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Conditions for a phase transition from the paramagnetic state to the mod-
ulated structure are found in a class of anisotropic Ising models with an
external magnetic field. The critical value of the external magnetic field is
obtained. Branching equations are derived and small branching theorems
are proven for commensurate and incommensurate configurations.
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Here we consider a class of anisotropic Ising models with an external magnetic
field and show a phase transition from the paramagnetic state to spatially inho-
mogeneous commensurate configuration or incommensurate one below the critical
magnetic field. To be more exact, we illustrate the method on the ANNNI model
[1,2], but one can apply it to models with an arbitrary number of interacting
neighbours.

Any Nj-periodic configuration = can be expressed [3] as

N
= (@ex(lg) + biea(lg)) + ace, (1)
=1

where N = [N;/2], [] is an integral part of ¢, ¢ = m/Nj is an irreducible quotient,

€ = {CLZ‘ oo a; = 1 VZ,

1=—0Q7

e1(q) = {cosi2mq}>° . ea(q) = {sini2mq}>__ .
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Then, the specific free energy for commensurate configuration (1) has the form [4]

B = 5 (50 ((1+ ) at + (1) ) 2000

n agq>(o)) + hag + %T (6,9 (2)),

where function g is

g(z) = 1+2)ln(l14+2)+(1—2)In(1 —x)

SUQ .I'4 xZn
— lmo(®X o Lt
v (2+3_4+ +2n-(2n—1))

provided that
N
> (el + [bu]) + [ao] < 1.
=1
For the ANNNI model
®(q) = —2(J; cos2mq + Jy cosdmq + 2Jp),

and for the case when all the neighbours interact

+o0
d(q) = -2 (Z J; cos 2riq + 2J0> :

i=1
The free energy (2) is invariant under a discrete transformation group [5]

a, = acos2mlsq + bysin2nlsq, (3)
by = —a;sin2wlsq + b cos2mlsq,

q:m/N17 820717"'7]\71'

The free energy of incommensurate configuration (1) with irrational ¢ and
arbitrary N is [6]

! Gzalw +aoq><o>>+hao+§T<e,g<x>>. )

The free energy (4) is invariant of group G [3]

a, = acoslpy + bysinley, (5)
by = —asinlgy + bycosley,
gbO € [07 27T]
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The necessary conditions of a free energy minimum are the equations
—~a®(ig) (1+ 6,30 ) + T {e.g/ (@)er(la)) = 0,

~bib(lg) (1= 0, o) + T e, g/ (@)eall) = 0. (6)
—ag®(0) + h+T e ¢ (x)) /2 = 0,

1+x .1'3 $5 $2n+1
") =1 =9 T
gla) =l <x+3+5“L ot )

for rational ¢ and

—a;®(lg) + T (e, g (v)ei(lq)) =
—0i®(lq) + T (e, g'(v)ea(lq)) = 0, (7)
—ag®(0) +h+T (e, g'(x)) /2 =

for irrational q.
In the external magnetic field the systems (6) and (7) have a nonzero solution
in the set of vectors {(a1,b1), -, (an,by), ap} such that

N
> (lau] + [bu]) + [ao] < 1.
=1

The solution has the form {(0,0),---,(0,0),a0} with ag solving the equation
—ag®(0) + T'¢'(ap)/2 + h = 0. (8)
We assume that
T = I+ age,

N

T o= Z(alel(@+bl€2(l(J))+a6€,
1=
+
g'(z) = Z =
k=
g'(age) = 9( )
+oo
p(z) = Z
k=
Then, system (6) becomes

a,(T/ (1—a2) - @(zq)) ( +4, [W]) LT (e, 0(2)er(lq)) = 0,
b(1T/ (1=a3) = 0Ua) (1 =6, jmu) ) + Tleo(@ealla) = 0, (9)
2a (T/ (1 —ag) — ©(0)) + T (e, p(z)) = O,

= g'(a0)e + g"(a0)T + (),

Kl
(@)
I

Rl
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and system (7) becomes

a (T/(1 —ag) — ®(lq)) + T (e, p(F)es(lg)) = O,
b (T/(1 = a5) — ®(lg)) + T (e, p(T)e=(lg)) = O, (10)
)

2ay (T/(1— ag) — 2(0)) + T (e, ¢(z)) = 0.
A spatially inhomogeneous solution of systems (6), (7) exists if systems (9), (10)
have a nonzero solution. The first degeneration of the spectrum of the linearized
part of nonlinear operator (9) or (10) occurs when

T/ (1 —ag) — ®(q) =0,
—ap®(0) + T'g'(ao) /2 +qh = 0. (11)

If there exists a solution to system (11), then the zero solution to systems (9),
(10) bifurcates. It means that a transition from the paramagnetic phase to the
modulated structure occurs. As a result, system (11) gives a single equivalent
equation

T () -2t | |20 - 57 (1-1/2(0) (1 T/@@)%] L)

From (12) it follows:

Lemma 1. The critical magnetic field for a phase transition from the paramag-
netic state to the modulated structure is equal to |®(0)].

For the proof see [7].
Having in mind that the mean-field theory critical exponent § equals 1/2, we
suppose a deviation from the critical temperature to be standard. Therefore,

N(T,h)=®(q) —T/(1—ay),

where ag solves equation (8). If Ty(h) solves equation (12), then A\?(Ty(h), h) equals
zero.
In terms of new variables, system (10) for irrational ¢ takes the form:

(13)

a; (2(q) — (lg) = N*) + T (e, p(T)er(lg)) = 0,
(q) — ®(lg) = X*) + T (e, p(T)e2(lg)) = 0, (14)
2ay (®(q) — ®(0) — N*) + T'{e,(z)) = 0.

We seek the solution of systems (13), (14) in the form

a; = Ay, by = \by, a; = \a, by = \2by, al = Naj,.
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Then we rewrite (13), (14) as

+oo (k) C_LO 1 .
i = FMY(w) = EZ g7 )_A <e,(-)k el(q)>,
k=3

A3 (k—1)!
(15)
) T E2 g0 (G,) .
_ ® 4 9 0) \k—-1 k—1
bl - Fl ( ) )\323(]{:_1)' < 7() 62(Q)>7
1= FO () r 5= 8yt (1 1)
U TR T B (lg) — () & (k- \T !
~ T <X ¢®) (ap) _
_F(2) ~ 0) \k—1 k—1
b= = e T 8 lg) — a(g)) kzzg CE (e () ea)
oo (k;) —
S (0) T 9" (ao) \ k1 k-1 1
ag = Fy (w)_Q)\Q()\Q—Fq)(O)—@(q))kZ:g(/{;—1)' <57<) >7 (16)
where
o= {\Zanh), 2= (@b = ({ab) o fav. b )
N
( ) < Z (@e1(lg) + biea(lq)) + Adpe + arer(q) + Z~7162(q)> :
1=2
Let’s consider the norm
2] = max {|al, [bi, |ao]}
2<I<N
and the radius A ball-centred at the point
fo= ({a 08}, {a%, 1%},
in a set of vectors Z, where
T +o0 g(k)((_%) B
a0 = k-3 ~ k—1
ay = )\2+@(lq)—q>(q); (k — 1)!)\ <€7 (are1(q)+brea(q)) 61(ZQ)>7
- T <X ¢®) (@) -
0 — k-3 ~ k—1
b = )\24_@([(1)_@((]);3 (k — 1)!)\ <€7 (are1(q)+biea(q)) 62(ZQ)>7
., T <X ¢®)(ap) .
0 _ )\k 3 ~ b k—1 )
ag 2()\2+(I)<0)_q)(q))k2:3 (k—1)! < (are1(q)+biea(q)) >

Let F' (w) be a nonlinear operator given by the right-hand part of system (16),

then this system turns into
Z=F(w). (17)
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Theorem 1. Let
min [$(lg) — ®(q)[ =0 > 0,

1=0,2,3,4,---, N—1,N,
and Ao > 0 satisfy the inequality

T
(2N — 1)\ N3N — 1AM +24) 2 <1
1o —d(q)] Z XATHEN =D AA+24)7 T < 1,

then for all X € [0, \o] and @y, by, h such that
i + by < A, [h] < |2(0)],

there exist critical temperature Ty(h) and interval (To(h) — N2, To(h)) on which
the solution of nonlinear equations (17) ewists, being a continuously differentiable
function of X\ € [0, \o] and ay, by for at + b < A%

Proof. Operator F' maps radius A ball-centred at the point
= F(A\,{0,0},a1,b)
into itself if the inequality
| (X, {@, b}, a1,b1) — F(X,{0,0}, a1, 01)|| < ad, a<1, (18)
holds. Let’s estimate the difference

IFP (X {@, b}, a1,b1) — FP (A, {0,0},a1,b1) |

a0| \k—3
<|)\2+<I>lq Z

x ‘<e (O = @ela) + Blez(q»’f*l) ep(zq>>} ,
p=0,1,2, 1=02,N.

From this i i ]
IEP (A {@, b}, a1, bi) — B (A, {0,0}, &1,61)”

‘9( k—3
< )\
P a( lq) o(q Z
k—2
XA2N —1)AY  (A2N — 1)A) 27 (2A)°
=0
T
< max A2N —1)A
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Z Ak SAM2N —1)A+24)"

At last one can estimate the difference

T
max
A2+ @(lg) — ®(q)|

HF()‘v {&/75/}76’1751) ()‘ {CL b} alvbl)”

X Z )\’“ SA2N — 1) (A2N — 1A +24) 2 |{a, v’} — {a,b}].
Therefore, choosing a rather small A we realize the inequality

T
D (i) — 0(g) 2N‘”,§; (k—2)

XA 32N — 1) AN + 24)F 2

that guarantees inequality (18) and contractivity conditions for nonlinear map F'.
If 4, and by are such that ai + b2 < A% then inequality (18) holds. This ends the
proof.

The similar theorem is valid for rational gq.

Remark 1. Continuous differentiability with respect to the variables A and @y, by
results from the continuous differentiability of the successive approximations and
their uniform convergence to the solution.

Theorem 2. For all the irrational q that guarantee the validity of
min [$(lg) — ®(q)[ =0 > 0,

1=0,2,3,4,---,N—1,N,

there is such Ay > 0, that system (10) is solvable for 0 < A < Ay,
|h| < |®(0)|. The action of group G (5) on this solution gives different solutions of
system (10) being continuously differentiable functions of \.

Proof. Having calculated the averages,

Is,m <H €1 qu H62 jlq >

k=1 I=1
entering equations (13) by formula [5]
0, m=2M+1, M=012,--

Ism = s
sm <—1)M2 s—m E 5t1+---+ts+7'1+---+7—m,0(_1)k7 m = 2M7
tpr=%ip
Tj==3;
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where & is the number of negative 7;, we write system (13) as

G (an) /ot +bob (7 -
61:T<g (ao)(a2a1+ 2 1—1—&661)4—9 (a0> (d§+&1b%)+>\2@§1)(w))a

2 2 16
99 (o) (badr —asby | 5\, 9(@0) (15 7 =2\, \222), -
by =T ( —|—a0b1>+ (b1+b1a1)+)\ @y () ),
2 2 16
where
4a
GG, = 0
97(@) = T3
" (1—ag)?
4 16a3
®(g.) = 0
U (e (e
For the zero approximation, solutions for ag, a; and by are
" <>(%+w)
oo ( ®(0) — @(q))’
; N(ag) (a2 — b2>
d pu—
’ ( q’(QQ) q’( )’
o _ (@)
’ (A2 + ®(2q) - ( )

Due to the continuous transformation group G (5), the branching equation has
the form [7]

T (D (a? " E%) FA2G0(N, @2+ 53)) —1, (19)
where
Ta} 1 2
b= ﬂ—%ﬂ(%V+®@®—®@D+A”HN®—®MQ
az 1

Ta—@p Tia-ae

In terms of u = a2 4 b? equation (19) becomes
u= (1/T = Xgo(Aw) /D, (20)
where @o(A, u) is a continuously differentiable function of all the variables in the

vicinity of
Al < Ao, 0<u<24%
The inequalities
sup D7 T™H = N@o(\ u)| < 247,

0<ug2A42

sup  A2D7H0@o(\, u)/0u| < 1

0<u<2A42

10
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hold for a rather small A\ and 242 > 1/T'D. From inequalities (21) it follows that
equation (20) has the solution, which is a continuously differentiable function of A
for rather small A < A;. This ends the proof.

Theorem 3. For those rational q, for which Ny # 3, there is A\g > 0 such that a
nonzero solution to system (9) exists for 0 < A < A,

|h| < |®(0)|. The action of group (3) on this solution gives different solutions to
system (9) being continuously differentiable functions of A.

Proof. Similarly to the case of irrational ¢, one can prove that the problem of the
existence of a nonzero solution to system (9) is equivalent to that of branching
equation [8]. To derive branching equations for different values of period N; we
calculate the averages I, entering system (6) by formula [5]

O, m:2M—|—17 M:O’l’Q’...’

I = .
o (=pM2em 37 D Otytottatribotrm Ny (—1)F,m = 2M,
r=0,+1,£2,--- tkl:ii'k/
TI=%4]

where k is the number of negative 7;.
For N; = 2 we obtain a single branching equation

i =T (g9 (@0)a/6 + X¢ (r.adm ) /2 (22)
There are small solutions of equation (22) which are continuously differentiable

functions of .
For N; = 3 the branching equations are

i = T<dl (d% + E?) ((g(g)i%))z N+ @((j); —®(q) g(4)1(6a0))

G (a - -
) (i) +Aeo§3><A,al,b%>), (23)
T

_|_

5
= T<Bl (3 +5) <<g(3)i@o))2 X1 0(0) —a(g) 9(4)1(6%>>

g(g) (ao)
4\

Bldl + )\ngg)(A, (~1,1, E%)Bl) .

System (23) has no small solutions for a rather small A\. As a result, branching
from the paramagnetic phase to the commensurate one of period N; = 3 does not
occur in the magnetic field.

For N; = 4 (antiphase) the branching equations are

mw=t [dl (g(3)2(60>)2 g<k2 + 52;)5%— o(g) 200 +E§>(J(;)E%— q’(Q)))

11
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g(4)(a0)
12

= T{b (g(g)?fé )) T<2()\2 +Ei11>(g)5%— o(q)) N+ gi?gﬁ q’@)

@)
49 1(2 )55 1 22,02, al,bQ)bl]

For Ny = 5 the branching equations are

a = T [&1 (&%ﬂﬁ) DH@?’(WJ%)]’

_|_

@+ N2\, a, b2)] (24)

(25)
b= T [0 (a8 +82) D+ 2l O, )|
where
.. ®) (@) \” @ (g
DzT(g (%)) < 1 i 1 ) +9 (a0>.
4 2(0249(29)—P(q))  A2+P(0)—P(q) 16
If N1 > 6, then the branching equations are
i = Tlan (@ +8) D+ 3™ a,8)]
(26)

b= T [131 (af n iﬁ) D+ 22\ a, Ef)z}%] .
One essential distinction occurs, namely, the second equation allows a zero

solution, but the first one assumes a nonzero solution with respect to a;. We

denote N
ng 2 (tv 5’17 O)

2 (t,a,) = R N (£,0) = 0.
Considering a; # 0 and dividing by it, we obtain the equation
iy = i\/D 1 ( 25 ’(A,a1)>. (27)

For A>1/vV DT and a positive sign we have

\/D 1 ( A2 )(A,a1)>. (28)

sup \/Dl (T*l — )&ﬁgNl)()\, d1)> < A,

a1<A

From the conditions

(29)
N ’d 5 (N )

sup <1

e R O )

12
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it follows that (28) has a unique solution for rather small 0 < A < .

Taking the minus sign in equation (27), one obtains an alternate nonzero so-

lution.
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MoaynboBaHi CTPYKTYpPU NO0/NN3y KPUTUHHOCTI B
moaesni ANNNI 3 30BHiLLUHIM MarHiTHUM nonem

M.C.lonuap, l.I.Mangyk

Bigain matemMatnyHOro MoaentoBaHHS IHCTUTYTY TEOPETUYHOI Pi3nKKN
iMm. M.M.Boronto6osa HAH YkpaiHu,
252143 Kuis, Byn. MetponoriyHa 14 °

OtpumanHo 3 rpyaHa 1997 p.

3HanaeHo yMmoBM Ga30oBOro nepexomy i3 napamMmarHiTHoOro ctaHy oo Mo-
OyNbOBAHOI CTPYKTYPU B KNACi aHi30TPONHUX MOAENEN I3iHra 3 30BHILLHIM
MarHiTHUM nosnem. OB6YMCNEHO 3HAYEHHS] KPUTUYHOIO MarHiTHOro Nons.
OTpuMaHi piBHSAHHA rany>KeHHs Ta LOBEAEHI TEOPEMIM NPO Masli ray>XeH-
HS A9 CRIBMIPHMX Ta HECMIBMIPHUX KOHIrypauin.
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KOH@Irypauisi, KoUTU4HEe MarHiTHe rnosae
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