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Lithium intercalated anatase used in Li-ion batteries has some special features: coexistence of Li-rich and Li-
poor phases as well as two possible positions for Li ions in the oxygen tetrahedron. A theoretical description
of the compound considering those peculiarities is presented. As shown by the performed symmetry analysis,
the intercalation induced lattice deformation can be accompanied by the ordering of antiferroelectric type
(internal piezoeffect). In the following step, a qualitative illustration of the phase separation in the lithiated
anatase is given within the Landau expansion at the proper choice of coefficients. A microscopic model for
description of the compound is also proposed which combines features of the Mitsui and Blume-Emery-Griffits
models and utilizes the symmetry analysis results. Various ground state and temperature-dependent phase
diagrams of the model are studied to find a set of model parameters corresponding to the lithiated anatase.
A phase separation into the empty and half-filled phases in a wide temperature range has been found closely
resembling the phase coexistence in the intercalated crystal. In the framework of the model, the two-position
Li subsystem could have the ordering of ferro- or antiferroelectric types which, however, has not been yet
observed by the experiment.
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1. Titania in a nutshell

1.1. Titanium dioxide: polymorphs, properties and applications

There are eleven known polymorphs of titanium dioxide (titania). The most common natural
forms (rutile, anatase and brookite) are just different space arrangements of the TiO6 group where
a titanium cation is located in the centre of the slightly deformed octahedron shaped by six oxygen
anions. Each polymorph has its own deviations from the ideal octahedron but it is always elongated
along the certain axis. Thus, two (apical) oxygens are further away from the titanium than four
others (equatorial).

Being the most stable polymorphs, rutile and anatase are widely used and intensively studied.
They are very similar in many details (e.g. the arrangement of atoms and average lengths of
bonds) [1]. However, anatase is 10% less dense than rutile and an additional volume is condensed
in the voids affecting the cell averaged properties such as compressibility and dielectric constant.
Moreover, this minor difference becomes crucial at crystal intercalation. In both polymorphs, an
elementary cell consists of two formula units but unlike the tetragonal rutile (P42/mnm) the
standard crystallographic cell of body-centered tetragonal anatase (I41/amd) is chosen to consist
of two elementary cells.

The titanium atoms, and hence, the octahedra, are arranged in such a way that each oxygen
is at the same time an equatorial atom for one titanium, and an apical one for the other titanium
atom in the same unit cell. Neighboring octahedra are sharing edges and corners with each other.
Two and four edges of each octahedron are shared in rutile and anatase, respectively. The basic
octahedra are distorted in such a way that each shared edge is shortened, the other edges being
correspondingly elongated. The shortened oxygen-oxygen bonds are often named as the bridge
bonds (in the sense that it bridges the interaction between Ti ions: metal-oxygen-metal). In rutile
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the bridge bond connects two equatorial oxygen atoms. Hence, the octahedra form the vertical
linear chains. The octahedra belonging to adjacent chains are connected only through one corner:
an oxygen atom which is both apical and equatorial for the two touching octahedra. In anatase,
the octahedra are arranged in order to share a diagonal edge between an apical and an equatorial
atom. Thus, octahedra form zig-zag chains orthogonal to the crystallographic axis. There are two
sets of chains orthogonal to each other, that are connected through a common octahedron.

The list of hi-tech applications of titanium dioxide is quite impressive. They are primarily
related to its photoactivity. For example, TiO2, particularly in the anatase form, is a photocatalyst
under ultraviolet light. The strong oxidative potential of the positive holes oxidizes water to create
hydroxyl radicals (the Honda-Fujishima effect [2]).

Superhydrophilicity phenomenon for glass coated with titanium dioxide is caused by ultraviolet
light partially removing oxygen atoms from the surface of the titanium oxide. The areas where
oxygen atoms were removed became hydrophilic, while the same size areas where no oxygen atoms
were taken away turned out to be hydrophobic [3]. The result is a TiO2-coated glass which is
antifogging and self-cleaning.

Dielectric properties of titanium dioxide distinguish it as semiconductor [4] (to stress the dif-
ference: anatase is semiconductor of the n-type while rutile is of p-type which is utilized in the
gas sensor [5]). Due to its high dielectric constant, it is commonly used as a dielectric in electronic
devices, such as thin film capacitors [6] and MOS devices [7], as well as for the fabrication of
anti-reflection coatings, interference filters [8], as well as optical wave-guides [9].

Although both rutile and anatase are potentially interesting for photo-catalysis and photo-
electrochemical applications, experimental investigations have mostly focused on the more prospec-
tive anatase polymorph. It has a wider optical-absorption gap and a smaller electron effective mass
which presumably leads to a higher mobility for the charge carriers [10] and plays a key role in the
injection process of novel dye-sensitized photochemical solar cells with high conversion efficiency
[11]. In some cases, the two materials are used together in the same device, exploiting their peculiar
properties for different purposes. For example, a typical low-cost photo-voltaic module is composed
of a transparent conducting photo-electrode of dye-sensitized nanocrystalline anatase, a spacer of
electrically insulating, light-reflecting particles of rutile, and a counter-electrode of graphite pow-
der [12]. Hence, anatase is used due to its efficient coupling with the dye, and rutile for its high
dielectric constant.

Furthermore, the open crystallographic structure of anatase facilitates the accommodation of
substantial amounts of small ions (Li, H, etc.) within the lattice. Lithium insertion changes the
optical properties of TiO2: it turns the white powder dark blue whilst in thin film form it changes
from being transparent to partially reflecting (electrochromism) which is used in displays and sun-
blinds (switchable mirrors). Combining an electrochromic film and a photovoltaic film to form the
two electrodes of an electrochemical cell one can achieve a photochromic structure [13].

1.2. Intercalation of rutile and anatase: experiment and theory

In the last decades the Li-ion batteries have run into operation as a result of their high energy
capacity, re-chargeability and environmentally friendly properties. Anatase TiO2 may act as an
anode in such a battery [14]. In practice, anatase is not the ideal candidate because of its relatively
low potential versus other electrode materials. Better properties are demonstrated, e.g. by similar
compounds with the spinel structure LiTi2O4 [15], Li4Ti5O12 [16] and their manganesian analogues
LiMn2O4 and LiMg0.1Ni0.4Mn1.5O4 [17]. Here anatase is considered as a well defined model ma-
terial displaying many typical properties of transition metal oxide electrodes. The electrode and
electrochromic properties of lithiated anatase are already well documented and partly exploited
commercially. However, the impressive experimental breakthrough in the study of the microscopic
processes resulting in these achievements is not accompanied by theoretical investigations.

As mentioned earlier, anatase TiO2 has a body-centered tetragonal structure indexed by the
I41/amd space group. Upon lithiation, anatase lattice undergoes an orthorhombic distortion that
results in the Li0.5TiO2 phase (sometimes referred to as Li-titanate) indexed by the space group
Imma, where the fourth order axis is lost due to the distortion in the ab plane [18]. The change
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in symmetry is accompanied by a decrease of the unit cell along the c-axis and by an increase
along the b-axis, resulting in a 4% increase of the unit cell volume. Lithium was found to reside in
the interstitial voids within the oxygen octahedra [18]. The structural change can be explained as
occupation of Ti-Ti bonding atomic orbitals by the electron that enters the TiO2 lattice with each
Li-ion to maintain charge neutrality.

In comparison with the number of experimental studies of intercalated titanium dioxide the
list of theoretical works on the subject looks very short containing primarily ab initio approaches.
Some experimentally established properties are fairly well explained but some predictions are not
confirmed by experiment.

Already in the pioneer work [19] a higher possibility of lithium intercalation in the anatase
structure than in rutile was predicted as well as the absorption energies obtained were calculated
and Li-induced local one-electron energy levels were found in the gap between the upper valence
band and the conduction band and could be attributed to Ti3+ states.

The calculations of the relative lithium insertion potentials were performed for the rutile,
anatase, brookite, ramsdellite, colombite, spinel, and orthorhombic polymorphs of titanium di-
oxide from the first principles periodic Hartree-Fock approach [20] also indicating that lithium was
completely ionized in LiTiO2 and that the charge transfer is predominantly to the oxygen sublat-
tice. A similar study of the average voltage to intercalate lithium in various metal oxides (among
them TiO2) and dichalcogenides was performed utilizing the ab initio pseudopotential method
[21]. It was also found that Li was fully ionized in the intercalated compounds but with its charge
distributed among the anion and the metal.

A series of works [22–28] should be mentioned, where the lithium intercalation in both rutile
and anatase was ab initio modelled taking into account thermodynamic and kinetic effects. The
important role of strong local deformations of the lattice and elastic screening of interlithium
interactions was established, the absence of insertion into rutile at room temperature was explained
in terms of inaccessibility of the low-energy configurations due to highly anisotropic diffusion,
a phase separation in anatase into a Li-rich phase and a Li-poor phase was described and the
existence of a new distorted rock-salt phase for LiTiO2 was predicted [22,28]. The calculated
open circuit voltage profile reproduced and explained the characteristic features of experimental
discharge curves for both polymorphs [24]. An analysis of the site preference for Li intercalation
in rutile and diffusion pathways of ions was performed. The expansion of the host structure on
Li insertion was found to contribute to the enhanced diffusion of Li ions along the c direction
while a large distortion of the rutile framework nearly suppressed Li diffusion in the ab planes;
computed diffusion coefficients were found in excellent agreement with the measured values [26].
A new phase of LiTiO2 is predicted which may be accessed through electrochemical lithiation of
ramsdellite-structured TiO2 at the lowest potential (remaining constant over a wide range of Li
concentrations) reported for titanium dioxide based materials [29].

Ab initio study of the elastic properties of single and polycrystal TiO2 and other IV-B group
oxides in the cotunnite structure was performed [30].

Up till now only one non-“ab initio” description of the intercalation in titanium dioxide by
means of the pseudospin-electron model [31] (where the pseudospin formalism was used in describ-
ing the intercalant subsystem) was performed. The possibility of the phase transitions accompanied
by an abrupt change of the concentration of intercalated ions and a significant increase of electro-
static capacity of the system was predicted.

1.3. Special features of the lithium intercalated anatase: phase equilibrium and double
positions for lithium ions

Upon lithium insertion, an increasing fraction of the material changes its crystallographic struc-
ture from anatase TiO2 to Li-rich lithium titanate Li0.6TiO2 (sometimes a different stoichiometry
is reported: Li0.5TiO2 or Li0.55TiO2; as will be shown below it depends on the size of TiO2 crys-
tallites). Phase separation occurs on the Li-rich and the Li-poor (Li0.01TiO2) phases [32].

Such a two-phase equilibrium system in the electrodes provides a constant electrical potential
between their electrodes (so-called plateau in potential on the discharge curve) for a wide range of
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the lithium concentration, because only the relative phase fractions vary on charging (or discharg-
ing) the lithium while their stoichiometries remain unchanged [33]. The Li-rich lithium titanate
phase progressively moves inside the anatase electrode as a front parallel to the interface and
returns during lithium extraction exactly in the way it came in [34].

Both in the anatase and in the lithium titanate lattice, Li is found to be hopping over the
available sites with activation energies of 0.2 and 0.09 eV, respectively. However, macroscopic
intercalation data show activation energies of 0.5 eV because the diffusion through the phase
boundary determines the activation energy of the overall diffusion and the overall diffusion rate
itself [32].

Recent NMR spectroscopy study [35] of nanosized lithiated anatase revealed further important
details of the phase behavior and morphology. The coexistence of the Li-poor and the Li-rich
phases is possible only in the particles of the size exceeding 120 nm due to the surface strain
(occurring between the phases) which becomes energetically unfavourable in small particles. For
the system of 40 nm particles, phase stoichiometries are not stable indicating an enhanced solid
solution behavior: lithium content increases to Li0.1TiO2 in Li-poor and to Li0.7TiO2 in Li-rich
phases. Further decrease of the particle size makes it possible to find a fully occupied phase Li1TiO2

[36]. It can coexist with the Li-rich one penetrating to the 3–4 nm depth below the particle surface
(or transforming all the particles less than 7 nm in size). The poor Li ion conductivity can be due
to the full occupation of the octahedral voids, whereas ion diffusion requires vacancies. Most likely,
the short diffusion path in nanostructured materials diminishes this problem as well as elevation
of temperature.

As established by quasi-elastic neutron scattering [37] Li ions can occupy two distinct positions
within the octahedral interstices along the c axis (but only one of them at a time). In the Li-anatase
those positions are symmetrical, separated by 1.61 Å and equally occupied while in the Li-titanate
they are shifted, separated by only 0.7 Å and nonequivalent (nLi1 = 0.32 and nLi2 = 0.19 at 10 K
– the fitting of the site occupancy assuming a Boltzmann distribution indicates that the energy
difference between the positions is 3.8 meV; positions 1 and 2 have an antiparallel orientation in
the neighbouring octahedra due to the phase symmetry). A combination of quasi-elastic neutron
scattering and force field molecular dynamics simulations shows that Li is hopping on a picosecond
time scale between the two sites in the octahedral interstices [38,39].

Lithium was also found to occupy multiple positions inside the distorted oxygen octahedron of
LixMg0.1Ni0.4Mn1.5O4 spinel [17]. Quite possible that this feature is common to a wide family of
crystals with a similar structure but has been found only recently due to a higher precision of the
experiment.

2. Symmetry analysis of the lithium intercalated anatase: a possibility of
internal piezoeffect

1

2

2

1
k=1

k=2

Figure 1. A schematic illustration of the posi-
tions available for the intercalated lithium ion
in oxygen octahedron voids of the anatase ele-
mentary cell. Occupation of positions 1 and 2
is equal in the poor Li-anatase phase and dif-
ferent in the rich Li-titanate phase; their ori-
entations are antiparallel in the neighbouring
octahedra (sublattices k = 1, 2).

As mentioned before, the standard crystallo-
graphic cell of body-centered anatase is chosen
to consist of two elementary cells for conveni-
ence. Thus, the respective space group D19

4h (or
I41/amd origin choice 2, No. 141) has a double
set of symmetry operations as compared with its
point symmetry group D4h (4/mmm). However,
a single elementary cell obeys all transformation
rules. It consists of two formula units, i.e. two oc-
tahedral voids (formed by oxygen anions) where
the intercalated lithium ion can reside in one of
two available positions (figure 1).

Occupation of each octahedron by the lithium
ion could be easily described by the Hubbard pro-
jection operator Xpp

ik , where i is the lattice site
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index (i.e. the elementary cell index), k = 1, 2 is the sublattice index (the octahedron index), and
the state p = 0 corresponds to an empty octahedron while the states p = 1, 2 denote the lithium ion
in positions 1 or 2, respectively. The Hubbard operator formalism reflects the microscopic structure
of the system and is very convenient for further calculations.

Alternatively, in the pseudospin formalism localization of lithium in a certain position can be
described by the pseudospin operator ŝik = (−1)k−1(X11

ik −X22
ik ). However, one should also take

into account the total occupation of the void n̂ik = X11
ik +X22

ik . Such an approach separates dipole-
dipole (pseudospin) and particle-particle interactions in the spirit of the Blume-Emery-Griffiths
(BEG) model [40].

Finally, symmetrized linear combination of the averages

n± =
1

2
(n1 ± n2), η± =

1

2
(s1 ± s2), (nk ≡ 〈n̂ik〉, sk ≡ 〈ŝik〉) (1)

inherit symmetry properties of the system, thus being the order parameters of possible phase
transitions (see appendix). Namely, n+ (it transforms according to the irreducible representation
(IR) A1g of the point group D4h) corresponds to the lithium concentration (the average occupation
of octahedral voids), n− (IR B2u) is the difference of the void occupations in the sublattices 1 and
2, η+ (IR A2u) is the polarization along the z axis, and η− (IR B1g which corresponds to the
phase transition into the Li-titanate point symmetry subgroup D2h) simultaneously describes two
phenomena: the antipolarization along the z axis (unlike the true antiferroelectric ordering with
doubling of the unit cell, a mutual compensation of sublattice polarizations occurs here just as
in the Mitsui model) and the deformation Uxx − Uyy in the ab plane. Such a coexistence of the
antipolar ordering and the deformation belonging to the same irreducible representation and, thus,
described by a common order parameter is called internal piezoeffect.

3. Phase equilibrium in the framework of the Landau expansion

The symmetry analysis performed in the previous section can serve as a background for a
qualitative description of thermodynamics of the considered system in the framework of Landau
expansion

F = F0 +
1

2
aρ2 +

1

3
bρ3 +

1

4
cρ4 +

1

2
Aη2 +

1

4
Bη4 − ση − µρ , (2)

where ρ describes the intercalant (lithium) concentration and hence corresponds to the n+ intro-
duced above, µ is the chemical potential, the order parameter η is proportional to the η−, and
the conjugated “field” σ describes the applied stress; the expansion coefficients should satisfy the
following conditions

A = A0 +A1ρ, B > 0, c > 0.

The equilibrium state of the system is achieved at the minimum of the free energy

∂F

∂ρ
= aρ+ bρ2 + cρ3 +

1

2
A1η

2 − µ = 0, (3)

∂F

∂η
= Aη +Bη3 − σ = 0. (4)

Further calculations are limited to the case of zero “field”: σ = 0. Then, equation (4) can have
either trivial solution η = 0 or nonzero one:

A+Bη2
0 = 0 ⇒ η0 = ±

√
−(A0 +A1ρ)/B. (5)

At B > 0, η0 takes on a real value under the condition A0 + A1ρ < 0 which means A0 > 0 and
A1 < 0 giving

η2
0 =
|A1|ρ−A0

B
, ρ >

A0

|A1|
. (6)

Let us consider the cases η = 0 and η 6= 0 separately.
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I. η = 0
As follows from equation (3)

ϕ(ρ) = µ, ϕ(ρ) ≡ aρ+ bρ2 + cρ3. (7)

This equation could have three solutions in a certain region of chemical potential values (i.e.
the possibility of a phase transition with the jump of ρ) if the extrema of the function ϕ(ρ)
exist, i.e. the equation

∂ϕ(ρ)

∂ρ
= a+ 2bρ+ 3cρ2 = 0

has nonzero solutions

ρ1,2 =
1

3c

[
−b±

√
b2 − 3ac

]
, (8)

which imposes a condition on the Landau expansion coefficients

b2 − 3ac > 0. (9)

An equivalent condition could be obtained by setting the second derivative to zero

∂2ϕ(ρ)

∂ρ2
= 2b+ 6cρ = 0,

which gives the ordinate of the inflection point

ρ∗ = −b/3c, (10)

and demanding a negative value of the first derivative at this point ∂ϕ(ρ)/∂ρ|ρ=ρ∗ < 0. Since
the curve ϕ(ρ) always crosses the inflection point (which is the symmetry centre of the curve),
this point is also crossed by the line of the phase transition occurring at the following value
of chemical potential

ϕ(ρ∗) =
b

3c

(
2b2

9c
− a

)
= µ∗. (11)

Considering that the parameter ρ describes concentration, we have an additional condition
ρ > 0: both solutions of equation (8) are positive if b > 0.

II. η = ±η0

After the identical calculations one can obtain an expression similar to equation (7) but
slightly renormalized:

ãρ+ bρ2 + cρ3 = µ̃ , ã = a− |A1|2
2B

, µ̃ = µ− A0|A1|
2B

. (12)

The phase transition exists if
b2 − 3ãc > 0 (13)

and it occurs at the following value of chemical potential

µ̃∗ =
b

3c

(
2b2

9c
− ã

)
. (14)

As follows from the above considerations, the behaviour of the system at change of the chemical
potential depends on the values of Landau expansion coefficients. So, further considerations are
limited to the case which qualitatively describes the phase transition between the poor phase I
(η = 0, ρ→ 0) and the rich phase II (η 6= 0, ρ→ 0.5) in the lithiated anatase.

Comparing conditions (9) and (13) one can derive the condition

3ac− 3

2

|A1|2
B

c < b2 < 3ac (15)
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describing the case when only one solution for ρ exists in the phase I while there are three possible
solutions in the phase II at nonzero η0. Combining the equations for equilibrium values of ρ and
the condition of the first order phase transition FI = FII between the phases I and II, we obtain a
set of equations for values of ρI, ρII and µ at the phase transition point

aρI + bρ2
I + cρ3

I = µ,

ãρII + bρ2
II + cρ3

II = µ̃,

1

2
aρ2

I +
1

3
bρ3

I +
1

4
cρ4

I − µρI =
1

2
aρ2

II +
1

3
bρ3

II +
1

4
cρ4

II +
1

2
A(ρII)η

2
0(ρII) +

1

4
Bη4

0(ρII)− µρII. (16)
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Figure 2. Dependence of free energy on chem-
ical potential for branches with zero and
nonzero order parameter η: the first order
phase transition takes place.

A qualitative illustration of such a phase
transition, which corresponds to the case in the
lithium intercalated anatase, is given in figure 2
for the following set of Landau coefficients (2):
a = 10.8, b = −35.2, c = 45.7, A0 = 0.2,
A1 = −9.1, B = 9. This set satisfies the con-
dition (15) and, as follows from the free energy
analysis, at the rise of chemical potential the first
order phase transition from the branch I to the
branch II (16) precedes the possible second order
phase transition with a continuous growth of the
nonzero value of ρ at ρ(µ) = ρc.

Due to the dependence on parameter ρ of the
coefficients of parameter η both of them have si-
multaneous jumps at the point of the first order
phase transition (figure 3). Parameter η should
be considered as a true order parameter of this
transition because it is exactly equal to zero in
the initial phase. It should be also noted that

(due to proximity of the phase transition points) at increase of chemical potential the system could
“pass through” the first order phase transition point (a metastable state) and the second order
phase transition does occur followed by the first order phase transition in the extremum point of
ρ(µ). All the above considerations are valid for the case µ = const. However, the lithiated anatase
corresponds rather to the system with the fixed lithium concentration (ρ = const). In this case the
system separates into phases with concentrations ρI and ρII (figure 3) and respective weights wI

and wII, so ρfixed = wIρI + wIIρII. The chemical potential of the system is constant and is equal
to the chemical potential value at which the first order phase transition occurs in the µ = const
regime.

Using the equality
∂2F

∂η2
= A+ 3Bη2 =

∂σ

∂η
,

one can calculate the susceptibility which describes the reaction of the order parameter η (the
deformation Uxx − Uyy) with respect to the “field” σ (this susceptibility is related to the elastic
modulus of the system)

χ ≡ ∂η

∂σ
=

[
A0 − |A1|ρ+ 3Bη2

]−1
. (17)

Its explicit form depends on the phase

η = 0: χI = [A0 − |A1|ρI]
−1
, (18)

η = η0 : χII =
1

2
[|A1|ρII −A0]

−1
. (19)

Due to the phase transition, the susceptibility has a jump whose value can be calculated from
expressions (18) and (19) using solutions of the set (16).
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Figure 3. A jump of order parameters ρ (left) and η (right) at the first order phase transition.
Thermodynamically stable solutions are marked with the solid curve. In the ρ = const regime
the phase separation into phases with ρI and ρII takes place.

Utilizing the equality A0 − |A1|ρ = −Bη2, one can rewrite the susceptibility (17) at η 6= 0 in
the form

χ =
[
2Bη2

]−1
. (20)

Thus, the susceptibility could diverge in both cases (18) and (20) approaching the point of the
possible second order phase transition from the respective direction.

4. Lattice model for the lithium intercalated anatase

4.1. Model Hamiltonian and thermodynamics in the mean field approximation

As demonstrated in the previous section, the Landau expansion combined with the symmetry
analysis gives a good qualitative picture of the phase separation in the lithiated anatase. However,
a detailed description of temperature dependent thermodynamic properties of the system could be
derived only in the framework of a microscopic approach. Let us construct a model Hamiltonian
of the lattice gas type:

Ĥ = Ĥ1 + Ĥint + Ĥdef , (21)

where besides the single particle term Ĥ1 the interparticle interaction Ĥint and the lattice defor-
mation Ĥdef are taken into account:

Ĥ1 =
∑

i

∑

k

∑

p

(ε0 − µ)Xpp
ik − h

∑

i

(si1+si2)−∆
∑

i

(si1−si2),

Ĥint = −1

2

∑

i6=j

∑

k

∑

pq

W pq
kk (i, j)Xpp

ik X
qq
jk ,

Ĥdef =
1

2
NCU2, (22)

where

∆ = αU, U = Uxx − Uyy; k = 1, 2, p = 0, 1, 2;

µ is chemical potential of the intercalant particles (let us assign ε0 as its origin), h is the external
electric field, ∆ is the deformation induced internal field, U is the effective deformation in the
XY plane (σ = ∂(Ω/N)/∂U defines the stress), W pq

kk (i, j) are the interaction energies between the
particles in the respective positions. Hence, we take into account both the semiphenomenological
deformational shift of the lattice energy Ĥdef and the effective internal staggered field ∆ (similar
to the one in the Mitsui model) which appears due to the intercalation induced lattice deformation
making the lithium intercalation positions inequivalent in the pairs. Unlike the ordinary lattice gas
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approach, the proposed model considers two equilibrium positions for intercalated particles. Such
multistate models (see, e.g. [41,42]) are rather rare since monopositional intercalated materials are
the most common. Deformational effects have been also taken into account because an effective
potential for the Li ions was affected by the intercalation-induced distortion of the host [43].

In the mean field approximation, Hamiltonian (21) becomes linear

ĤMFA = NE0 +
∑

i

∑

k

∑

p

HkpX
pp
ik . (23)

Taking into account the symmetry properties of the Fourier transforms of the interaction energies
in the centre of the Brillouin zone

W 11
11 = W 22

11 = W 11
22 = W 22

22 , W 12
11 = W 21

11 = W 12
22 = W 21

22 ,

W 12
12 = W 21

21 = W 21
12 = W 12

21 , W 11
12 = W 22

12 = W 11
21 = W 22

21 ,

one can write down the expressions for average values and effective fields

E0 = 1
2W

11
11

(
〈X11

1 〉2 + 〈X22
1 〉2 + 〈X11

2 〉2 + 〈X22
2 〉2

)
+W 12

11

(
〈X11

1 〉〈X22
1 〉+ 〈X11

2 〉〈X22
2 〉

)

+W 11
12

(
〈X11

1 〉〈X11
2 〉+ 〈X22

1 〉〈X22
2 〉

)
+W 12

12

(
〈X11

1 〉〈X22
2 〉+ 〈X22

1 〉〈X11
2 〉

)
,

H11 = −µ− h−∆−
(
W 11

11 〈X11
1 〉+W 12

11 〈X22
1 〉+W 11

12 〈X11
2 〉+W 12

12 〈X22
2 〉

)
,

H12 = −µ+ h+ ∆−
(
W 11

11 〈X22
1 〉+W 12

11 〈X11
1 〉+W 11

12 〈X22
2 〉+W 12

12 〈X11
2 〉

)
,

H21 = −µ+ h−∆−
(
W 11

11 〈X11
2 〉+W 12

11 〈X22
2 〉+W 11

12 〈X11
1 〉+W 12

12 〈X22
1 〉

)
,

H22 = −µ− h+ ∆−
(
W 11

11 〈X22
2 〉+W 12

11 〈X11
2 〉+W 11

12 〈X22
1 〉+W 12

12 〈X11
1 〉

)
. (24)

Average occupations of the positions can be obtained as solutions of the selfconsistency equation
set

〈Xpp
k 〉 = Z−1

k e−βHkp , (25)

where partition functions of sublattices are as follows:

Zk = 1 + e−βHk1 + e−βHk2 (26)

and thermodynamically stable solutions are chosen according to the criterion of the minimum of
grand canonical potential

Ω/N = E0 + 1
2CU

2 −Θ ln(Z1Z2). (27)

For the (n, s)-representation (introduced in section 2) selfconsistency equations look like

nk = Z−1
k

(
e−βHk1 + e−βHk2

)
,

sk = (−1)k−1Z−1
k

(
e−βHk1 − e−βHk2

)
, (28)

where the term E0 and the effective fields are as follows

E0 = 1
4

[
W+

11(n2
1 + n2

2) +W−
11(s2

1 + s2
2) + 2W+

12n1n2 − 2W−
12s1s2

]
,

H11 = −µ− h−∆− 1
2

(
W+

11n1 +W−
11s1 +W+

12n2 −W−
12s2

)
,

H12 = −µ+ h+ ∆− 1
2

(
W+

11n1 −W−
11s1 +W+

12n2 +W−
12s2

)
,

H21 = −µ+ h−∆− 1
2

(
W+

12n1 +W−
12s1 +W+

11n2 −W−
11s2

)
,

H22 = −µ− h+ ∆− 1
2

(
W+

12n1 −W−
12s1 +W+

11n2 +W−
11s2

)
, (29)

and new combinations of interaction energies are introduced

W±
11 = W 11

11 ±W 12
11 , W±

12 = W 11
12 ±W 12

12 . (30)
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Finally, the symmetrized combinations of averages (1) (which can be the order parameters of
the system) are found from the following set

n± =
1

2

[
Z−1

1

(
e−βH11 + e−βH12

)
±

(
e−βH21 + e−βH22

)]
,

η± =
1

2

[
Z−1

1

(
e−βH11 − e−βH12

)
∓

(
e−βH21 − e−βH22

)]
, (31)

with the respective definitions for E0 and the effective fields

E0 = 1
2

[
W++n

2
+ +W+−n

2
− +W−−η

2
+ +W−+η

2
−

]
,

H11 = −µ− h−∆− 1
2 (W++n+ +W+−n− +W−−η+ +W−+η−) ,

H12 = −µ+ h+ ∆− 1
2 (W++n+ +W+−n− −W−−η+ −W−+η−) ,

H21 = −µ+ h−∆− 1
2 (W++n+ −W+−n− −W−−η+ +W−+η−) ,

H22 = −µ− h+ ∆− 1
2 (W++n+ −W+−n− +W−−η+ −W−+η−) , (32)

as well as symmetrized interaction energies

W+± = W+
11 ±W+

12 , W−± = W−
11 ±W−

12 . (33)

Considering the definition σ = ∂(Ω/N)/∂U with account of the equality ∆ = αU and the
expression for grand canonical potential (27), the equation for the deformation is obtained

U =
2α

C
(σ̃ + η−), (34)

where σ̃ = σ/2α is a scaled dimensionless stress. As it follows

1

2
CU2 = k∆(σ̃ + η−)2, ∆ = k∆(σ̃ + η−), (35)

where k∆ = 2α2/C. Thus, the deformation (34) can occur spontaneously (giving rise to the anti-
symmetrical internal field ∆) due to the appearance of the order parameter η− even at the absence
of the stress.

The deformation U is a proper variable for the grand canonical potential Ω (27) but in our case
it is convenient to deal with the stress σ (conjugated to U). Performing the Legendre transformation

dΩ = · · ·+ σdU = · · ·+ d(σU)− Udσ,

one can build the desired form of grand canonical potential Ω̃

Ω̃ = Ω− σU. (36)

The respective deformational term of the thermodynamic potential looks like

1

2
CU2 − σU = k∆(η2

− − σ̃2).

4.2. Phase diagram of the ground state

At zero temperature, the homogenious system, which is described by Hamiltonian (21), could
reside in one of the nine possible states |p1p2〉 (let us also use a more descriptive notation where
“up” and “down” arrows indicate occupied positions, e.g. |10〉 ≡ |↑0〉) with the following values of
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thermodynamic potential (36):

|00〉 ≡ |0〉 : Ω̃0 = −k∆σ̃
2,

|↑0〉 ≡ |1〉 : Ω̃1 = −µ− h−W1 − k∆(σ̃ + 1
2 )2,

|↓0〉 ≡ |2〉 : Ω̃2 = −µ+ h−W1 − k∆(σ̃ − 1
2 )2,

|0↓〉 ≡ |3〉 : Ω̃3 = −µ+ h−W1 − k∆(σ̃ + 1
2 )2,

|0↑〉 ≡ |4〉 : Ω̃4 = −µ− h−W1 − k∆(σ̃ − 1
2 )2,

|↑↑〉 ≡ |5〉 : Ω̃5 = −2µ− 2h− 2W2 − k∆σ̃
2,

|↓↓〉 ≡ |6〉 : Ω̃6 = −2µ+ 2h− 2W2 − k∆σ̃
2,

|↑↓〉 ≡ |7〉 : Ω̃7 = −2µ− 2W3 − k∆(σ̃ + 1)2,

|↓↑〉 ≡ |8〉 : Ω̃8 = −2µ− 2W3 − k∆(σ̃ − 1)2; (37)

where

W1 = 1
8 (W++ +W+− +W−− +W−+) = 1

2W
11
11 ,

W2 = 1
4 (W++ +W−−) = 1

2 (W 11
11 +W 12

12 ),

W3 = 1
4 (W++ +W−+) = 1

2 (W 11
11 +W 11

12 ). (38)

As is obvious from expressions (37), at σ̃ > 0 (in particular at σ̃ → +ε) the levels 1, 3, and 7
always lie below the levels 4, 2 and 8, respectively. So, the latter will not be further considered.

Setting equal thermodynamic potentials of different phases, one can obtain a set of equations
for the respective phase transitions:

|0〉 ↔ |1〉 : µ = −h−W1 − k∆(σ̃ + 1
4 ),

|0〉 ↔ |3〉 : µ = h−W1 − k∆(σ̃ + 1
4 ),

|0〉 ↔ |5〉 : µ = −h−W2,

|0〉 ↔ |6〉 : µ = h−W2,

|0〉 ↔ |7〉 : µ = −W3 − k∆(σ̃ + 1
2 ),

|1〉 ↔ |3〉 : h = 0,

|5〉 ↔ |6〉 : h = 0,

|5〉 ↔ |7〉 : µ = (W3 −W2) + k∆(σ̃ + 1
2 ),

|6〉 ↔ |7〉 : µ = −(W3 −W2)− k∆(σ̃ + 1
2 ),

|1〉 ↔ |5〉 : µ = −h+ (W1 − 2W2) + k∆(σ̃ + 1
4 ),

|3〉 ↔ |6〉 : µ = h+ (W1 − 2W2) + k∆(σ̃ + 1
4 ),

|1〉 ↔ |7〉 : µ = h+ (W1 − 2W3)k∆(σ̃ + 3
4 ),

|3〉 ↔ |7〉 : µ = −h+ (W1 − 2W3)k∆(σ̃ + 3
4 ),

|1〉 ↔ |6〉 : µ = 3h+ (W1 − 2W2) + k∆(σ̃ + 1
4 ),

|3〉 ↔ |5〉 : µ = −3h+ (W1 − 2W2) + k∆(σ̃ + 1
4 ). (39)

Various possible phase diagrams of the ground state in the µ–h plane (which are calculated from
equations (39)) are depicted in figures 4–7 using the following designations:

µ0 = −W3 − k∆(σ̃ + 1
2 ),

µ1 = −W1 − k∆(σ̃ + 1
4 ),

µ2 = W1 − 2W3 − k∆(σ̃ + 3
4 ),

µ3 = W1 − 2W2 + k∆(σ̃ + 1
4 ),

h1 = W3 −W2 + k∆(σ̃ + 1
2 ). (40)
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Figure 4. The most general form of the
ground state phase diagram: existence of in-
termediate half-filled phases and the possi-
bility of a direct transition from the empty
state to the full one.

Figure 5. The ground state phase diagram
with the phase transition between the empty
and half-filled states which corresponds to
the Li-poor – Li-rich phase equilibrium in the
lithiated anatase.

It is evident that the form of the phase diagram depends on the values of model parameters, so we
shall analyse some important cases below.

In the most general case (figure 4), the phase diagram consists of empty, half-filled, and full
states which differ in occupation and polarization of sublattices. Two-sublattice nature of the model
demonstrates itself in the intermediate half-filled states and the central nonpolar full state thus
being noticeably different from the respective ground state diagram of the BEG model. It should
be stressed that due to the exclusion of the states 2, 4, and 8 the phase |↑0〉 ≡ |1〉 is symmetrical
to the phase |0↓〉 ≡ |3〉. In the considered case, both transitions between the empty and half-filled
phases as well as between the empty and full phases are possible. The latter transition takes place,
e.g. at zero field h which is contrary to the situation in the lithiated anatase where only half-filled
phases are accessible.

Coexistence of the Li-poor and Li-rich phases in the lithiated anatase is fairly described by
a phase diagram in figure 5. For any value of the external electric field h (in particular, at zero
field) the system can pass from the empty state to the half-filled state only. In the regime of fixed
concentration such a phase transition manifests itself as a phase separation.
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Figure 6. The effect of stress imposition: the ground state phase diagram in the µ–σ̃ coordinates
at h = 0 (left) and a family of ground state phase diagrams for different values of the stress
(right). Other model parameters have the following values: W++ = 1, W+− = 1.5, W−− = 0.2,
W−+ = 0.3, k∆ = 0.05.
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Such a phase diagram exists if conditions µ1 < µ2 < µ3 are satisfied. Taking into account
definitions (40) and (38) and neglecting deformational effects one can rewrite the above inequality
in a more clear form

W 12
12 < W 11

12 < 0. (41)

Thus, this type of a phase diagram exists if the interactions between the orientational states in
different states are repulsive with the interaction between the unlike states (with different p, i.e.
|↑0〉 and |0↑〉 or |↓0〉 and |0↓〉) being stronger than the interaction between the like states (with
identical p, i.e. |↑0〉 and |0↓〉 or |↓0〉 and |0↑〉). These conclusions are in full qualitative agreement
with the predictions of the molecular dynamics modelling [37].

In view of deformational effects, the inequalities µ1 < µ2 < µ3 transform to

−k∆(σ̃ + 1
4 ) < −W 11

12 − k∆(σ̃ + 3
4 ) < −W 12

12 + k∆(σ̃ + 1
4 ). (42)

Thus, application of the stress σ̃ favours the phase diagram in figure 5 because µ1 and µ2 are shifted
to the left ∼ σ̃ and µ3 is moved towards the right ∼ σ̃. So the domains of the phases |↑0〉 and |0↓〉
expand. However, at h = 0 the difference µ2 − µ1 = −W 11

12 − 1
2k∆ does not depend on the stress

µ

h

h1

−h1

µ0

|00〉

|↑↑〉

|↓↓〉

|↑↓〉

Figure 7. A reduced form of the ground state
phase diagram: only the empty and full phases
coexist.

(as one can see on the phase diagram µ–σ̃ in fig-
ure 6) and half-filled phases exist if W 11

12 < − 1
2k∆.

A strong enough stress σ̃ can “open” these phases
even if conditions (41) are not satisfied. It is
easily seen from inequalities (42) that the ap-
pearance of spontaneous deformation also favours
the expansion of the half-filled domains (even at
σ̃ = 0). The above rationales are confirmated by
the family of phase diagrams in figure 6 calcu-
lated for different stress values σ̃ (hereinafter all
model parameters are given in the dimensionless
units normalized by W++ = 1; in the consid-
ered case W 11

11 = 0.75, W 12
11 = 0.5, W 11

12 = −0.1,
W 12

12 = −0.15 in such a manner satisfying condi-
tions (41)).

If conditions (42) fail, the half-filled phases
are suppressed (figure 7). In addition, if h1 6 0,

then the central full nonpolar phase vanishes and the ground state phase diagram reduces to the
respective one for the BEG model.

4.3. Temperature behaviour of phase diagrams and phase separation
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Figure 8. The three-dimensional phase diagram
in the µ–h–Θ coordinates. Model parameters
have the following values: W++ = 1, W+− = 1.5,
W−− = 0.2, W−+ = 0.3, k∆ = 0.05, σ̃ = 0.

Since the considered model inherits features
of the Mitsui and BEG models, one can expect
a quite complex thermodynamical behaviour
and the above analysis of the ground state has
proved these anticipations. As it is seen from
the temperature axis complemented analogue
(figure 8) of the diagram in figure 5, the lines
of phase transitions form the surfaces and some
new phases appear. A comprehensive analy-
sis of the obtained diagram is too complicated
and goes beyond the scope of this research, so
we consider the case with intermediate half-
filled phases corresponding to the intercalated
anatase.

With this in mind let us analyse the phase
diagram at the absence of the external electric
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field h (figure 9). At low temperature, in full agreement with the ground state diagram, there
are three phases: “empty”, “half-filled”, and “full” (due to the temperature “blurring” at higher
temperatures these names loose their exact meaning). At high temperatures in the whole range
of chemical potential there is only “empty” phase where all order parameters are zero except the
concentration n+ which changes monotonously.
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Figure 9. The phase diagram µ–Θ at the ab-
sence of the electric field. Other model param-
eters are as follows: W++ = 1, W+− = 1.5,
W−− = 0.2, W−+ = 0.3, k∆ = 0.05, σ̃ =
0. Phase names (“empty”, “half-filled”, and
“full”) correspond to the ground state. There
are two tricritical points (TCPs) on the phase
transition line limiting the “half-filled” phase
from the top.

The “half-filled” phase provides the most
complex behaviour of the order parameters. As
is seen from the “cross-section” at the chemi-
cal potential value µ = −0.38 (figure 10), the
rise of temperature leads to the suppression of
the dipole-dipole ordering (order parameters η+

and η−) and it completely vanishes at the line
of the second order phase transition which is lo-
cated inside the “half-filled” phase. The phase it-
self is limited from the top side by the line of the
phase transition with zeroing of n−. The upper
part of the phase is separated by the tricritical
points (TCPs) marking the change of the phase
transition order from the second to the first one.
The “full” phase is also limited from the top side
by the line of the second order transitions where
η− → 0.

Behaviour of order parameters at the change
of chemical potential (figure 10) clearly distin-
guishes the phases separated by the lines of the
first order phase transitions (e.g. a characteristic
feature of the “half-filled” phase is n− 6= 0). In a
certain temperature range inside the “half-filled”
phase, the above mentioned phase transition be-
tween the polar and non-polar states takes place.

In a wide temperature range, the appearance of the phase diagram “chemical potential µ –
stress σ̃” (figure 11) closely resemble the ground state one (figure 6). However, the further rise of
temperature leads to a fast suppression of the “half-filled” phase.
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Figure 10. Phase diagram “cross-sections”: temperature dependences of order parameters in
the “half-filled” phase (left: µ = −0.38; in the picture scale curves η+ and η− overlap) and
dependences of order parameters on chemical potential exhibiting phase transitions of the second
and the first orders (right: Θ = 0.136). Other model parameters have the following values:
W++ = 1, W+− = 1.5, W−− = 0.2, W−+ = 0.3, k∆ = 0.05, σ̃ = 0.
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Figure 11. A family of phase diagrams “chem-
ical potential µ – stress σ̃” for various temper-
ature values at h = 0. Other model parameters
have the following values: W++ = 1, W+− =
1.5, W−− = 0.2, W−+ = 0.3, k∆ = 0.05.

Figure 12. The diagram of the phase sep-
aration into “poor” (n+ = 0) and “rich”
(n+ = 0.5) phases in the regime n+ = const
(W++ = 1, W+− = 1.5, W−− = 0.2, W−+ =
0.3, k∆ = 0.05, σ̃ = 0).

Since in the regime of a fixed chemical potential (µ = const) the “empty” and “half-filled”
phases on the phase diagram µ–Θ (figure 9) are separated mainly by the line of the first order
phase transitions, the system separates into “poor” and “rich” phases (figure 12) in the regime
of the fixed concentration (n+ = const). As one can see, in a wide region of low temperatures a
separation into concentrations n+ = 0 and n+ = 0.5 occurs which well reproduces the coexistence
of Li-poor and Li-rich phases in the intercalated anatase. The phase separation region narrows at
heating and finally closes up at the point corresponding to the tricritical point in figure 9. Another
short line of phase transitions (starting at the kink of the right boundary) relates to the suppression
of polar states in a “half-filled” phase.
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Figure 13. The phase diagram µ-Θ at h = 0
for the case of the first order phase transition
between “empty” and “full” phases (n− = 0 and
η+ = 0 in both of them; W++ = 1, W+− = 0,
W−− = 0, W−+ = 0.3, k∆ = 0.05, σ̃ = 0).

A question arises why in the microscopic
model we should deal with four order param-
eters while the Landau expansion is quite suc-
cessful with only two? First of all, the semiphe-
nomenological description is qualitative only
and it just demonstrates the possibility of the
first order phase transition with simultane-
ous jumps of concentration and the order pa-
rameter η as the minimal set necessary to
describe the phase separation in the litiated
anatase. Such a picture corresponds to a di-
rect phase transition between the “empty” and
“full” phases (see the phase diagram at zero ex-
ternal field in figure 9) when other order param-
eters (n− and η+) are always equal to zero. The
dependences of the “active” order parameters
n+ and η− on chemical potential (figure 14)
closely resemble the respective curves for ρ and
η obtained by the Landau expansion (figure 3).
But if one should take into account the “half-

filled” phase (what is inevitable for description of the lithiated anatase), the order parameters (n−

and η+) became nonzero and the full set of four parameters should be considered as it has been
done above.
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Figure 14. A jump of order parameters n+ (left) and η− (right) at the first order phase transition
illustrating the previous phase diagram. Thermodynamically stable solutions are marked with
the solid curve. Other model parameters have the following values: W++ = 1, W+− = 0, W−− =
0, W−+ = 0.3, k∆ = 0.05, Θ = 0.13, h = 0, σ̃ = 0.

5. Conclusions

To sum up, the present study was inspired by two features of the lithium intercalated anatase:
coexistence of poor and rich phases and two possible localizations of Li ion in the oxygen octahedron
along the c axis. The second one implies the possibility of (anti)polar ordering what is beyond the
scope of a simple lattice gas model well describing a phase separation. So a model of Blume-Emery-
Griffits type has been used which takes into account both particle-particle and dipole-dipole terms.

Another less obvious peculiarity of the considered compound is the intercalation induced de-
formation of lattice: Li-rich phase has a lower symmetry (the axes a and b become inequivalent)
resulting in preferential occupation of one position of the mentioned pairs which has an alternating
orientation in the neighbour octahedra (i.e. in different sublattices). Performed symmetry analysis
explains this phenomena by the possibility of internal piezoeffect: the deformation in the ab plane
as well as the appearance of an effective internal staggered field (causing the ordering of antiferro-
electric type like as in the Mitsui model) both belong to the same irreducible representation of the
initial high-symmetry anatase phase and, hence, are described by the common order parameter.
Thus, increase of the intercalant content could result in a phase transition with simultaneous jumps
of the average occupation and antipolarization (the latter accompanied by the jump of dielectric
susceptibility) as it has been proved by the Landau expansion.

The microscopic approach, combining the abovementioned features of both the BEG and Mitsui
models, gives semiquantitative description of phase coexistence in the lithiated anatase. Analysis
of the ground state phase diagram confirms a possibility of the phase transition between “empty”
and “half-filled” phases which corresponds to the phase separation into Li-poor and Li-rich phases
in the crystal. As the model predicts, such a separation remains near constant in a wide temper-
ature range. The microscopic approach could easily reproduce the Landau expansion results as
the particular case of the “empty”-“full” transition described by the two order parameters. But
the presence of the “half-filled” phase makes it necessary to deal with the full set of the order
parameters allowed by the crystal symmetry.

However, some issues are still open. The model predicts that external stress should shift the
phase transition between empty and half-filled phases to the lower values of chemical potential.
An experimental evidence of this conjecture is still missing. The real average occupation in the
Li-rich phase is 0.55–0.6 instead of the value n+ = 0.5 in the half-filled model phase. This de-
viation could be explained by a multidomain nature of the Li-rich phase containing “impurities”
of the full-occupied LiTiO2 phase while the model phases are monodomain by definition. The
same explanation applies to the issue of absence of the total polarization in the half-filled phases:
at zero external field these phases with opposite polarizations could coexist in different domains
providing a full mutual compensation. A similar mechanism of the mutual compensation of po-
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larization in Li-“chains” with an opposite Li orientation is supported by the molecular dynamics
simulations [37].

Acknowledgements

Oleh Velychko is deeply indebted to the project “Improvement of functional possibilities of
the Western coordinating grid-centre of Ukrainian Academic Grid (the City of Lviv)” for financial
support and a possibility to perform numerical calculations on its cluster.

Appendix: Table of the point group D4h symmetry transformations for the
symmetrized averages

Table 1. Transformations of the symmetrized linear combinations of the averages which corre-
spond to the irreducible representations (IR) of the point symmetry group D4h. The operations,
which also belong to the lower symmetry subgroup D2h, are marked by asterisk; they keep the
symmetrized combination η− (IR B1g) invariant.

IR ∗E ∗C
(z)
2 C4 C3

4
∗C

(y)
2

∗C
(x)
2 C

(xy)
2 C

(xȳ)
2

A1g n+ n+ n+ n+ n+ n+ n+ n+

B2u n− n− −n− −n− −n− −n− n− n−

A2u η+ η+ η+ η+ −η+ −η+ −η+ −η+

B1g η− η− −η− −η− η− η− −η− −η−

IR ∗I ∗m(xy) S3
4 S4

∗m(xz)
∗m(yz) m(xȳ) m(xy)

A1g n+ n+ n+ n+ n+ n+ n+ n+

B2u −n− −n− n− n− n− n− −n− −n−

A2u −η+ −η+ −η+ −η+ η+ η+ η+ η+

B1g η− η− −η− −η− η− η− −η− −η−
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Фазове розшарування в iнтеркальованому лiтiєм анатазi:
теорiя

О.В.Величко, I.В.Стасюк

Iнститут фiзики конденсованих систем НАН України, 79011 Львiв, вул. I. Свєнцiцького, 1

Отримано 25 травня 2009 р., в остаточному виглядi – 26 травня 2009 р.

Для iнтеркальованого лiтiєм анатазу, що використовується у лiтiй-iонних батереях, характернi спiв-
iснування багатої та бiдної на лiтiй фаз та наявнiсть двох можливих позицiй для лiтiю у кисневих окта-
едрах. Запропоновано теоретичний опис цiєї сполуки, що враховує згаданi особливостi. Як показав

проведений симетрiйний аналiз, викликана iнтеркаляцiєю деформацiя гратки може супроводжува-
тися впорядкуванням антисегнетоелектричного типу (внутрiшнiй п’єзоефект). Це дало можливiсть

отримати якiсну iлюстрацiю фазового розшарування у лiтiйованому анатазi за допомогою розкладу

Ландау з вiдповiдним вибором коефiцiєнтiв. Для опису даної сполуки запропоновано також мiкро-
скопiчну модель, яка поєднує риси моделей Мiцуї та Блюма-Емерi-Грiффiтса та використовує ре-
зультати симетрiйного аналiзу. Рiзноманiтнi фазовi дiаграми моделi (як для основного стану, так i
температурно-залежнi) дослiджувались з метою встановити набiр модельних параметрiв, що вiдпо-
вiдає лiтiйованому анатазу. В широкому температурному дiапазонi виявлено фазове розшарування

на порожню та напiвзаповнену фази, що цiлком вiдповiдає спiвiснуванню фаз у iнтеркальованому

кристалi. В рамках моделi двопозицiйна пiдсистема лiтiю може мати впорядкування сегнето- чи ан-
тисегнетоелектричного типу, яке, однак, наразi експериментально не спостерiгалося.

Ключовi слова: анатаз, iнтеркаляцiя, лiтiй, фазове розшарування, розклад Ландау, граткова

модель

PACS: 71.20.Tx, 64.60.Cn, 64.60.De

266


