the strained K(Hg 12D 8s)2POu4 crystal was explored; its thermody-
namic, longitudinal dielectric, piezoelectric, and elastic characteristics were calculated; the effect
of the stress og on the calculated quantities was studied. Similar calculations of thermodynamic,
longitudinal and transverse dielectric, piezoelectric, and elastic characteristics of KH3PO, type
ferroelectrics were performed in [6-8] with tunneling taken into account. A good description of ex-
perimental data for the KHoPOy4 ferroelectrics and NH4HoPO4 antiferroelectrics in the paraelectric
phase was obtained. In [9-11], the effect of longitudinal electric field on the physical characteristics
of K(Hp,12Dg,88)2PO4 and KH,PO, was studied; a satisfactory quantitative agreement with the
available experimental data was obtained.
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We should also mention the paper [12], where the mechanism of spontaneous strain e¢ formation
in the KHoPOy type ferroelectrics and the role of proton interactions with acoustic lattice vibrations
in this process were explored.

In [5-11], the dynamic properties of KHoPOy type ferroelectrics were not studied with taking
into account the piezoelectric coupling. Such a problem, however, is very important. Due to the
effect of tunneling suppression in KHyPOy4 family crystals found in [13-15], and due to the principal
difficulties arising at calculations of dynamic characteristics in the presence of tunneling, this
problem should be approached by neglecting tunneling. In [16-19], within the framework of the
modified proton ordering models, the thermal, longitudinal and transverse dielectric, piezoelectric,
and elastic characteristics of the KHoPO4 family ferroelectrics were calculated. The relaxational
phenomena in these crystals were explored; sound velocity and attenuation were obtained. It was
shown that for a proper choice of the theory parameters, the experimental data for longitudinal
dynamic characteristics of these crystals should be taken into account.

Description of dynamic dielectric characteristics of the ND,DoPOy type antiferroelectrics [20—
22] was restricted to the static limit and high-frequency relaxation. The attempts to explore the
piezoelectric resonance within a model that does not take into account the piezoelectric coupling
are pointless. The traditional proton ordering model for the ND4D2sPOy4 type antiferroelectrics
does not allow one to describe the difference of the behaivor of free and clamped crystals in the
static limit or the effect of crystal clamping produced by high-frequency field. It seems natural to
calculate the dynamic characteristics of the ND4DsPQOy type antiferroelectrics using the proton
ordering model proposed in [5,6,18] in a wide frequency range from 10® kHz up to 10'? Hz, including
the piezoelectric resonance region as well.

In the present paper, following the approach developed in [23,24], within the framework of
the modified proton ordering model with taking into account the coupling with shear strain eg,
we calculate the longitudinal dynamic dielectric, piezoelectric, and elastic characteristics of the
ND4DsPOy4 type antiferroelectrics and explore their temperature and frequency dependences. The
effect of crystal clamping produced by a high-frequency longitudinal electric field is studied. Sound
velocity and attenuation in these crystals are also calculated.

2. Hamiltonian of proton ordering model

We shall consider a system of deuterons moving on the O-D...0O bonds in deuterated
ND4DsPOy4 type crystals. The primitive cell of the Bravais lattice of these crystals consists of
two neighboring tetrahedra PO, along with four hydrogen bonds attached to one of them (the “A”
type tetrahedron). The hydrogen bonds attached to the other tetrahedron (“B” type) belong to
the four structural elements surrounding it. Spontaneous polarization in these crystals is zero due
to antipolar ordering of dipole moments of hydrogen bonds. External fields applied along a, b, and
c axes induce non-zero net polarization.

The model Hamiltonian, with taking into account the short-range and long-range interactions,
in the presence of mechanical stress og = 0,y and external electric field E3 directed along the
crystallographic axis ¢, consists of the “seed” and pseudospin parts. The “seed” energy of a primitive
cell corresponds to the lattice of heavy ions and is explicitly independent of the configurations of
hydrogen bonds. The pseudospin part of the Hamiltonian includes long-range (ﬁlong) and short-
range (ﬁshort) deuteron interactions as well as the effective interactions of deuterons with the
electric field F3. Hence,

~ ~ A (o
H = NUseea + Hlong + Hehort — ZNfBEB%fv (2'1)
af

where N is the number of primitive cells; o4y is the operator of the z-component of a pseudospin
describing the state of a deuteron in the g-th cell on the f-th bond. Eigenvalues of the operator
0qf = *£1 correspond to the two possible equilibrium positions of the deuteron on the bond.
Symmetry of the effective dipole moments of the primitive cells along the c-axis per one hydrogen
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bond is as follows:

H3 = H13 = 23 = H33 = 43 -

The “seed” energy Useeq is expressed in terms of the electric field F3 and strain eg. It consists
of the elastic, piezoelectric, and dielectric parts

1 1
Usced = 7 (50{35605% - e§6€6E3 2X33E3) (2.2)

where v = 7=, v is the primitive cell volume; kg is the Boltzmann constant; ek, €96, X539 are the
“seed” elastic constant, coefficient of piezoelectric stress, and dielectric susceptibility, respectively.
The “seed” quantities determine the temperature behavior of the corresponding characteristics at
temperatures far from the transition point Tx.

The Hamiltonian ﬁlong includes the long-range interactions between deuterons and an indirect
lattice-mediated deuteron interactions taken into account within the mean field approximation, as
well as the linear in the strain eg molecular field [3,4], induced by piezoelectric coupling

g
Hiong = ZJff QQ)< ZQqu Qf- (2.3)

ff’

Here
2uky = $2ya(kz)n(1)eikzaq + 2VC(O)77(1)Z — 2,
2uFy = 20, (K7 )nMe™ 2 4 20, (0)n'1)* — 24)ge6, (2.4)

and we took into account the fact that the single-particle deuteron distribution functions can be
presented as a sum of a modulated part and uniform terms induced by the longitudinal electric
field

<O’ 1> — 77(1) ik*a, +77(1)27 <O’ 2> _ 77(1) ik*aq +77(1)
In (2.4) we use the following notations
4Va(kz) = Jll(kz) - Jlg(kz), 4Vc(0) = JH(O) + 2J12(0) + J13(O),

Trp (&) = 3 Jpp(aq e ™ B,

aq—a ’

# = 1/2(by + by + bs), by, by, by are vectors of the reciprocal lattice; e 21 = +1, ¢ is the
deformational potential.
The Hamiltonian Hghort reads [18]:

~ 56 56 ag ag 043 0q4
Haoe = S{ (45 (4 T+ 2+ )
q

Og1 Og2 0¢g3 Oqgl Og2 Og4 Ogl Og3 Oqg4 O0g2 0g3 Og4
5o — 95 (q 92 9q3 | Tq1 92 9q4 | Tql Tq3 Og4 Lii)
H( s =2 |55t 5 T o T 9

Vst busca) (Uql Te2 @%) + (Vi — Susce) (@@ + %@)

2 2 2 2 2 2 2 2
Oq1 0g3 Og2 Og4 Oq1 0¢2 0¢3 Og4
U(LL LL) @LLLL}, 2.5
+“22+22+“2222 (25)

where we use the notations

1 1 1 1
Va=gf—guh Ua=geitguh @a= 2= 8ul+ 2ul.

277



R.R.Levitskii et al.

Here
! ! A
€ =¢e5—€q; W =€1—¢€y; W] =€y—Eq,

where €5, €4, €1, €9 are the configurational energies of deuterons, and €', w’, w] are the antiferro-
electric energies of the extended Slater-Takagi model.

Considering the peculiarities of the crystal structure of ND4DsPO, type crystals, we shall use
the four-particle cluster approximation [25]. The longitudinal static dielectric and elastic charac-
teristics can be calculated using the thermodynamic potential, which in the cluster approximation
reads [18]:

{ogs) (o
2

1 !
G = NUseea + 5 Z Jrp(qq')
Fr

qlf — TZln Zgs — Niogeg, (2.6)
q f=1

A0 .
where Z,1y = Sp e PH, , Zga = Sp e B are the single-particle and four-particle partition
functions. The single- partlcle g4 of ) and four-particle H’é‘l) deuteron Hamiltonians read

o

R 1 o4 1 og A 1 2 1 0,
L CE I i R e L A i 0
N 6’6 616 Oqg1 042 Oq3 Oq4
gw — (_%s %16 (L 9e2 | 948 L)
} g T )yttt

0q1 02 03 | Oql 02 Oqi  Oql 0g3 Oqs Og2 0g3 Oga
5 — 95 (LLL Tq1 9q2 9q4 | Oq1 9q3 Tq4 LLL)
(s =)o (o t Ty o T o

(V n (5,1656) (Uql 0'q2 + @%) + (Va — 6(1656) (@@ + %@)

2 2 2 2 2 2 2 2
Oq1 O¢g3 Og2 Og4 Oqg1 0g2 0g3 Og4
U(q hal’i) LL) 249t 7492 790 794
* 2 2 2 2 “2 2 2 2
1 Oql  Og2 043 Oga ) 1 (O'ql Og2  0g3  Og4 )
- = - == 4 = - — 4+ =+ =+ /). 2.8
ﬁxq<2+2+2 2 ) 5° Tttty (28)

Here we use the notations

Ty = ﬁ(—AaeikZaq + 2Va(kz)77(1)eikzaq) z=0B(—Ac+ 2VC(O)77(1)Z — 2pge6 + psEs),

Tg = —[0ne 2 42, = —BA. + z,
and A,, A, are the effective fields exerted by the neighboring hydrogen bonds O-D...O from
outside the cluster.

Having calculated the eigenvalues of the single-particle and four-particle Hamiltonians, we
present the thermodynamic potential per unit cell in the form [18]:

g = gcﬁEg% 5else6 s + gxggEg + 2T I 220" + & + 200 (k)2 + 20,(0) (nV)?)?
—TIn[1 — (n™ —pM*)2] — Tl — (n™ 4+ nM*)2] — 27 In Dg — Boges. (2.9)
s w

Here and further we note &’ = k/ W = g
From the conditions of thermodynamic equilibrium

(5596> =0 <a%3> =0 (2.10)

we obtain (in the limit w} — c0) an equation for the strain £ and polarization Ps:

2 N~6 2 ngchx 2
o6 = cCooes— b — 5536 D; ;516 De + = 5a6 D nMz,
Py = edses+ XOEs + 2”3 1)z, (2.11)
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Here we use the notations

N = ach(2z + Bdsses), N7 = bch(z — Bd16e6),
h2
Ny = ash(2z + ﬁ(ss(;f:‘ﬁ), Nig = 4bSh(Z — ﬁ61656); Nge = ag — Ca x ,
6
1
D¢ = ach(2z + Bdsee6) + —ch2x +ag + d
Gg

+ 2b[ch(m + 2z — ﬁém&@) + ch(x —z+ ﬁ(slﬁff@)],

a = e P b=e P

)

’
d=e P, ag = e Pdas%s

?

3. Longitudinal dynamic permittivity of ND,D,PO, type crystals

The dynamic characteristics of the ND4D2PO, type crystals will be explored within the frame-
work of the dynamic model of these crystals based on the stochastic Glauber approach [26], where
the time dependence of the deuteron distribution functions is described by the following equation

—a% <Haqf> :Z<1;[U‘1f [1—Uqf/ tanhgsgf}>, (3.1)

! I’

where « is the time constant that effectively determines the time scale of the dynamic processes
in the system; egr 1s the local field acting on the f-th bond in the g-th cell in the presence of the
field E3. The fields can be determined from the Hamiltonian (2.8)

tanh §5;1 = tanh {g(Va + ba6€6)0q2 — g(Va — 046E6)0qa — %Uadq:g - %@aoq20q30q4
55 = 55 & 1
7§ < g 6 _ 516€6> (0q2043 + 043044 + 0q2044) — g ( g . Jr51656) - §Zq14}a
tanh g&gg = tanh {g(Va + 5a656)0'q1 — g(Va — 5a656)0'q3 — gUaO}ﬁ — %®a0q10q30q4

p (_5s656

4 2

B[ dsece
4

1
— 01686 | (0q10qa + 043044 + 0q1043) — = 5 + d16€6 | + 3723 (s

4
(Va + 5(1656)0'(14 - %(Va - 5(1656)0'(12 - %Uaaql - ﬁ@aaqlaq20q4

p_-
tanh 563 = tanh 16

4

55 = 55 & 1
7§ < g 6 _ 516€6> (0q10q2 + 0q10gs + 0g2044) — g ( g - Jr51656) + §Zq23}a
tanh 2524 = tanh {g(Va + 6a6€6)0q3 — g(Va — 046E6)0q1 — gUaaqg - %@aoqlaqgaq4
0s6E 0s6E 1
—g (— 6; 6 (51686) (0q1042 + 0q2043 + 01043) — % (_ 6; ° + 51656) - 521114} ,(3.2)
where
Zg1a = —Tq + 2, Zg23 = Tq + 2.
The right hand sides in (3.2) can be written as
hﬁ z — PpP? z z R?
tan 5% = Faa0e + Q1410¢2 + Q142044 + R3140420430q4

z z z z
+ Mj1410q2043 + M{1420430q4 + Ng140420q4 + Ly,

z _ z z z z
tanh 5% = P42 + Q241043 + Q142091 + B14041042044

z z z z
+ Mj1410q2043 + M 142001042 + Ng14001043 + L4 - (3.3)
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Equating the right hand sides of (3.2) and (3.3) and taking into account the fact that o, = £1,

we find
1
P214 - —(12114
423 8\ alay
szl = 1(12114
423 8\ alay
Q2142 = 1(12114
923 8\ ala;
1
RZ14 == —(ZZ114
q23 8\ ala;
1
Mis, = <(Fn
923 8\ ala;
1
le4 = —(ZZ 14
9332 8\ alays
1
NZM = —(12114
923 8\ ala;
1
L, = —(ZZ 14
q23 8\ alys
where
1114
93 23
nzl 14
93 23
mz1 14
q4 23
z
m’” 314
q3 23

-7 14+’Il —-n 14+mz 14 —m? 14+m 14 — M 14)
92 53 123 9253 ql o 92 53 4353 9453 )’
— 1% 4 —n® +TLZ 14 +mz 14 +mz 14 mZ, e —m® 14)
92 53 ql; 23 9253 ql o3 92 53 323 9453/’
-7 14-712 14+’I’LZ 14—mz 14—m 14+m 14+m )
92 53 ql o5 9253 ql o3 92 53 93, a4, 23/’
—lz 14 —|—n +TLZ 14—mz 14 +mz 14 14 —|—m 14)
233 23 9253 ql o3 92 53 3 q4
+lz 14 —n? 14 —n? 14 +mz 14 —m? 14 14 —|—m 14)
233 ql o3 9253 ql o3 92 53 3 q4
z z z z z
+ l 14 nql 1 a2 ;g mql ;g + mq2 14 + mq3 14 mq4 ;g ) s
+ I? 14 + n’ 14 + n? 14 — m> 14 — m> 14 m? 14 m? 14)
92 53 ql o5 9253 ql o5 92 53 9323 9433 )’
+ 120+ 0% 0 FmE o +m? 14 +m? 14 +m? 14) 3.4
92 53 ql o q25; ql 55 25 q35; 4 ( )
Bl_. . 1
= tanh = |F(e' —w') + (ds6 + d16)e6 + =214 | ,
2 i ﬁ q23
8 1
= tanh — $(UJI — w'l) — d16€6 + ZZq14 |
2 i ﬂ 23
= tanh — $w — (iéag + 616)56 + q ,
2] ﬂ
= tanh — 5 :Fw — (:|:5a6 + 516)56 + qu 14:| . (3.5)

When an electric field E3 along the c-axis is applied, the deuteron distribution functions possess

the following symmetry

1)z

ns = (oq) = (o), Mgy = (042) = (0g3),

7751121 = (042043044) = (041042043), 77((1?5?3 = (0q1043044) = (041042044),

77(5321 = (0q1044), 77513)32 = (042043),

N5 = —(04104) = —(04304), s = —(0q1043) = —(0200)- (3.6)

Substituting (3.3) into the system (3.1) and taking into account the symmetry of the distribu-
tion functions (3.6), we obtain the following system of equations for the time-dependent deuteron
distribution functions in the presence of the field Fs:

n(l)z
Cq11  Cqi12 Cq18 ?1),2 Cql
o I I I
Cq31  Cg32 Cq38 Cq3
_ _ _ 3)z _
Cqa1  Cg42 Cq48 Cq4 3.7
¢ i ] (3.7)
Cq51  Cg52 Cq58 Cq5
Cq61 Cg62 Cq68 %2)2 Cq6
Cq71  Cq72 Cq78 %2)2 Cq7
Cq81 Cq82 Cq88 77%2)2 Cq8
q3
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Expressions for the coefficients €411, ..., Gqss are given in [18]. In the one-particle approximation,
we obtain the following system of equations

d @ _ 1 @z 1 1 d (s _ )z

G la1e = 7 Mg1a + EtanhEqu, Qa2 = T3

+ l tanh ;qug (3.8)
We shall consider the vibrations of a thin square plate with sides [ of a ND4D2POy, type crystal
cut in the [001] plane, produced by an external time-dependent electric field Es; = Ese'“t. For
the sake of simplicity we shall neglect the diagonal strains ¢; (i = 1,2,3), which, in fact, are also
created in the crystal.
The shear strain e¢ is determined by the displacements u, = u; and u, = u2, namely

8u1 8u2
€6 = Exy = a—y + E

The classical equations of motion of an elementary volume, describing the dynamics of deformati-
onal processes in ND4D2POy type crystals, read

0%uy — % 0?us _ % (3.9)
o = oy o T or '

where p is the crystal density.
Taking into account (2.11) and (3.9), we obtain

T “66 oy v Oy v Oy v Oy v Oy Dg

a2uQ C 0866 41[)6 87](1)2 25a6£ NaG 725563 NsG 25163 N16Ch$q (3 10)
P o 6 9z " v Oz v O0x \ Dg v Oz \ Dg v Oz Dg T

Assuming that the crystal is mechanically free, we present the distribution functions, effective
fields, and the strain g4 as sums of two terms: the equilibrium functions and their fluctuations.
Hence

62u1 EOaEG %ant(l)z 26@6& (Ma(i) B 2636£ (Nsﬁ) 4 2016 251 O (ngchxq)

e = w0t =
ny = P =0l Sy =P a7 0 =, Y=,

€6 = E6t, E3 = E3 Zga = —Tq + 21 — 20YsEet, , Zg23 = Tq + 2t — 20%6e6t , (3.11)
where

= —[Ag + 2,61/a(kz)77¢(11)a 2= —FAn + QBVC(O)nt(l)Z + BusEsy .

The calculated statistical distribution functions in the ND4DsPOy type crystal in the particular
case at B3 = 0 and gg = 0 have the following form

1
nM = B(sinh 2z + 2bsinhz), n® = B(sinh 2x — 2bsinh ),
1 1 1
779 = B(costh—l—&—a—i—d), n£2):5(cosh2x—1—a+d), néQ)—B(cosh%c—l—I—a—d)
1. 1+4+pW
D = a+ch2z+d+ dbcha + 1, x:§1n1+77 + Bra(kF)n.
=1

Let us expand the coefficients (3.4) in series over the time-dependent terms. Taking into account
(3.11) and eliminating A.; from the system (3.7)—(3.8), we obtain a system of equations for the
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time-dependent distribution functions for a mechanically free crystal

(1)= (1)z
d t Co11  Co12 Cql3 My Co1
I nt(s)z = | co21 cCo2 Cq23 77(3)2 5#3 —F3; | coz
g)z Cg31 Cq32 €033 77;?2 Cq3
Co1 Cos1 Coal Co61
+B%eees | coz | — Bdseger | cos2 | + BdacEet | Coaz | — BdicEet | cos2 |- (3.12)
Cq3 Cqs3 Cqa3 Cq63
The expressions for coefficients of this system are given in [18].
Taking into account (3.10) and (3.11), we get
0%uqs Ocet 8nt(1)z 0?uay Oeet 377t(1)z
= , = Cl6——r , 3.13
p 912 C16 ay + c26 Y P o2 Ci6 O + c26 or ( )
where
4 2
c16 = cbd + ﬂq/jﬁf — —ﬂ{ a+ 63g4b + 62 (1+cosh2x)},
I (3.14)
26 =, \V6— e .
1
f6 = ds6a — 162bch, pl = T2 + Bre(0).
We look for the solutions of the systems (3.12) and (3.13) in the form of harmonic waves
1)z i 3)z 3 i 2)z 2 i
n =g @y o = @y, = @y,
g6t = cou (T, y)e™, ury = we(y)e™’,  ug = ugn(x)e™”. (3.15)

Solving the system (3.12) with taking into account (3.15), we find that

W) = PEFOG)E + [-sheF 0 ) - fsFD )
— 3825 FG) (@) + Bo16 P ()| 2on (2, ), (3.16)
where
. . . 2 ¢! 0
F(l)( - (@)27"(2) + (iw)r® + O gl)(w) _ (1w)27"§ ) 4 (1w)r§ ) 4 0
(iw)3 + (iw)2ry + (iw)ry +19° ~° (iw)3 + (iw)2re + (iw)ry + 10’
0 (iw)*re” + (w)re” + 7 1) (iw)?ri” + (w)ri” + 7"
Fa (): © N3 . ) F1 (W): . N ,(317)
(iw)? + (iw)?ry + (iw)r1 + 7o (iw)3 + (iw)?rs + (iw)r1 + 7o
and the expressions for ro, ..., rgo) are presented in [18].
Taking into account (3.13) and (3.16), we obtain the following wave equations for u1g and ugg:
0%u 0%u
aygE thoup =0, 2 4 houap = 0, (3.18)

where the wavenumber is

hy = VP

cgs(w)
whereas
) = o+ D apeP O (w) 5,6 FD W) + 516 F{D (@) — hus FD (W)
—%%%}wwmw+MﬂWm+mﬂWm—%mww
451”6 L %  [9%0 + 846+ 62,(1 + cosh 2)]. (3.19)
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We look for the solutions of (3.18) in the form
ug = Aj cos kgy + By sin kgy, usg = Ag cos kgx + B sin kgx.
As a result,
een(T,y) = ke[— (A1 coskey + Az coskgx) + (By sin key + B sin kex)]. (3.20)
We set the boundary conditions in the following form
eer(0,0) = eer(l,l) = e6r(0,1) = esr(l,0) = g6 - (3.21)

Using expressions (2.11) and (3.17), we find that

636(u})
€06 = FEs ) (3.22)
cfs(w)
where 5
e36(w) = eg6+$ [—21/16F(1)(w)+556Fs(1)(w)—6a6F,§1)(w)+516F1(1)(w)} . (3.23)

Taking into account the boundary conditions (3.22) and (3.20), we get

€06 [7005 kel — 1

5 (sin kgy + sin kgzx) + (cos key + cos ka)} . (3.24)

eon(2,y) = sin kgl

Using the relation between polarization P3 and the order parameter (1) and strain eg (2.11),
as well as (3.17), we find .
PB(:Cayat) = PBE(xay)elwta (325)

where
Psg(z,y) = ess(w)ese(r, y) + Xx33(w)Es,
and

€ £0 ﬂﬂ% (1)
X33(w) = X33 + TF (W), w=2mv. (3.26)

The longitudinal dielectric dynamic permittivity of a ND4DsPQOy4 type crystal can be calculated
using the relation

11
1 0
X535 (w) = l—Qa—EB//PgE(Jc,y)dxdy. (3.27)
0 0
Since L
1 2€06 kel 206
Z—Q//dxdyss(a:,y) = k—ﬁtanhT = Rw)’ (3.28)
0 0
where 5 bl
Re(w) = Tl tanh 76,

then from (3.27) we find that

1 e36(w)
Rg(w) cgg(w)

X33(w) = x33(w) + (3.29)

Thereafter, longitudinal dynamic dielectric permittivity of the ND4DoPOy type crystals is
eds(w) = 1+ 4mxis(w). (3.30)

It should be noted that at w — 0o Rg(w) — o0 and x%5(w) — x53(w).
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4. Sound attenuation and velocity in ND,D,PO, type crystals

We consider propagation through the ND,DsPO, type crystals of a sound wave, whose length is
much smaller than sample dimensions. Then, all the dynamic variables, namely, the order parameter
and elementary displacements depend only on the spatial coordinate which is the direction of sound
propagation. For the thin bars cut along [001] we should consider a transverse ultrasound wave

polarized along [010]. Among the derivatives gg only % is different from zero; therefore, instead
J

of (3.12) and (3.13) we can write

1)z (1)z
d un Co11  Co12  Cq13 un
- (3)z — c e Coo (3)z
1 ; = 021 Co22 Cq23 ;
(2)= Cg31 Cq32 €033 (2)=
th a a th
Co1 Cos1 Coal Co11
+05vsest | co2 | — Bdsecet | cos2 | + Bdascer | Coaz | — Bdisgss | coz |,
Cq3 Cqs3 Cqa3 Cq13
2 (D)=
pa Uzt _ 16 Oeet T o oy (4.1)
ot? oz ox

Solving the system (4.1), we obtain the wavenumber that coincides with the one found above

ko = VP (4.2)

chaw)

Using (4.2), we can calculate the ultrasound velocity

vo(w) = =2 — ReY.Ca() (4.3)

and attenuation

as(w) = Qo — Im(kg) = Qo — Im <M> 5 (44)

Co6(w)

where aqg is the constant frequency and temperature independent term, describing contributions
of other mechanisms to the observed attenuation.

5. Longitudinal static dielectric, piezoelectric, and elastic characteristics of
ND,D,PO, type crystals

In the static limit w — 0 in (3.26), (3.23), and (3.19), we obtain the isothermal static dielec-
tric susceptibility of a mechanically clamped crystal, coefficient of piezoelectric stress, and elastic
constant and constant field in the antiferroelectric phase in the following form

2

€ €0 H3 25
_ 13 5.1
X33 = X33 + = ﬁD — 2500 (5.1)
0 w3, —2x + fo
= 2—f—""— 5.2
€36 = Ey6 + 27 ﬁD — 23600 (52)
E 86 B(—vex6 + fo) APl 1§ 26

(6%3¢4bchz + 6%a + 622ch?z). (5.3)

_ EO -ro _ =
€66 = o6 + v D — 2500 vD(D — 23500)  vD

Here we use the notation

»g = a + bchz.
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In the paraelectric phase, from (5.1)—(5.3) one easily obtains

2
e _ e0 & 2(a + b)
X535 = Xaa -+ " 62_a+2b_2ﬁyc(0)(a+b) : (5.4)
—2tpg(a + b) + ds6a — 2016D
— 42t ' |
€36 €36 T v ﬁ—a +2+2b—28v.(0)(a +b) -
B = B0 8_%5 —2¢s(a +b) + dssa — 20160
66 66 —a+2+2b—2pv.(0)(a+0b)
48 [1+ B(0)] (5,60 — 2016b)? _ 2Bt Oetb B (5

v (2+a+4b)[—a+2+2b—20v.(0)(a+b)] w 2+a+4b

Using the known relations between elastic, dielectric, and piezoelectric characteristics, we find
the isothermal constant of piezoelectric stress hsg:

hsg = ; (5.7)
X33
isothermal elastic constant at constant polarization cfy:
Cho = Cbo + €36h36; (5.8)
isothermal coefficient of piezoelectric strain dsg:
€36
dse = —5; (5.9)
Cé6
isothermal constant of piezoelectric strain gsg:
hse
936 = —p (5.10)
Ce6
isothermal dielectric susceptibility at ¢ = const:
X33 = X33 + €36d36 - (5.11)

6. Comparison of numerical calculations with experimental data

Let us now evaluate the found above longitudinal dielectric, piezoelectric, and elastic charac-
teristics of the NHyH2PO4 (ADP) and ND4D2PO,4 (DADP) crystals and compare them with the
corresponding experimental data. It should be noted that the developed theory is valid, strictly
speaking, only for highly deuterated ND4D2POy4 type crystals. The experimentally established re-
laxational character of e35(w,T) dispersion [27-29] in these crystals, according to [13-15] is most
likely related to suppression of tunneling by the short-range interactions. Therefore, proton tunnel-
ing for the NHy;H2POy4 type crystals will be neglected. Since the majority of experimental studies
were performed for the paraelectric phase, we shall also restrict our calculations to temperatures
T >TN.

To calculate the paraelectric temperature and frequency dependences of the physical charac-
teristics of the NH4HPO, and ND4DsPOy crystals we need to set the values of the following
parameters:

— energies of proton and deuteron configurations ey, wi;, Wiy, €, Wh, Wip;

— the long—range interaction parameters v.;(0) and v.p(0);

— deformational potentials 1g, dsg, 016, 0ag, 01i;

— effective dipole moments psg and psp;

— “seed” static dielectric susceptibility x53, coefficient of piezoelectric stress eJg, elastic constants
B0 oEO.
66 > Cij >
— parameters ay, ap.
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The volumes of the primitive cell v were taken to be equal to 0,2110-1072! cm? for NH4H,PO4
[30], and 0,213-1072% ¢cm? for ND4D2 POy [31]; whereas the crystal density is p = 1,804 g/cm? [32]
both for NH4H2PO4 and ND4D2PO4.

To determine the mentioned parameters we use the experimental temperature dependences
of the physical characteristics of ADP and DADP crystals. Thus, for ADP we used the data for
e35(0,T) [32,33], e35(w, T) [29], ds6(T) [32], sgz” (T) [32], sE(T) [32], whereas for DADP we use
€93(0,T) [34], e33(w, T) [29], dse(T) [34], sf5(T) [34], si; [34]. Also, using the known relations for
dielectric, piezoelectric, and elastic characteristics of ADP and DADP, we calculated, using the

dse

experimental data of [32,34], the “experimental” temperature dependences of ¢z = SLE, €36 = ¥,
66 66

m, cts = c&s + esehse, 936 = %

Using the experimental data for £35(0, 7)€%, es(w, T)-€% and Tx, we determined the pa-
rameters €', w’, v.(0), at which the value us is weakly temperature dependent. Then, using the
experimental data for e35(w,T'), we determine the value of «, which turns out to be also weakly
temperature dependent: o = [P + R(AT)] - 10~ (AT = T — Tx). The energy w} of the proton
configurations without any proton and with four protons next to the PO4 group is much larger
than &’ or w’. Hereafter we take w} = oo (d = 0).

The “seed” quantities 53, €3, c&X = é are determined by fitting the theoretical curves of

d2.
€53 = €33 — 477?%2, hse =

the characteristics to the experimental points at temperatures far from the transition point Tx.
To determine the deformational parameters g, 56, dag, 916 We explore their effect on the
temperature curves of the calculated piezoelectric characteristics dsg, esg, hsg, g3 and of the elastic
constant ¢ and find such a set of the parameters, yielding a good agreement with experimental
data [32,34].
The obtained optimum set of the model parameters for ADP and DADP is given in table 1.

Table 1. Optimum sets of the model parameters for ADP and DADP crystals.

TN; e ]’:)_Eia Vz(BO) /1/3710_187 Xgi Pa R7

)| E) | K) | (K) |(esu- cm) (s) | (s/k)
ADP |148] 20 [490,0]-10,00] 2,10 |0.23]0,38[0.0090
DADP | 240 |78,8|715,4|-17,35| 2,75 10,34]6,72]0,0090

Pe ds6 a6 | d16 0. .10-10 )
kg’ kg’ | ks ’| k’ 66 36
(&) | (&) | ()| (R) | dyn/em?) | esu/em?)

ADP |-160 1400|100 |-300 7.9 10000
DADP |-200|2000 | 200 [-100 7.6 28000
Let us note that using the relations e = —&’ and w = w’ — ¢, we obtain practically the same

values of the proton and deuteron configuration energies of ADP and DADP crystals, as in [21]. In
figures la and 1b we show the temperature curves of the calculated longitudinal static dielectric
permittivities of mechanically free and clamped ADP and DADP crystals along with the available
experimental data. Hereafter, in figures for the ADP crystal the dashed lines denote the theoretical
temperature curves calculated within the theory that takes tunneling into account [6]. As one can
see in figure 1, a satisfactory quantitative description of the experimental data is obtained. The
static dielectric permittivities of free and clamped ADP and DADP crystals have finite values at
the transition points and are weakly decreasing functions of temperature. The permittivity €%, of
a free crystal is about ~ 18% larger than the permittivity £5; of a clamped crystal; this difference
is practically temperature independent. Let us note (see [16]) that in the case of KH2POy the
values of €45(0) increase by the hyperbolic law at approaching 7. in the paraelectric phase and are
very large at T' = Tc. The difference between £35(0) and £55(0) rapidly decreases with temperature
increasing.

The calculated temperature dependences of the coefficients of piezoelectric strain dzg and stress
e3¢ of ADP and DADP crystals along with the experimental points are given in figures 2, 3. A
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50 100 150 AT,K 0 20 40 60 80 AT,K
(a) (b)
Figure 1. The temperature dependence of static dielectric permittivities of a clamped 53 o, [32]
and free €33 o [32], O [33] NH4H2POy4 crystal (a), as well as clamped B, [34] and free O, [34]
N(Ho.02Do.98)4(Ho.02D0.98)2PO4 crystal (b).

X 1o‘sd36, esu/dyn X 1o‘sd36, esu/dyn

3

25

1.5

0 50 100 150 AT, K 0 20 40 60 80 AT, K
(a) (b)

Figure 2. The temperature dependence of the coefficient of piezoelectric strain dss of NH4H2PO4
o, [32]; N(Ho.02Do.98)4(Ho.02Do.98)2PO4 O, [34].

good quantitative description of the experimental points is obtained. At T' = T the coefficients
dsg and esg are finite and decrease with temperature increasing. The coefficients dsg and esg of
KHoPO4 at T = T, are about one order of magnitude larger than the corresponding values in the
ADP crystal and decrease with temperature increasing much faster than the coefficients dsg and
€36 of ADP [16]

In figures 4 and 5 we plot the temperature dependences of the constants of piezoelectric stress
h3e and piezoelectric strain gsg of ADP and DADP crystals. The experimental data are well de-
scribed by the proposed theory. The constants hsg and gsg are practically temperature independent.
The temperature dependences of the h3g and gsg constants of KHyPO, are also weak, with their
values being nearly three times smaller than the values of hss and gs¢ of ADP. Even though the
dielectric permittivities of ADP and DADP along the c-axis are relatively small, the values of the
constants of piezoelectric strain and piezoelectric stress in this direction are rather significant.

The temperature dependences of the calculated isothermal elastic constants cZ and cf; of ADP
(a) and DADP (b) well agree with the corresponding experimental data (see figure 6). The elastic
constants ¢y of ADP and DADP, in contrast to those of KHaPQOy, are finite at 7' = Ty and hardly
depend on temperature.

Let us analyse now the temperature and frequency dependences of the calculated dynamic
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X 105936, esu/cm? x 10° €5 esu/cm?
8

1. 1.8
.

0.6 0.6
0 50 100 150 AT, K 0 20 40 60 80 AT, K

(a) (b)

Figure 3. The temperature dependence of the coefficient of piezoelectric stress ez of NH4H2PO4
e, [32]; N(Ho.02Do.98)4(Ho.02Do.98)2PO4 W, [34].

5 5
. x 10 hse' dyn/esu . x 10 hse’ dyn/esu
1.15 1.15
(]
1.1 1.1 1
)
1.05 1058 g m 1
[ ]
[ ] ]
1 1 =
[ ]
0.95 0.95 " &
0.9 0.9
0.85 0.85
0.8 0.8
0 50 100 150 AT, K 0 20 40 60 80 AT, K
(a) (b)

Figure 4. The temperature dependences of the constant of piezoelectric stress hzg of NH4HoPO4
o, [32]; N(Ho.02Do.98)4(Ho.02Do0.98)2PO4 W, [34].

-6, 2 6, 2
X 10" 9gq: CM /esu X 10" 9gq: CM /esu

1.5 1.5
o
1.4 ° 1.4
n | |
° a " - m E g -
1.3 L J e o 1.3 H g
[ ]
[ J ° °

1.2 1.2
1.1 1.1

1 1

0 50 100 150 AT, K 0 20 40 60 80 AT, K

(a) (b)

Figure 5. The temperature dependences of the constant of piezoelectric strain gsg of NH4H2PO4
o, [32]; N(Ho.02Do.98)4(Ho.02Do.98)2PO4 W, [34].
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x 10"°Cqq dyn/cm? o X 10"Cqgr dyn/em?
[
m P
g
7.5
E L |
oo .. [
7
6.5

[ﬁ——D——D—EﬁDDuDuDﬁ]
5.5O 6

50 100 150 AT, K 0 20 40 60 80 AT,K

(a) (b)

Figure 6. The temperature dependences of the elastic constants cfs e, [32] and cfs o [32] of
NH4H2POy; ¢ B, [34] and cfs O, [34] of N(Ho.02Do.98)4(Ho.02D0.98)2POa.

characteristics of mechanically free ADP and DADP crystals cut in the [001] plane as thin square
plates with sides [ = 1 mm long. Unfortunately, we are not aware of a corresponding experimental
measurement. From the equation for resonance frequencies

2n+1 06E6
Uy, = —
" 2l P

for NH4HoPOy4 and n = 1 we obtain the value of the first resonance frequency 7 ~ 0.92793 MHz
at AT = 28 K. Depending on frequency v (in the resonance region) and temperature AT, the
temperature curves of real and imaginary parts of dielectric permittivity of mechanically free ADP
and DADP crystals exhibit one, two, or more resonance peaks.

The calculated frequency curves of real and imaginary parts of dielectric permittivity e3s(w,T')
and experimental points of [29] are presented in figure 7 for ADP at AT = 28 K and in figure 8 for
DADP at AT = 64 K. In the frequency range of 10° — 10® Hz a resonance dispersion is observed.

4038 10’ *ag
10°
SOJ 107"
107
20 — 10°
107
10 10° )
10° /
0 4 6 8 10 12 4 6 8 10 12
10 10° 10° 10 10"V, Hz 10 10° 10® 10" 10"V, Hz

Figure 7. Frequency curves of real and imaginary part of dielectric permittivity of free and
clamped (dashed line) NH4H2POy crystals at AT = 28 K, O — [29].

At w — 0 we obtain a static dielectric permittivity of a free crystal. The dashed line corresponds
to the low-frequency part of the clamped permittivity. Above the resonances, the permittivity
corresponds to a clamped crystal and has a relaxational character.

Theoretical results and experimental points for the temperature dependences of real and imag-
inary parts of complex dielectric permittivity e35(w,T) of ADP and DADP at frequencies where
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40—

SOJ
201 |
4
0
10

fo10° 100 10 10"V, Hz 10 10" 10"v, Hz

Figure 8. Frequency curves of real and imaginary part of dielectric permittivity of free and
clamped (dashed line) N(Ho.02Do.98)4(Ho.02D0.908)2PO4 crystals at AT = 64 K, A — [27,29].

N WA OO N 0 ©

0 40 80 120 ATK

Figure 9. The temperature dependence of €53 and e%5 of NH4H2POy4 at different frequencies v
(GHz): 9.2 — 1, o[35]; 180.0 — 2, A[29]; 249.9 — 3, >[29]; 320.1 — 4, V[29]; 390.0 — 5, «[29]; 600.0
— 6; 1000.0 — 7; 2000.0 — 8; 5000.0 — 9. Symbols are experimental points; lines are theoretical
results.

33 33
9
201 1 8
2
\ 7
3
s = 6
4 5 S
5 A 5
10 6 g 1 4
W
3
5 2
1
1
0 0
0 40 80 120 ATK 0 40 80 120 ATK

Figure 10. The temperature dependence of 53 and 53 of N(Hq.02Do.98)4(Ho.02Do.98)2PO4 at
different frequencies v (GHz): 9.2 — 1; 80.0 — 2; 150.0 — 3; 262.0 — 4, (J[27,29]; 330.0 — 5 A[27,29];
437.0 — 6 0[27,29]; 540.0 — 7 {[27,29]. Symbols are experimental points; lines are theoretical
results.
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the effect of crystal clamping by a high-frequency field takes place are given in figures 9, 10, re-
spectively. As one can see, the experimental data of [27,29] are quantitatively well described by
the proposed theory. At the transition temperature the real and imaginary parts of permittivity
e4s(w, T) of ADP have finite maxima at all frequencies. With AT increasing the values of 5133 (w,T)
and 5;3 (w,T) slightly decrease at all frequencies.

In the temperature curves of eg(w,T) and e33(w,T) of DADP a maximum is observed at
T = Tn at frequencies below the dispersion frequency and there is a shallow minimum at higher
frequencies. With AT increasing at dispersion frequencies the values of e45(w,T') and eg5(w, T)
increase, reaching a maximum, which shifts to higher AT with frequency increasing.

The calculated frequency dependences of £53(w,T) along with the experimental points are
presented in figure 11 for ADP and in figure 12 for DADP. A good quantitative description of

o o
33 10 33
! 1
20 2 O OO
3 Bo 8 2
4 3
15
6 4
10 4
5 2
10 1 12 13 0 10 11 12 13
10 10 10 10" v, Hz 10 10 10 10"%v, Hz

Figure 11. Frequency dependence of €33 and €53 of NH4H2POy4 at different temperatures AT(K)
[29]: 0.0 — 1; 5.0 — 2, o; 28.0 — 3, OJ; 82.0 — 4, A. Symbols are experimental points; lines are
theoretical results.

€ €’

33 10 33
20 1

8
5

15
10
5
010 11 12
10 10 10° v,Hz

Figure 12. Frequency dependence of 53 and g45 of the N(Ho.02Do.95 )4 (Ho.02Do.98)2PO4 crystal
at different temperatures AT(K) [27,29]: 0.0 — 1; 19.0 — 2, o0; 41.0 — 3, 0J; 64.0 — 4, A; 108.0 — 5,
. Symbols are experimental points; lines are theoretical results.

experimental data is obtained. The experimental frequency dependences of e%4(w,T) for DADP
are for the dispersion region (10! — —10'®H z), whereas for ADP they are below the dispersion. At
AT = 0 K the dispersion frequency for ADP equals 2062 GHz, whereas for DADP it is 228.5 GHz.
With temperature AT increasing the dispersion frequency of €53 (w,T') slightly increases in DADP
and does not change in ADP.

The temperature and frequency dependences of sound attenuation ag of ADP and DADP
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o 0, CM 108 O CM
4
S
106 106
[ e e —— = — — = =
___________ 5
0 rE— """ 10°
10 10°
P »
T e 10°
1 1’
107 10 ‘ ‘ ‘ :
0 50 100 150 200 250AT,K 10 10°  10® 10" 10" v,Hz
Figure 13. Temperature dependence of sound Figure 14. Frequency dependence of sound
attenuation as of NH4H.PO4 (1,2,34), attenuation «as of NH4HPO4 (1) and
N(Ho.02Do.98)4(Ho.02D0.08)2PO4  (17,27,3",4’) N(Ho.02Do.98)4(Ho.02D0.98)2PO4 (2) crystals
crystals at different frequencies v, Hz: 1,1’ — at AT=28K and 64K, respectively.

106, 2,2’ — 10%, 3,3° — 10'*, 4,4’ — 10'3, and
DADP at the same frequencies.

crystals are shown in figure 13, 14, respectively. At T' = Ty the attenuation g is finite and slightly
decreases with temperature increasing. Below 10® Hz attenuation g is small, whereas at further
increase of frequency up to 10'! Hz ag it rapidly increases and saturates. Such high values of ag
at saturation mean that sound does not propagate in the crystal. In contrast, in the KHyPOy4 type
crystals, the attenuation rapidly increases at temperatures close to T' = T¢.

In figure 15 we plot the calculated temperature dependence of the sound velocity vg for ADP(a)
and DADP(b) crystals. The sound velocity is practically independent of temperature and frequency,

2x105v6, cm/c 2x105v6, cm/c
0e0—0—0—0—90-—0 99 ¢ . e . e =
1.5 1.5
1 1
0.5 1 0.5
0 0
0 50 100 150 AT, K 0 20 40 60 8o AT.K
a b

Figure 15. The temperature dependence of sound velocity in the NH4H2PO4 (a) and
CE
N(Ho.02Do.98)4(Ho.02D0.98)2PO4 (b) crystals. o, B are calculated as v = \/24 [32,34].

except for the frequency region where the dispersion of the clamped dielectric permittivity is
observed; in this region the sound velocity vgg rapidly increases and saturates.

7. Concluding remarks

In this paper, using the modified proton ordering model for the KHPO, family crystals, with
taking into account the linear in the strain g contribution to the proton system energy, without
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tunneling, within the framework of the four-particle cluster approximation, we develop a theory
of dynamic longitudinal dielectric, piezoelectric, and elastic properties of the ND4DsPO4 type
antiferroelectrics. Sound velocity and attenuation in these crystals are also calculated. Numerical
analysis of the dependences of the found characteristics on the values of the theory parameters
is performed. Optimum sets of the model parameters and “seed” quantities for ND4DoPO,4 and
NH4H;PO, crystals are found. They permit a satisfactory description of the available experimental
data.

The piezoelectric coupling (g # 0) being taken into account gave rise to understandable
differences between static dielectric permittivities of mechanically free 55 and clamped €55 crystals.
In the ADP type crystals, the permittivity £g; is ~ 18% larger than 55, and this difference is
practically temperature independent. The isothermal elastic constants céDG and cf; in ADP and
DADP crystals are different, just like in the KH2PO4 type crystals, but they have no peculiarities
at T' = Ty. The sound attenuation coefficient ag in the ADP type antiferroelectrics is finite and
has a weak temperature dependence, whereas in the KDP type ferroelectrics it has an anomalous
behavior in the phase transition region.

The obtained results for the ADP crystals are compared with the calculations performed in
[6,7]. It is established that tunneling practically does not affect the static dielectric, piezoelectric,
and elastic characteristics of ADP.
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Mo3/0BXHA penakcauis aHTUCErHeToeNeKTpPUukiB Tuny
ND,D,PO,. M'e30eneKTpu4yHuii pe3oHaHC Ta NMOrMIMHAHHSA 3BYKY

PPNeBuupkuin!, 1.P3avek?, A.P.Moina', A.C.Boosuy'

1 IHCTUTYT disnkun koHaeHcoBaHux cuctem HAH Ykpainn, 79011 JIbBiB, Byn. CBeHUjubkOro, 1, YkpaiHa
2 HauioHanbHuin yHiBepcuTeT “JibBiBCbKka nonitexHika”, 79013 JbeiB, Byn. C. BaHaepu, 12, YkpaiHa

OTpumaHo 2 kBiTHA 2009 p., B ocTato4yHOMY Burnsaai — 18 tpasHsa 2009 p.

B pamkax mMoaudikoBaHoi NPOTOHHOI MoAeni 3 BpaxyBaHHSAIM B3aEMO/ii 3i 3CyBHOW AedopmaLieto ¢
PO3MNSHYTO AVHAMIYHUIA AienekTpuYHUia Biaryk aHtucerHetoenektpukis Tuny ND4DoPO4. BpaxosaHo au-
HaMiky n’e3oenekTpuyHoi aedopmalii. BHO onucaHo siBMLLA 3aTUCKaHHS KpUCTany BMCOKOYaCTOTHUM
eNeKTPUYHMM NoneM, M'e30eNeKTPMYHOro pesoHaHcy i HBY gucnepcii, wo cnoctepiratoTbCs Ha ekcne-
puMeHTi. Po3paxoBaHo WBNAKICTb Ta KoedilieHT NornrMHaHHa 3ByKy. MependadeHo xapakTep noBeniHku
KoediluieHTa NornnMHaHHA B napadasi Ta HasBHICTb 06pi3aloy0i YacTOTU Y YACTOTHIM 3anexHOCTi koedi-
LlieHTa NornMHaHHS 3BYyKy. [pn HanexHoMy BMOOPI MikpornapaMeTpiB B NapaenekTpuyHin ¢asi oTpumMaHo
Do6pUiA KiNbKICHUA ONUC eKCNePUMEHTaNIbHUX JaHUX AN MO3L0BXHIX CTAaTUYHUX AieNeKTPUYHuX, N'e30-
€NeKTPUYHIIX i MPYXHUX XapakTepucTuk Ta wenakocTi 3syky ans ND4DaPO4 i NH4H2PO,.

Knioyogi cnoea: aHTMCGI'HeTOG}'IeKTpMKM,,QieﬂeKTpM’-IHa npOHMKHiCTb, I'I’SSOeﬂeKTpM’-IHMI}/I pPe30HaHC

PACS: 77.22.Ch, 77.22.Gm, 77.65.Bn 77.84.Fa, 77.65.Fs
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