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A statistical approach to a self-consistent description of kinetic and hydro-
dynamic processes in systems of interacting particles is formulated on the
basis of the nonequilibrium statistical operator method by D.N.Zubarev. It
is shown how to obtain the kinetic equation of the revised Enskog theory
for a hard sphere model, the kinetic equations for multistep potentials of in-
teraction and the Enskog-Landau kinetic equation for a system of charged
hard spheres. The BBGKY hierarchy is analyzed on the basis of modified
group expansions. Generalized transport equations are obtained in view
of a self-consistent description of kinetics and hydrodynamics. Time corre-
lation functions, spectra of collective excitations and generalized transport
coefficients are investigated in the case of weakly nonequilibrium systems
of interacting particles.
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1. Introduction

The problem of a self-consistent description of fast and slow processes which are
connected with both linear and non-linear fluctuations of observed quantities for
various physical systems, such as dense gases, liquids, their mixtures and plasma,
remains an actual problem in nonequilibrium statistical mechanics. An important
task in this direction is the construction of kinetic equations for dense systems
with taking into account collective effects (hydrodynamic contribution) into the
collision integrals. On the other hand, there is a problem of the calculation of time
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correlation functions and collective excitations spectra in the range of intermedi-
ate values of wavevectors and frequencies, since low- and high-frequencies regions
are described sufficiently well within the frameworks of molecular hydrodynam-
ics and kinetic equations, respectively. In the intermediate region, the kinetic and
hydrodynamic processes are connected and must be considered simultaneously.

A significant interest in these problems was exhibited by Prof. D.N.Zubarev in
his investigations. One of the approaches to the unification of kinetics and hydrody-
namics in the theory of transport phenomena for systems of interacting particles
was proposed by Zubarev and Morozov in [1] and developed in further papers
[2–12]. This statistical approach is based on a modification of the boundary condi-
tions for the weakening of correlations to the BBGKY hierarchy for many-particle
distribution functions and to the Liouville equation for a full nonequilibrium dis-
tribution function (nonequilibrium statistical operator – NSO). The modification
of the boundary conditions consists in the fact that both the one-particle nonequi-
librium distribution function and the local conservation laws for mass, momentum
and total energy are included into the parameters for an abbreviated description of
a nonequilibrium state of the system. The concept of a self-consistent description
of kinetics and hydrodynamics was applied to plasma in an electro-magnetic field
[13–15], to quantum systems with taking into account coupled states [9,10,16],
quantum Bose systems [17] and the nonequilibrium thermo field dynamics [18].
The questions as to the necessity and possibility of a unified description of kinetic
and hydrodynamic processes were discussed in papers by Klimontovich [19–21].

In this paper we present some actual results obtained recently within the con-
cept of a self-consistent description of kinetics and hydrodynamics for dense gases
and simple liquids. In section 2 we present the results for kinetic equations of
RET [3,7], GDRS [8] and Enskog-Landau theories [3,7], obtained in the polar-
ization approximation for a system of hard spheres and a Lenard-Balescu kinetic
equation [11,12] derived from the BBGKY hierarchy with modified boundary con-
ditions. Generalized transfer equations, time correlation functions and transport
coefficients are presented in section 3 on the basis of a self-consistent description of
kinetics and hydrodynamics within the framework of the nonequilibrium statistical
operator method.

2. Conception of a consistent description of kinetics and hy -
drodynamics for dense gases and liquids

2.1. Overview

Bogolubov [22] proposed a consequent approach to the construction of kinetic
equations which is based on the chain of equations for s-particle distribution func-
tions and a weakening correlation principle. There are a lot of theories [23–26]
which differ in forms of presentation, but all these approaches use the same weak-
ening correlation condition and are most effective when a small parameter (inter-
action, density, etc.) is presented.
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In the kinetic theory of classical gases we can point out two principal problems.
The first problem is connected with the fact that collision integrals can depend
nonanalytically on density. Because of this, even in the case of a small-density gas,
in order to calculate corrections to transport coefficients it is necessary to perform
a partial resummation of the BBGKY hierarchy [27,28]. The second problem is
the construction of kinetic equations for the gases of high densities. In this case
we cannot restrict ourselves by several terms of the expansion of collision integrals
on densities and the analysis of the BBGKY hierarchy becomes very complicated
(generally speaking, the density is not a small parameter here). That is why the
construction of kinetic equations for dense gases and liquids with model inter-
particle potentials of interaction has a great importance in the problem under
investigation.

The first theory in this direction is a semi-phenomenological standard Enskog
theory (SET) [29,30] of dense gases. Ideas similar to those used at the derivation
of the Boltzmann equation were also used in this approach. The Enskog equation
plays an essential role in the kinetic theory, next to the Boltzmann one [30]. This
equation was obtained at the modelling of molecules by hard spheres for dense
gases. As a result, the collision integral was presented in an analytical form. It
is obtained by means of a hard sphere model where collisions can be considered
as momentary and by the fact that the multiparticle contact at the same time
is reputed to be infinitely small. Density correction introduced by Enskog proved
to be considerable, as far as transport, due to collisions in a dense system, is the
main mechanism of transport. Each molecule is almost localized at one point of
space by the surrounding neighbour molecules and, therefore, the flow transport
is suppressed. Though this theory properly describes density dependence of the
kinetic coefficients, at the same time the suppositions about the structure of the
collision integral remain sufficiently rough and phenomenological. Despite approxi-
mate assumptions on the collision integral in the kinetic equation for a one-particle
distribution function of hard spheres, the Enskog theory very well describes a set
of properties for real dense gases [25,31].

Davis, Rise and Sengers [32] proposed a kinetic DRS theory. Within the frame-
work of this theory, the interparticle potential of an interaction is chosen in a
square well form. An attractive part of the real potential is approximated here by
a finite height wall.

From the point of view of the statistical theory of nonequilibrium processes,
SET and DRS contain two essential drawbacks. The first one is that their kinetic
equations are not obtained within the framework of some consequential theoretical
scheme and one does not know how to improve these theories. And the second one
is that the H-theorem has not been proved. Nevertheless, not long ago a way
of constructing the SET entropy functional was given [33]. In order to overcome
these drawbacks the authors of [34] obtained a kinetic equation for a revised version
of the Enskog theory (RET) using the diagram method. Résibois [35,36] proved
the H-theorem for it. In 1985, a revised version of the DRS theory (RDRS) was
proposed [37]. The kinetic equation of RDRS satisfies the H-theorem as well. A
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generalized version of RDRS — GDRS was considered in [2,8], being based on
the approaches of [1,3]. Here, in order to treat a more realistic model, a kinetic
equation for dense classical systems is offered with an interparticle interaction
potential in the shape of a multistep function, where its sequential derivation and
the normal solution are obtained.

In the paper by Stell et al. [38,39] the authors completed the construction of the
kinetic variational theory (KVT) introducing a whole family of theories, namely,
KVT I, KVT II and KVT III. The KVT III refers to the local energy constraint in
maximizing entropy as distinguished from the global energy constraint (KVT II)
or the hard-core constraint (KVT I). According to this classification, the kinetic
equation of RDRS [37] is obtained by applying KVT III to the square well potential
and KMFT [38] is derived from KVT I as its application to the potential with a
smooth tail. In [39], the KVT III version of KMFT was proposed. In this case
the quasiequilibrium binary distribution function (QBDF) of hard spheres is to
be substituted by the full QBDF, which takes into account the full potential of
the interaction. The main conclusion of the KVT I version of KMFT [39,40] is
that the smooth part of the potential does not contribute explicitly to transport
coefficients. This fact is caused by the approximations of the theory. When the full
QBDF is used, as it is in the KVT III version of KMFT, transport coefficients are
determined by the soft part of the potential. The case when the potential between
the hard sphere and the attractive walls is considered as a smooth tail (instead
of the constant potential in DRS) has also been investigated [41]. The kinetic
equation was obtained for this potential applying a mean field approximation for
a smooth tail.

At this stage of investigations in the kinetic theory of dense gases and liquids,
paper [1] by Zubarev and Morozov played a fundamental role. In this paper a new
formulation of boundary conditions for the BBGKY hierarchy is presented. Such a
formulation took into account correlations connected with local conservation laws.
In the binary collision approximation, this modification of the weakening correla-
tion condition by Bogolubov led to a kinetic equation for a system of hard spheres
which is close in structure to the usual Enskog kinetic equation. Similar ideas were
proposed independently by the authors of paper [37] at the derivation of a kinetic
equation when an interaction between the particles is modelled by a square well
potential. It is necessary to point out that a somewhat different modification of
the Bogolubov approach [22] was presented in the papers by Rudyak [42–44]. This
allows one to obtain an Enskog-like kinetic equation and extend it to the systems
with a soft potential of interaction between the particles.

The modification of weakening correlation conditions to a chain of equations by
Bogolubov was developed in papers [2–12]. An important achievement of the given
approach is the fact that the modified boundary condition gives the possibility
[4,7,14] to derive consequently the kinetic equation of the RET theory [34] for
the first time. On the basis of result [1], a kinetic equation was obtained [2,8] for
systems with a multistep potential of interaction (in particular, the H-theorem was
proved for this equation in paper [8]), whereas an Enskog-Landau kinetic equation
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was derived [3,7] for a system of charged hard spheres.
Normal solutions for the obtained kinetic equations were found using the

Chapman-Enskog method. With the help of these solutions, the numerical calcu-
lations of transport coefficients (bulk and shear viscosities, thermal conductivity)
were carried out for Argon-like systems [2,45], ionized Argon [7] and mixtures [46].
It is important to stress that the RET kinetic equation, the kinetic equation for
systems with multistep potentials of interaction and the Enskog-Landau kinetic
equation for charged hard spheres were derived from the BBGKY hierarchy with
a modified boundary condition in a binary collision approximation. Obviously, the
presented equations have a restricted region of application. They cannot be ap-
plied to the description of systems with significantly collective effects caused by
Coulomb, dipole or other long-range forces of interaction between the particles. To
describe the collective effects in systems with a long-range character of interaction
it is necessary to consider higher-order approximations for collision integrals. An
example of such an equation is the Lenard-Balescu kinetic equation [47–49] for
Coulomb plasma.

To analyze solutions to the BBGKY hierarchy with a modified boundary con-
dition in higher-order approximations on interparticle correlations we have applied
a concept of group expansions [11,12].

2.2. The Liouville equation and the BBGKY hierarchy with a mo dified
boundary condition

Let us consider a system of N identical classical particles which are enclosed
in volume V , with the Hamiltonian:

H =

N∑

j=1

p2j
2m

+
1

2

N∑

j=1

N∑

k=1

j 6=k

Φ (|rjk|) , (2.1)

where Φ (|rjk|) is the interaction energy between two particles j and k; |rjk|=|rj −
rk| is the distance between a pair of interacting particles; pj is the momentum
of jth particle and m denotes its mass. A nonequilibrium state of such a system
is described by the N-particle nonequilibrium distribution function ̺

(
xN ; t

)
=

̺ (x1, . . . , xN ; t) which satisfies the Liouville equation:
(
∂

∂t
+ iLN

)
̺
(
xN , t

)
= 0, (2.2)

where i =
√
−1, xj = {rj,pj} is a set of phase variables (coordinates and mo-

menta), LN is the Liouville operator:

LN =

N∑

j=1

L(j) +
1

2

N∑

j=1

N∑

k=1
j 6=k

L(j, k), (2.3)
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where

L(j) = −i
pj

m

∂

∂rj

,

L(j, k) = i
∂Φ (|rjk|)
∂rjk

(
∂

∂pj

− ∂

∂pk

)
.

The function ̺
(
xN ; t

)
is symmetrical with respect to permutations xl ⇆ xj

of phase variables for an arbitrary pair of particles. This function satisfies the
normalization condition

∫
dΓN̺

(
xN ; t

)
= 1, dΓN = (dx)N/N ! = drdp. (2.4)

In order to solve the Liouville equation (2.2), it is necessary to introduce a
boundary condition. It must be chosen in such a way that the solution to the
Liouville equation will correspond to a physical state of the system under con-
sideration. Using the nonequilibrium statistical operator method by D.N.Zubarev
[9,10,50,51] (NSO method), we shall search for such solutions to the Liouville equa-
tion depending on time explicitly via the values for some set of observable variables,
which is sufficient for describing a nonequilibrium state without depending on the
initial time t0.

The solution to the Liouville equation, which satisfies the initial condition

̺
(
xN ; t

)
|t=t0 = ̺q

(
xN ; t0

)
,

has the form:
̺
(
xN ; t, t0

)
= e−iLN (t−t0)̺q

(
xN ; t0

)
. (2.5)

We shall consider such times t≫ t0 when the details of the initial state of the
system can be neglected. Then, to avoid the dependence on t0, let us average (2.5)
with respect to the initial times from t0 to t and perform the boundary transition
(t− t0) → ∞. As a result, one obtains [9,10,49]:

̺
(
xN ; t

)
= ε

0∫

−∞

dt′ eεt
′

eiLN t′̺q
(
xN ; t+ t′

)
, t′ = t0 − t, (2.6)

where ε tends to +0 after the thermodynamic limit transition. It can be shown by
straightforward differentiations that solution (2.6) satisfies the Liouville equation
with an infinitesimal source in the right-hand side:

(
∂

∂t
+ iLN

)
̺
(
xN , t

)
= −ε

(
̺
(
xN , t

)
− ̺q

(
xN , t

) )
. (2.7)

The source breaks the symmetry of the Liouville equation with respect to time
inversion and selects retarded solutions which correspond to an abbreviated de-
scription of a nonequilibrium state of the system. The auxiliary function ̺q

(
xN ; t

)

denotes a quasiequilibrium distribution function that is defined from an extreme
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condition for the informational entropy of the system, provided the normaliza-
tion condition is preserved and the average values for variables of the abbreviated
description are fixed.

The choice of ̺q
(
xN ; t

)
depends mainly on a nonequilibrium state of the system

under consideration. In the case of low density gases, where times of free motion
are essentially larger than collision times, higher-order distribution functions of
particles become dependent on time only via one-particle distribution functions
[22,52,53]. It does mean that an abbreviated description of nonequilibrium states
is available, and the total nonequilibrium distribution function depends on time
via f1(x; t). In such a case, the quasiequilibrium distribution function ̺q

(
xN ; t

)

reads [52,53]:

̺q
(
xN ; t

)
=

N∏

j=1

f1(xj ; t)

e
, (2.8)

where e is the natural logarithm base. Then, the Liouville equation with a small
source (2.7) in view of (2.8) corresponds to the abbreviated description of time
evolution of the system on a kinetic stage, when only a one-particle distribution
function is considered as a slow variable. However, there are always additional
quantities which vary in time slowly because they are locally conserved. In the
case of a one-component system, the mass density ρ(r; t), momentum j(r; t) and
total energy E(r; t) belong to such quantities. At long times they satisfy the gen-
eralized hydrodynamics equations. Generally speaking, the equation for f1(x; t)
must be conjugated with these equations. For low density gases, such a conjuga-
tion can be done, in principle, with an arbitrary precision in each order on density.
In high density gases and liquids, when a small parameter is absent, the correla-
tion times corresponding to hydrodynamic quantities become commensurable with
the characteristic times of varying one-particle distribution functions. Therefore,
in dense gases and liquids, the kinetics and hydrodynamics are closely connected
and should be considered simultaneously. That is why many-particle correlations,
related to the local conservation laws of mass, momentum and total energy, can-
not be neglected [1,5,9,10]. The local conservation laws affect the kinetic processes
due to an interaction of the selected particles group with other particles of the
system. This interaction is especially important in the case of high densities, and
it must be taken into consideration. Then, at the construction of kinetic equa-
tions for high densities, it is necessary to choose the abbreviated description of a
nonequilibrium system in the form to satisfy the true dynamics of conserved quan-
tities automatically. To this end, the densities of hydrodynamic variables should
be included together with the one-particle distribution function f1(x; t) into the
initial set of parameters of the abbreviated description [1,5,9,10]. The next phase
functions correspond to the densities of the hydrodynamic variables ρ(r; t), j(r; t)
and E(r; t):
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ρ̂(r) =

∫
dp n̂1(x)m,

ĵ(r) =

∫
dp n̂1(x)p,

Ê(r) =

∫
dp n̂1(x)

p2

2m
+

1

2

∫
dr′ dp dp′ n̂2(x, x

′)Φ(|r − r′|),

(2.9)

where n̂1(x) and n̂2(x, x
′) are one- and two-particle microscopic phase densities by

Klimontovich [24]:

n̂1(x) =
N∑

j=1

δ(x− xj) =
N∑

j=1

δ(r − rj)δ(p− pj), (2.10)

n̂2(x, x
′) =

N∑

j 6=k=1

δ(x− xj)δ(x
′ − xk). (2.11)

Relations (2.9) show a distinctive role of the potential interaction energy. Contrary
to ρ(r; t) = 〈ρ̂(r)〉t and j(r; t) = 〈ĵ(r)〉t, the nonequilibrium values of the total
energy E(r; t) = 〈Ê(r)〉t cannot be expressed via the one-particle distribution
function f1(x; t) = 〈n̂1(x)〉t only, because in order to evaluate the potential part of
Eint(r; t) = 〈Êint(r)〉t it is necessary to involve the two-particle distribution function
f2(x, x

′; t) = 〈n̂2(x, x
′)〉t. Here

Êint(r) =
1

2

∫
dr′ dp dp′ n̂2(x, x

′)Φ(|r − r′|) (2.12)

is the density of the potential energy of interaction. The next conclusion can be
formulated as follows. If the one-particle distribution function f1(x; t) is chosen as a
parameter of an abbreviated description, then the density of the interaction energy
(2.12) can be considered as an additional independent parameter. One can find the
quasiequilibrium distribution function ̺q

(
xN ; t

)
from the condition of extremum

for a functional of the informational entropy Sinf(t) = −
∫
dΓN ̺

(
xN ; t

)
ln ̺

(
xN ; t

)

at fixed average values of 〈n̂1(x)〉t = f1(x; t), 〈Êint(r)〉t = Eint(r; t), including the
normalization condition for ̺q

(
xN ; t

)
[5,9,10,49]:

∫
dΓN̺q

(
xN ; t

)
=
∫
dΓN̺

(
xN ; t

)

= 1. This is equivalent to finding an unconditional extreme for the functional

L(̺) =

∫
dΓN̺

(
xN ; t

){
1− ln ̺

(
xN ; t

)
− Φ(t)−

∫
drβ(r; t)Êint(r)−

∫
dx a(x; t)n̂1(x)

}
,

where Φ(t), β(r; t), a(x; t) are the Lagrange multipliers.

Taking the variation
δ

δ̺
L(̺), after some simple manipulations one obtains the

quasiequilibrium distribution function

̺q
(
xN ; t

)
= exp

{
−Φ(t) −

∫
dr β(r; t)Êint(r)−

∫
dx a(x; t)n̂1(x)

}
, (2.13)

Φ(t) = ln

∫
dΓN exp

{
−
∫

dr β(r; t)Êint(r)−
∫

dx a(x; t)n̂1(x)

}
.(2.14)
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Here, Φ(t) is the Massieu-Planck functional. It is determined from the condition
of normalization for the distribution ̺q

(
xN ; t

)
. Relation (2.13) was obtained for

the first time in [1]. To determine the physical meaning of parameters β(r; t) and
a(x; t) let us rewrite ̺q

(
xN ; t

)
(2.13) in the form:

̺q
(
xN ; t

)
= exp

{
−Φ(t) −

∫
dr β(r; t)Ê ′(r)−

∫
dx a′(x; t)n̂1(x)

}
, (2.15)

Φ(t) = ln

∫
dΓN exp

{
−
∫

dr β(r; t)Ê ′(r)−
∫

dx a′(x; t)n̂1(x)

}
,

where Ê ′(r) is the density of the total energy in a reference frame which moves
together with a system element of the mass velocity V (r; t) [5]

Ê ′(r) = Ê(r)− V (r; t)ĵ(r) +
m

2
V 2(r; t)n̂(r). (2.16)

Here n̂(r) =
∫
dp n̂1(x) is the density of the particles number. Parameters β(r; t)

and a′(x; t) in (2.15) are determined from the conditions of self-consistency, namely,
the equality of quasi-average values 〈n̂1(x)〉tq and 〈Ê ′(r)〉tq with their real averages

〈n̂1(x)〉t, 〈Ê ′(r)〉t:

〈n̂1(x)〉tq = 〈n̂1(x)〉t = f1(x; t),

〈Ê ′(r)〉tq = 〈Ê ′(r)〉t, here 〈. . .〉tq =
∫

dΓN . . . ̺q
(
xN ; t

)
. (2.17)

In these transformations the parameters a′(x; t) and a(x; t) are connected by the
relation

a′(x; t) = a(x; t)− β(r; t)

{
p2

2m
− V (r; t)p+

m

2
V 2(r; t)

}
.

In the case, when the conditions (2.17) take place, one can obtain some relations
taking into account self-consistency conditions and varying the modified Massieu-
Planck functional Φ(t) after (2.15) with respect to parameters β(r; t) and a′(x; t)

δΦ(t)

δβ(r; t)
= −〈Ê ′(r)〉tq = −〈Ê ′(r)〉t,

δΦ(t)

δa(x; t)
= −〈n̂1(x)〉tq = −〈n̂1(x)〉t = −f1(x; t).

(2.18)

It means that parameter β(r; t) is conjugated to the average energy in an accompa-
nying reference frame, and a′(x; t) is conjugated to the nonequilibrium one-particle
distribution function f1(x; t). To determine the physical meaning of these param-
eters let us define the entropy of a system taking into account the self-consistency
conditions (2.17):

S(t) = −〈ln ̺q
(
xN ; t

)
〉tq = Φ(t) +

∫
dr β(r; t)〈Ê ′(r)〉t +

∫
dx a′(x; t)〈n̂1(x)〉t.

(2.19)
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Taking functional derivatives of S(t) (2.19) with respect to 〈Ê ′(r)〉t and 〈n̂1(x)〉t at
fixed corresponding averaged values gives the following thermodynamic relations:

δS(t)

δ〈Ê ′(r)〉t
= β(r; t),

δS(t)

δf1(x; t)
= a′(x; t). (2.20)

Hence, β(r; t) is an analogue of the inverse local temperature.
Two limiting cases follow from the structure of expression (2.19) for entropy. At

a′(x; t) = −β(r; t)µ(r; t), (2.19) transforms into an expression for entropy which
corresponds to the hydrodynamic description of the nonequilibrium state of the
system [5,9,10]:

S(t) = Φ(t) +

∫
dr β(r; t)

(
〈Ê ′(r)〉t − µ(r; t)〈n̂(r)〉t

)
, (2.21)

with the following quasiequilibrium distribution function [5,9,10]:

̺q
(
xN ; t

)
= exp

{
−Φ(t)−

∫
dr β(r; t)

(
Ê ′(r)− µ(r; t)n̂(r)

)}
, (2.22)

Φ(t) = ln

∫
dΓN exp

{∫
dr β(r; t)

(
Ê ′(r)− µ(r; t)n̂(r)

)}

and the corresponding self-consistency conditions for the definition of thermody-
namic parameters β(r; t), µ(r; t) (local value of the chemical potential):

〈n̂(r)〉tq = 〈n̂(r)〉t, 〈Ê ′(r)〉tq = 〈Ê ′(r)〉t.

In the case when the contribution of the interaction energy between the par-
ticles can be neglected (a dilute gas), the quasiequilibrium distribution function
(2.15) has the form:

̺q
(
xN ; t

)
= exp

{
−Φ(t)−

∫
dr β(r; t)Ê ′

kin(r)−
∫

dx a′(x; t)n̂1(x)

}
,

or, taking into account (2.16) and the relation between a′(x; t) and a(x; t), one
obtains:

̺q
(
xN ; t

)
= exp

{
−Φ(t) −

∫
dx a(x; t)n̂1(x)

}
, (2.23)

Φ(t) = ln

∫
dΓN exp

{
−
∫

dx a(x; t)n̂1(x)

}
,

where
Ê ′
kin(r) = Êkin(r)− V (r; t)ĵ(r) +

m

2
V 2(r; t)n̂(r),

Êkin(r) =
∫
dp p2

2m
n̂1(x) is the density of the kinetic energy. Now, determining in

(2.23) parameter a(x; t) with the help of the self-consistency condition 〈n̂(x)〉tq =
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〈n̂(x)〉t, one can show [5] that (2.23) for ̺q
(
xN ; t

)
transforms into distribution

(2.8) when it is assumed that the only parameter of the abbreviated description
for a nonequilibrium state of the system is a one-particle distribution function. As
it is known [51,53], the quasiequilibrium distribution function (2.23) corresponds
to the Boltzmann entropy of a dilute gas:

SB(t) = −
∫

dx f1(x; t) ln
f1(x; t)

e
. (2.24)

In a general case, when kinetic and hydrodynamic processes are considered
simultaneously, the quasiequilibrium distribution function (2.15) or (2.13) can be
rewritten in a somewhat different form. This form is more convenient for the
comparison with ̺q

(
xN ; t

)
(2.8), obtained in a usual way [22,52], when f1(x; t) is

the only parameter of the abbreviated description. First of all, let us note that
one can include parameter Φ(t) from (2.13) into parameter a(x; t) as a term which
does not depend on x. Parameter a(x; t) in ̺q

(
xN ; t

)
can be excluded with the

help of the self-consistency condition 〈n̂(x)〉tq = 〈n̂(x)〉t = f1(x; t). Reduction of

̺q
(
xN ; t

)
results in

̺q
(
xN ; t

)
= exp

{
−UN

(
rN ; t

)} N∏

j=1

f1(xj ; t)

u(rj ; t)
, (2.25)

where functions u(rj ; t) are obtained from the relations

u(rj ; t) =

∫
drN−1

(N − 1)!
exp

{
−UN

(
r, rN−1; t

)} N∏

j=2

n(rj; t)

u(rj ; t)
, (2.26)

UN

(
rN ; t

)
= UN (r1, . . . , rN ; t) =

1

2

N∑

j 6=k=1

Φ(|rj − rk|)β(rk; t),

n(r; t) = 〈n̂(r)〉t =
∫
dp f1(x; t) is the nonequilibrium particles concentration. In

expression (2.25), UN (r; t) and u(rj ; t) respectively, depend explicitly and implic-

itly on n(r; t) and β(r; t) (or 〈Ê ′(r)〉t). To obtain the ordinary Bogolubov scheme
[22,52], it is necessary to put UN(r; t) = 0 in (2.25) and (2.26). Then, one can
define u = e, and (2.25) transforms into the quasiequilibrium distribution (2.8),
as it should be. In a general case, u(r; t) is a functional of the nonequilibrium
density of particles number n(r; t) and β(r; t), which is an analogue of the inverse
local temperature. Nevertheless, one should handle this analogy with care, as far
as definition (2.25) can describe states which are far from local equilibrium. In
particular, f1(x; t) can differ considerably from the local Maxwellian distribution.

The entropy expression (2.19) can be transformed according to the structure
of the quasiequilibrium distribution function (2.25)

S(t) =

∫
dr β(r; t)〈Êint(r)〉t −

∫
dx f1(x; t) ln

f1(x; t)

u(r; t)
. (2.27)
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Here the potential and kinetic parts are separated. In the case of low density
gases, the influence of the potential energy can be neglected and u(r; t) = e. Then,
expression (2.27) tends to the usual Boltzmann entropy.

Thus, determining the quasiequilibrium distribution function ̺q
(
xN ; t

)
(2.25)

and entropy S(t) (2.27) of the system, when the nonequilibrium one-particle dis-
tribution function, as well as the average values of densities for the number of
particles, momentum and energy are parameters of an abbreviated description of
the nonequilibrium state which are locally conserved, the Liouville equation with
the source (2.7) can be presented in the form [1,5]:

(
∂

∂t
+ iLN

)
̺
(
xN ; t

)
= −ε

(
̺
(
xN ; t

)
− exp

{
−UN

(
rN ; t

)} N∏

j=1

f1(xj ; t)

u(rj ; t)

)
.

(2.28)
Further, on the basis of this equation, one obtains the BBGKY hierarchy for
nonequilibrium distribution functions of classical particles with modified bounda-
ry conditions which take into account the nonequilibriumnes of the one-particle
distribution function, as well as the local conservation laws. To obtain the first
equation of the hierarchy, let us integrate with respect to the variables xN−1 =
{x2, . . . , xN} the both parts of (2.28). Taking into account (2.10), (2.11) and (2.17),
one obtains:

(
∂

∂t
+ iL(1)

)
f1(x1; t) +

∫
dx2 iL(1, 2)f2(x1, x2; t) = 0. (2.29)

Integrating now (2.28) over the variables xN−2 = {x3, . . . , xN}, after simple trans-
formations one can obtain an equation for the two-particle distribution function
f2(x1, x2; t) which differs from the corresponding equation in the Bogolubov hier-
archy [1,3] by a source in the right-hand side:

(
∂

∂t
+ iL2

)
f2(x1, x2; t) +

∫
dx3

(
iL(1, 3) + iL(2, 3)

)
f3(x1, x2, x3; t) =

−ε
(
f2(x1, x2; t)− g2(r1, r2; t)f1(x1; t)f1(x2; t)

)
. (2.30)

In this equation, L2 = L(1) + L(2) + L(1, 2) is the Liouville two-particle oper-
ator and g2(r1, r2; t) denotes the binary coordinate distribution function for the
quasiequilibrium state (2.25); f2(x1, x2; t) is the nonequilibrium two-particle dis-
tribution function:

f2(x1, x2; t) = 〈n̂2(x1, x2; t)〉t =
∫

dΓN−2 ̺(x1, x2, x
N−2; t).

Similarly, integrating equation (2.28) over xN−s = {xs+1, . . . , xN} phase variables,
one derives next equations of the chain with the corresponding sources which
define boundary conditions for reduced distribution functions. For the s-particle
nonequilibrium distribution function

fs(x
s; t) = 〈n̂s(x

s)〉t =
∫

dΓN−s ̺(x1, . . . , xs, x
N−s; t)
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one has the following equation:

(
∂

∂t
+ iLs

)
fs(x

s; t) +

∫
dxs+1

s∑

j=1

iL(j, s+ 1)fs+1(x
s+1; t) =

−ε
(
fs(x

s; t)− gs(rs; t)

s∏

j=1

f1(xj ; t)
)
, (2.31)

where

Ls =

s∑

j=1

L(j) +
1

2

s∑

j 6=k=1

L(j, k), gs(r
s; t) = fs(r

s; t)
/ s∏

j=1

n(rj ; t),

n̂s(r
s) =

s∑

j1=1

. . .

s∑

js=1

j1 6=j2 6=...js

s∑

k=1

δ(rk − r′
jk
), fs(r

s; t) = 〈n̂s(r
s)〉tq.

(2.32)

As usual, we shall assume that the principle of weakening spatial correlations
is valid for the quasiequilibrium state. Then, in the thermodynamic limit, the
coordinate distribution functions fs(r

s; t), gs(r
s; t) satisfy the boundary relations:

lim
(min |rj−rk|)→∞

fs(r1, . . . , rs; t) =

s∏

j=1

n(rj ; t), (2.33)

lim
(min |rj−rk|)→∞

gs(r1, . . . , rs; t) = 1. (2.34)

Therefore, taking into account “slow” hydrodynamical variables (the density of
the interaction energy in the present case) leads to a modification of boundary
conditions for the chain of equations (2.29)–(2.31) for nonequilibrium distribution
functions. In order to reproduce the usual Bogolubov boundary conditions for the
weakening of correlations [22], it is necessary to replace all gs(r

s; t) by their limiting
values (2.34). Such a replacing is valid in the case of small density, however, new
boundary conditions can be more useful for dense gasses, since they automatically
take into account spatial correlations connected with the interaction of a pair of
particles with the rest of the particles of the system. It is obvious that the influence
of such an interaction increases as the density rises.

We note that the chain of equations (2.29)–(2.31) requires us to add equations
for coordinate quasiequilibrium distribution functions which are functionals on the
nonequilibrium density of the particles number n(r; t) and the inverse local tem-
perature β(r; t). In particular, in [54] it is shown that the binary quasiequilibrium
distribution function g2(r1, r2; t) is connected with the pair quasiequilibrium cor-
relation function h2(r1, r2; t) = g2(r1, r2; t)−1 which satisfies the Ornstein-Zernike
equation:

h2(r1, r2; t) = c2(r1, r2; t) +

∫
dr3 c2(r1, r3; t)h2(r2, r3; t)n(r3; t), (2.35)
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where c2(r1, r2; t) is a direct quasiequilibrium correlation function.
Thus, the chain of equations (2.29)–(2.31) is distinguished from the usual Bo-

golubov hierarchy by the existence of sources in the right-hand sides, beginning
from the second equation, and it takes into account both one-particle and collec-
tive hydrodynamical effects. It is important to investigate solutions to this chain
of equations in the simplest approximations which lead to model kinetic equations
for dense gases and simple liquids. We shall consider the most investigated binary
collision approximation.

2.3. Binary collision approximation

In this section, we consider as an example of the use of hierarchy (2.31), the
simplest approximation of binary collisions which in the case of the Bogolubov
ordinary conditions of correlations weakening leads to the Boltzmann equation for
f1(x1; t). In equation (2.30) for f2(x1, x2; t) we omit the term with the three-particle
distribution function, i.e. we take into account the influence of the “medium” on
the evolution of the distinguished pair of particles only through the correlation
corrections in the boundary condition. Then, we arrive at the equation:

(
∂

∂t
+ iL2 + ε

)
f2(x1, x2; t) = εg2(r1, r2; t)f1(x1; t)f1(x2; t). (2.36)

The formal solution of (2.36) has the form:

f2(x1, x2; t) = ε

0∫

−∞

dτ e(ε+iL2)τg2(r1, r2; t+ τ)f1(x1; t+ τ)f1(x2; t+ τ). (2.37)

Following the Abel theorem [9,10,51,55,56], this solution can be written in the
form:

f2(x1, x2; t) = lim
τ→−∞

eiL2τg2(r1, r2; t+ τ)f1(x1; t+ τ)f1(x2; t+ τ). (2.38)

Substituting expression (2.38) into equation (2.29), one obtains a kinetic equation
in the binary collision approximation

(
∂

∂t
+ iL(1)

)
f1(x1; t) = Icoll(x1; t), (2.39)

where

Icoll(x1; t) =

∫
dx2 iL(1, 2) lim

τ→−∞
eiL2τg2(r1, r2; t+τ)f1(x1; t+τ)f1(x2; t+τ) (2.40)

is a collision integral. It is necessary to point out that equation (2.35) for the pair
quasiequilibrium correlation function must be added to kinetic equation (2.29).
Equation (2.35) takes into account an essential part of the many-particles corre-
lations.
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2.3.1. Kinetic equation of the revised Enskog theory

In papers [1,3] it was shown how the collision integral (2.40) in the case of a
system of hard spheres transforms into the collision integral of the RET kinetic
equation [34]. For subsequent manipulations, it is convenient to represent the par-
ticle interaction potential in the form:

Φhs(|rjk|) = lim
a→+∞

Φa(|rjk|), Φa(|rjk|) =
{
a, |rjk| < σ,
0, |rjk| > σ,

(2.41)

where σ is a hard sphere diameter. Since the potential Φhs(|rjk|) is strongly singular
(in particular, the operator iL(1, 2) is not well defined), we shall operate with the
potential Φa(|rjk|), when deriving the kinetic equation, and set a → +∞ in the
final expressions.

The limit τ → −∞ in the collision integral (2.40) is mathematically formal. At
the physical level of description, this limit assumes that |τ | ≫ τ0, where τ0 > 0 is
some characteristic time scale. Depending on the choice of τ0, we obtain different
stages of the evolution of the system (kinetic, hydrodynamic). At the kinetic stage,
τ0 is a characteristic interaction time for which the singular potential (2.41) is an
arbitrarily small quantity (τ0 → +0). Therefore, the limit τ − τ0 → −∞ keeps
its form even in the case τ → −0, provided τ0 is of the higher order of smallness
relatively to τ :

lim
τ→−0

{
lim

τ0→+0

τ

τ0

}
= −∞. (2.42)

In this case the collision integral (2.40) [1,3,54] for the hard spheres interparticle
potential of interaction transforms into the following final expression:

Ihscoll(x1; t) = σ2

∫
dr̂12 dv2 θ(r̂12 · g)(r̂12 · g)× (2.43)

{
ghs2 (r1, r1 + σ+r̂12; t)f1(r1, v

′
1; t)f1(r1 + σ+r̂12, v

′
2; t)−

ghs2 (r1, r1 − σ+r̂12; t)f1(r1, v1; t)f1(r1 − σ+r̂12, v2; t)
}
,

where
v′
1 = v1 + r̂12(r̂12 · g),

v′
2 = v2 − r̂12(r̂12 · g). (2.44)

The collision integral in the form (2.43) is identical to the collision integral of
the RET theory first introduced by van Beijeren and Ernst [34] on the basis of
a diagram method. As Résibois showed [35,36], the kinetic equation of the RET
theory satisfies an H-theorem.

We represent the collision integral (2.43) in a more compact form by using the
two-particle quasi-Liouvillian (evolution pseudo-operator) T̂ (1, 2) [26]. Then, the
kinetic equation takes the form:

(
∂

∂t
+ v1

∂

∂r1

)
f1(x1; t) =

∫
dx2 T̂ (1, 2)g

hs
2 (r1, r2; t)f1(x1; t)f1(x2; t), (2.45)
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T̂ (1, 2) = σ2

∫
dr̂12 θ(r̂12 · g)(r̂12 · g)× (2.46)

{
δ(r12 + σ+r̂12)B̂(r̂12)− δ(r12 − σ+r̂12)

}
,

B̂(r̂12)Ψ(v1, v2) = Ψ(v′
1, v

′
2), (2.47)

where Ψ is an arbitrary function of the velocities.
Thus, on the basis of the considered approach we have derived the kinetic

equation of the RET theory without additional phenomenological assumptions.
We have shown that within the framework of the employed method this equation
corresponds to the simplest pair-collision approximation without allowance for
retardation in time.

2.3.2. Kinetic equation for a multistep potential of intera ction

The collision integral (2.40) is still rather complicated to be written in an
explicit form for an arbitrary potential of interaction. As it is now known [30,32],
only in two particular cases, namely, for hard spheres and square-well potentials,
this integral is reduced to an analytical form. In order to extend these previous
results, we consider the interparticle potential in the form of a multistep function

Φjk ≡ Φms
jk = lim

ε0→∞
Φε0
jk(rjk), (2.48)

where

Φε0
jk(rjk) =





ε0, rjk < σ0;
εl, σl−1 < rjk < σl, l = 1, . . . , N∗;
0, σN∗ < rjk;

(2.49)

and N∗ is the total number of walls except for a hard sphere wall. Potential of a
hard sphere contains strong singularity (operator L(j, k) is hard to define). That
is why we shall deal with the potential Φε0

jk(rjk) and only in final expressions we
shall put ε0 → ∞. Let us for convenience separate the systems of attractive and
repulsive walls. Let n∗ be the number of repulsive walls at the distance σri ≡ σi
and of the height △εri = εri − εri+1 > 0, where εri ≡ εi, i = 1, . . . , n∗; and m∗ –
the number of attractive walls with the corresponding parameters σaj ≡ σj+n∗,
△εaj = εaj+1 − εaj > 0, where εaj ≡ εj+n∗, j = 1, . . . , m∗; εrn∗+1 = εa1, ε

a
m∗+1 = 0,

N∗ = n∗ +m∗. Thus, the parameters σ0 (hard sphere diameter), n∗, σri, △ε
r
i, m

∗,
σaj and △εaj completely determine the geometry of the multistep potential (see
figure 1 where a specific case n∗ = 1, m∗ = 3 is shown and the multistep function
approximates some real smooth potential).

The limit τ → −∞ in the collision integral (2.40) is a formal one in the mathe-
matical sense. On the physical level of description this means that |τ | ≫ τ0, where
τ0 > 0 is some characteristic interval of time. For different values of τ0 we can in-
vestigate different stages of the evolution of the system. In the Boltzmann theory
[57] |τ | ≫ τc, where τc is the time of binary interactions (collision time). On the
other hand, |τ | is far less than the characteristic scale of time τm for hydrodynamic
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Figure 1. The multistep potential at n∗ = 1 and m∗ = 3.

variables. The above situation is possible because of the fact that for dilute gases
the kinetic (τ ∼ τc) and hydrodynamic (τ ∼ τm) stages of the evolution are far
from one another in time, i.e. τc ≪ τf ≪ τm, where τf is the characteristic time
of free motion. The pattern is qualitatively different in dense gases and liquids
with a realistic smooth potential of interaction. The kinetic and hydrodynamic
stages appear to be closely connected. Besides, such quantities as the length of
free motion and the time of interaction are not defined in a usual way, because
all particles make influence on the dynamics of interaction for some chosen pair of
particles.

However, for special types of potentials such a classification of times remains
valid even for high densities. For a multi-step potential the region Ω of binary in-
teractions consists of the following subregions [σk− △r0, σk+ △r0] , k = 0, 1, . . . , N∗,
where △r0 → +0 due to the singular nature of the potential under consideration.
This potential has the finite range max {σk} = σN∗ > 0 of action. We can intro-
duce the following set of specific time intervals: τ0 =△r0/g0 → +0 is the time of
pair interactions on the walls, △τ = min{σk − σk−1} /g0 > 0 is the time of motion
between the two nearest neighbouring walls and twhole = σN∗/g0 > 0 is the time
of motion of the whole systems of walls for some pair of particles, where g0 is an
average relative velocity of two particles. As the potential contains the horizontal
parts, where the force of the interparticle interaction is equal to zero, it is also
possible to introduce time τf as an average time of free motion of particles in the
system. Changing the geometry of the potential and increasing the density, we can
make this time arbitrarily small in order to match the relation

τ0 ≪ τf ≪△τ < twhole < τm. (2.50)
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The kinetic stage of the evolution corresponds to small times of order τ ∼ τf .
Therefore, as far as the relation (2.50) is satisfied, the formal limit τ → −∞
should be considered as τ/τ0 → −∞ or merely as |τ | ≫ τ0. For smooth non-
singular potentials the region of interaction has some non-zero size and τ0 is finite.
For singular potentials the case τ0 → +0 is possible and the limit τ/τ0 → −∞
remains valid even for τ → −0 if only τ0 is a value of the higher infinitesimal order

lim
τ→−0

{
lim

τ0→+0

τ

τ0

}
→ −∞. (2.51)

Thus, the formal limit τ → −0 can be applied to the collision integral (2.40) in the
sense of (2.50) and (2.51). As it is now well established, the limit τ → −0 leads to
the kinetic equations of the RET [3,34,38] and RDRS [37] theories.

As it was shown in [2,8], the collision integral (2.40) for potential (2.48) taking
into account (2.50), (2.51), can be presented in a compact form:

Ims
coll(x1; t) =

∫
dx2 T̂12g2(r1, r2; t)f1(x1; t)f1(x2; t) (2.52)

in terms of the two-particle pseudo-Liouville operator

T̂12 = T̂hs +
n∗∑

i=1

∑

p=b,c,d

T̂ p
ri +

m∗∑

j=1

∑

p=b,c,d

T̂ p
aj , (2.53)

which consists of the pseudo-Liouville operators for a hard sphere wall, for ith
repulsive wall and for jth attractive wall, correspondingly:

T̂hs = σ2
0

∫
dr̂12(r̂12 · g)θ(r̂12 · g)

{
δ(r12 + σ+

0 r̂12)B̂
a(r̂12)− δ(r12 − σ+

0 r̂12)
}
,

(2.54)

T̂ p
ri = σ2

ri

∫
dr̂12(r̂12 · g)θpri(r̂12 · g)

{
δ(r12 + σ1,p

ri r̂12)B̂
p
ri(r̂12)− δ(r12 − σ2,p

ri r̂12)
}
,

(2.55)

T̂ p
aj = σ2

aj

∫
dr̂12(r̂12 · g)θpaj(r̂12 · g)

{
δ(r12 + σ1,p

aj r̂12)B̂
p
aj(r̂12)− δ(r12 − σ2,p

aj r̂12)
}
.

(2.56)

Here,

θbri(r̂12 · g) = θ(−r̂12 · g), θbaj(r̂12 · g) = θ(r̂12 · g),
θcri(r̂12 · g) = θ(r̂12 · g− αr

i), θcaj(r̂12 · g) = θ(−r̂12 · g− αa
j),

θdri(r̂12 · g) = θ(r̂12 · g)θ(αr
i − r̂12 · g), θdaj(r̂12 · g) = θ(−r̂12 · g)θ(αr

i + r̂12 · g)
(2.57)

are the corresponding unit step functions,

σ1,b
ri = σ+

ri , σ2,b
ri = σ−

ri , σ1,b
aj = σ−

aj , σ2,b
aj = σ+

aj ,

σ1,c
ri = σ−

ri , σ2,c
ri = σ+

ri , σ1,c
aj = σ+

aj , σ2,c
aj = σ−

aj , (2.58)

σ1,d
ri = σ+

ri , σ2,d
ri = σ+

ri , σ1,d
aj = σ−

aj , σ2,d
aj = σ−

aj ,
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and B̂p are operators of the velocity displacement caused by an interaction of the
p-type at each of the walls, namely,

B̂a(r̂12)Ψ(v1, v2) = B̂d
ri(r̂12)Ψ(v1, v2) = B̂d

aj(r̂12)Ψ(v1, v2) = Ψ(v′
1, v

′
2),

B̂b
ri(r̂12)Ψ(v1, v2) = Ψ(v′′

r1, v
′′
r2), B̂b

aj(r̂12)Ψ(v1, v2) = Ψ(v′′
a1, v

′′
a2),

B̂c
ri(r̂12)Ψ(v1, v2) = Ψ(v′′′

r1, v
′′′
r2), B̂c

aj(r̂12)Ψ(v1, v2) = Ψ(v′′′
a1, v

′′′
a2).
(2.59)

Physically, the values σ1,p
ri (σ1,p

aj ) (2.58) correspond to the distances between the
particles just after the interaction of the p-type on the ith repulsive (jth attractive)
wall of the potential, whereas the values σ2,p

ri (σ2,p
aj ) correspond to the distances just

before the collision.
The H-theorem for the kinetic equation with a multistep potential of interac-

tion (2.52) was proved in [8]. The normal solution by using the boundary conditions
method [40,58] was found in [2,45]. On the basis of the solution found, numerical
calculations of transport coefficients for liquid Argon along the liquid-vapour curve
were performed.

2.3.3. Enskog-Landau kinetic equations for systems of char ged hard
spheres

We consider kinetic equation (2.39) in the binary collision approximation with
collision integral (2.40), when the interaction potentials Φ(|rjk|) of classical par-
ticles at short distances can be modelled by the hard-sphere potential Φhs(|rjk|)
(2.41), and at large distances by a certain long-range smooth “tail” Φl(|rjk|), i.e.

Φ(|rjk|) = Φhs(|rjk|) + Φl(|rjk|), (2.60)

where

Φl(|rjk|) =
{
0, |rjk| < σ,
Φl(|rjk|), |rjk| > σ.

(2.61)

We note that breaking the particle interaction potential (2.60) into short- and
long-range parts is not unique and, therefore, there arises the problem of optimal
separation.

These problems have often been discussed in equilibrium statistical mechanics
[59]. The similar ideas about the separation of the interaction potential at the
derivation of kinetic equations were used by Rudyak [60,61].

With allowance for (2.3) and (2.41), the collision integral (2.40) for the inter-
particle potential (2.60), (2.61) takes the form:

Icoll(x1; t) = I1(x1; t) + I2(x1; t), (2.62)

I1(x1; t) = − lim
a→+∞

σ+∫

0

dr12 r
2
12

∫
dr̂12

∫
dv2 iL

a(1, 2) lim
τ→−0

eiL
a
2τ ×

g2(r1, r2; t+ τ)f1(x1; t+ τ)f1(x2; t+ τ), (2.63)
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I2(x2; t) = −
∞∫

σ+

dr12 r
2
12

∫
dr̂12

∫
dv2 iL

l(1, 2) lim
τ→−∞

e
i
(

L
(0)
2 +Ll(1,2)

)

τ ×

g2(r1, r2; t+ τ)f1(x1; t+ τ)f1(x2; t+ τ), (2.64)

where

L
(0)
2 = L(1) + L(2), Ll(1, 2) = i

r̂12

m∗

∂

∂r12
Φl(|r12|)

(
∂

∂v1
− ∂

∂v2

)
(2.65)

and we have used the idea of time separation of the interactions: instant collisions
of hard spheres (τ → −0) and an extended process of interaction with the long-
range potential (τ → −∞). In accordance with the results obtained in subsection
3.1, the first term in the right-hand side of (2.62) is identical to the collision integral
of the hard-sphere system (the right-hand side of (2.45)):

I1(x1; t) =

∫
dx2 T̂ (1, 2)g2(r1, r2; t)f1(x1; t)f1(x2; t) (2.66)

with the only difference that here g2(r1, r2; t) is a quasiequilibrium binary distri-
bution function of the particles in the system with a total interparticle interaction
potential (2.60).

In the case when the long-range part of the interaction potential is absent
(Φl(r) = 0), the first part I1(x1; t) of the collision integral is identical to the collision
integral of the RET theory; the second part I2(x1; t) is then identically equal to
zero. In the second limiting case, when the density of the system is low (rarefied
gases: n → 0, g2(r1, r2; t) → 1 and the hard-sphere part of the potential vanishes
(σ → +0), the second part I2(x1; t) of the collision integral is identical to the
collision integral of the Boltzmann equation [30], and at the same time I1(x1; t)→0.

In a special case, when the long-range interaction is weak, we make an expan-
sion for exp{(iL(0)

2 +iLl(1, 2))τ}, restricting ourselves to the term linear in iLl(1, 2).
Then, the second part I2(x1; t) (2.64) reduces to the form:

I2(x1; t) = I
(0)
2 (x1; t) + I

(1)
2 (x1; t), (2.67)

I
(0)
2 (x1; t) = −

∞∫

σ+

dr12 r
2
12

∫
dr̂12

∫
dv2 iL

l(1, 2) lim
τ→−∞

eiL
(0)
2 τ ×

g2(r1, r2; t+ τ)f1(x1; t+ τ)f1(x2; t+ τ), (2.68)

I
(1)
2 (x1; t) =

∞∫

σ+

dr12 r
2
12

∫
dr̂12

∫
dv2 iL

l(1, 2) lim
τ→−∞

eiL
(0)
2 τ × (2.69)

τ∫

0

dτ ′ e−iL
(0)
2 τ ′ iLl(1, 2)eiL

(0)
2 τ ′g2(r1, r2; t+ τ)f1(x1; t+ τ)f1(x2; t+ τ).

The first term I
(0)
2 (x1; t) is a generalization of the Vlasov mean field in KMFT [38],

and the second I
(1)
2 (x1; t) is a generalized Landau collision integral with allowance
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for retardation in time in the approximation of the second order on interaction.
Indeed, if we set formally g2(r; t) ≡ 1 (rarefied gases) and σ → 0, and completely
ignore the spatial inhomogeneity of f1(x1; t) and the time retardation, then the

second term I
(1)
2 (x1; t) (2.69) is transformed into the ordinary Landau collision

integral [62]. In the case when Φl(|r12|) is the Coulomb interaction potential, the
complete collision integral (2.62), (2.66), (2.67) can be called the Enskog-Landau
collision integral for a system of charged hard spheres which, in contrast to the
ordinary Landau collision integral, does not diverge at short distances. However,
at large distances we will observe a divergence, as usual. To eliminate this, it is
necessary to take into account the effects of screening [24,63,64]. To avoid this
problem sequentially we have to consider the kinetic equation with taking into
account the dynamical screening effects [63]. But this way is impossible with the
Enskog-Landau kinetic equation. The only thing we can do for further calculation is
to change the upper integral limit to some finite value which could have a meaning
of the statical screening value in our system (see the following subsections). To
solve this problem we must consider dynamical screening effects.

Using the boundary conditions method, a normal solution to the generalized
Enskog-Landau kinetic equation was found in [65,66]. This solution coincides with
that obtained in [3,7] for a stationary case. On the basis of normal solutions,
numerical calculations of such transport coefficients as viscosity and thermal con-
ductivity were performed for once-ionized Argon [7] and for mixtures of ionized
inert gases [46].

2.4. Modified group expansions for the construction of solut ions to the
BBGKY hierarchy

2.4.1. Modified group expansions

Recently, a kinetic equation of the revised Enskog theory for a dense system
of hard spheres (2.45) and an Enskog-Landau kinetic equation for a dense system
of charged hard spheres with collision integrals (2.66), (2.67) have been obtained
from the BBGKY hierarchy in the binary collisions approximation [3,7]. It should
be noted that this approximation does not correspond to the usual two-particle
approximation inherent in the Boltzmann theory, because an essential part of the
many-particle correlations is implicitly taken into account by the pair quasiequi-
librium distribution function g2(r1, r2; t).

To analyze solutions to the BBGKY hierarchy (2.31) [1,7] in higher approxi-
mations on interparticle correlations, it is more convenient to use the concept of
group expansions [67–69]. This was applied to the BBGKY hierarchy in previous
investigations [26,28,52,67,69] using the boundary conditions which correspond to
the weakening correlations principle by Bogolubov [22]. The same conception was
envolved in papers by Zubarev and Novikov [52], where a diagram method for
obtaining solutions to the BBGKY hierarchy was developed.

To analyze the BBGKY hierarchy (2.31), we turn to the papers by Zubarev
and Novikov [52] and earlier ones by Green [67] and Cohen [68,69], and pass from
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the nonequilibrium distribution functions fs(x
s; t) to the irreducible distribution

ones Gs(x
s; t), which can be introduced by the equalities presented in [52,67]. In

our case, with some modifications we obtain:

f1(x1; t) = G1(x1; t), (2.70)

f2(x1, x2; t) = G2(x1, x2; t) + g2(r1, r2; t)G1(x1; t)G1(x2; t),

f3(x1, x2, x3; t) = G3(x1, x2, x3; t) +
∑

P
G2(x1, x2; t)G1(x3; t) +

g3(r1, r2, r3; t)G1(x1; t)G1(x2; t)G1(x3; t),
...
...

Here, the position-dependent quasiequilibrium distribution functions g2(r1, r2; t),
g3(r1, r2, r3; t), gs(r

s; t) are defined in [11,12]. The modification of group expan-
sions (2.70) consists in the fact that a considerable part of space time correlations
is accumulated in the quasiequilibrium functions gs(r

s; t). If all gs(r
s; t) = 1 for

s = 2, 3, . . ., these group expansions coincide with those of papers [52,67–69]. As
far as each line in (2.70) brings in new functions Gs(r

s; t), s = 1, 2, 3, . . ., the corre-
sponding equations can be solved with respect to irreducible distribution functions
and we can write the following:

G1(x1; t) = f1(x1; t), (2.71)

G2(x1, x2; t) = f2(x1, x2; t)− g2(r1, r2; t)f1(x1; t)f1(x2; t),

G3(x1, x2, x3; t) = f3(x1, x2, x3; t)−
∑

P
f2(x1, x2; t)f1(x3; t)−

h3(r1, r2, r3; t)f1(x1; t)f1(x2; t)f1(x3; t),
...
....

In (2.70) and (2.71), the symbol
∑

P denotes the sum of all different permutations
of coordinates for three and more particles

h3(r1, r2, r3; t) = g3(r1, r2, r3; t)− g2(r1, r2; t)− g2(r1, r3; t)− g2(r2, r3; t)

≡ h′3(r1, r2, r3; t)− 2, (2.72)

where h′3(r1, r2, r3; t) is a three-particle quasiequilibrium correlation function. Now
let us write the BBGKY hierarchy (2.31) [1,3,7] for the irreducible distribution
functions Gs(x

s; t), namely, the first two equations,

(
∂

∂t
+ iL(1)

)
G1(x1; t) + (2.73)

∫
dx2 iL(1, 2)g2(r1, r2; t)G1(x1; t)G1(x2; t) +

∫
dx2 iL(1, 2)G2(x1, x2; t) = 0.

Differentiating the relation for G2(x1, x2; t) in (2.71) with respect to time and using
the second equation from the BBGKY hierarchy for the function f2(x1, x2; t), we
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can get for the pair irreducible distribution function G2(x1, x2; t) an equation,
which reads:

(
∂

∂t
+ iL2 + ε

)
G2(x1, x2; t) = −

(
∂

∂t
+ iL2

)
g2(r1, r2; t)G1(x1; t)G1(x2; t)−

∫
dx3

{
iL(1, 3) + iL(2, 3)

} {
G3(x1, x2, x3; t) +

∑

P

G2(x1, x2; t)G1(x3; t) +

g3(r1, r2, r3; t)G1(x1; t)G1(x2; t)G1(x3; t)
}
. (2.74)

In a similar way, we can obtain other equations for the three-particle irreducible
functionG3(x1, x2, x3; t) and the higherGs(x

s; t) ones. One remembers now that the
appearance of the quasiequilibrium distribution functions g2(r1, r2; t),
g3(r1, r2, r3; t), gs(r

s; t) in the hierarchy is closely connected with the fact that the
boundary conditions for the solutions of the Liouville equation take into consider-
ation both the nonequilibrium character of the one-particle distribution function
and the local conservation laws, which corresponds to a consistent description of
the kinetics and hydrodynamics of the system [1,3]. Since in the present paper we
analyze two first equations, (2.73) and (2.74) only, we will not write the others. It is
important to note that, if we put formally gs(r

s; t) ≡ 1 for all s = 2, 3, . . . in (2.73)
and (2.74), we come to the first two equations of the BBGKY hierarchy for the ir-
reducible distribution functions G1(x1; t) and G2(x1, x2; t), which were obtained in
paper [52] by D.N.Zubarev and M.Yu.Novikov. The first term in the right-hand side
of (2.74) is a peculiarity of (2.73) and (2.74) equation system. This is a term with
a time derivative of the pair quasiequilibrium distribution function g2(r1, r2; t).
As it was shown in [1,3], the binary quasiequilibrium distribution function is a
functional of the local values of temperature β(r; t) and mean particle density
n(r; t). Thus, time derivatives of g2(r1, r2|β(t), n(t)) will conform to β(r; t) and
n(r; t). These quantities, in their turn, according to the self-consistency conditions
[1,7], will be expressed via the average energy value 〈Ê ′(r)〉t in an accompanying
reference frame and via 〈n̂(r)〉t, which constitute a basis of the hydrodynamical
description of a nonequilibrium state of the system. Solving equation (2.74) for the
irreducible quasiequilibrium two-particle distribution function G2(x1, x2; t) in the
generalized polarization approximation and taking into account the first equation
of the chain (2.73), lead to [11,12]:

(
∂

∂t
+ iL(1)

)
G1(x1; t) +

∫
dx2 iL(1, 2)g2(r1, r2; t)G1(x1; t)G1(x2; t) =

∫
dx2

t∫

−∞

dt′ eε(t
′−t)iL(1, 2)U(t, t′)× (2.75)

(
∂

∂t′
+ iL2 + L (x1, x2; t

′)

)
g2(r1, r2; t

′)G1(x1; t
′)G1(x2; t

′),
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where

U(t, t′) = exp+

{
−
∫ t

t′
dt′′ [iL2 + L (x1, x2; t

′′)]

}
,

L (x1, x2; t) = L (x1; t) + L (x2; t). (2.76)

The operator L (x1; t) can be obtained by a variation of the Vlasov collision integral
near the nonequilibrium distribution G1(x1; t), namely,

δ

(∫
dx3 iL(1, 3)G1(x3; t)G1(x1; t)

)
= (2.77)

∫
dx3 iL(1, 3)G1(x3; t)δG1(x1; t) = L (x1; t)δG1(x1; t).

This is a kinetic equation for a nonequilibrium one-particle distribution function
with the non-Markovian collision integral in the generalized polarization approx-
imation. It should be noted that the presence of the Vlasov operator L (x1, x2; t)
in the collision integral (2.75) indicates taking into consideration collective effects.
Analysis of the collision integral (2.75) in a general case is a rather complicated
problem. But it is obvious that the collision integral in (2.75) or an expression
for G2(x1, x2; t) with (2.74) may be much simplified for every physical model of a
particle system or for each nonequilibrium state of the collision integral in (2.75).
To show this, we shall consider two particular cases: a hard spheres model and
Coulomb plasma.

2.4.2. Hard spheres model in the polarization approximatio n

In this subsection we shall investigate kinetic processes for a hard spheres model
in the approximations which are higher than a binary collisions one. We take into
account the character of the model parameters and the results of the previous
section of this article and papers [26,49]. This investigation is convenient to carry
out on the basis of the equation chain (2.73), (2.74) at the formal substitution of
a potential part of the Liouville operator iL(1, 2) by the Enskog collision operator
T̂ (1, 2) [26,70]. In this case, equations (2.73) and (2.74) have the form:

(
∂

∂t
+ iL(1)

)
G1(x1; t) + (2.78)

∫
dx2 T̂ (1, 2)g2(r1, r2; t)G1(x1; t)G1(x2; t) +

∫
dx2 T̂ (1, 2)G2(x1, x2; t) = 0,

(
∂

∂t
+ iL0

2 + T̂ (1, 2) + ε

)
G2(x1, x2; t) = (2.79)

−
(
∂

∂t
+ iL0

2 + T̂ (1, 2)

)
g2(r1, r2; t)G1(x1; t)G1(x2; t)

−
∫

dx3

{
T̂ (1, 3) + T̂ (2, 3)

}{
G3(x1, x2, x3; t) +

∑

P

G2(x1, x2; t)G1(x3; t)

+ g3(r1, r2, r3; t)G1(x1; t)G1(x2; t)G1(x3; t)
}
.
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Further, we will consider the same approximations concerning equation (2.79),
in which G3(x1, x2, x3; t) and h3(r1, r2, r3; t) are neglected. Then, if we introduce
similarly to (2.77) the Boltzmann-Enskog collision operator C(x1; t) (L (x1; t) →
C(x1; t)), equation (2.79) could be rewritten in the next form:

δ

∫
dx3 T̂ (1, 3)G1(x1; t)G1(x3; t) = C(x1; t)δG1(x1; t), (2.80)

(
∂

∂t
+ iL0

2 + T̂ (1, 2) + C(x1, x2; t) + ε

)
G2(x1, x2; t) = (2.81)

−
(
∂

∂t
+ iL0

2 + T̂ (1, 2) + C(x1, x2; t)

)
g2(r1, r2; t)G1(x1; t)G1(x2; t),

Hence it appears that the formal solution to G2(x1, x2; t) reads:

G2(x1, x2; t) = −
0∫

−∞

dt′ eε(t
′−t)Uhs(t, t

′)× (2.82)

{
∂

∂t′
+ iL0

2 + T̂ (1, 2) + C(x1, x2; t
′)

}
g2(r1, r2; t

′)G1(x1; t
′)G1(x2; t

′),

where Uhs(t, t
′) is an evolution operator for the system of hard spheres:

Uhs(t, t
′) = exp+

{
−
∫ t

t′
dt′′

[
iL0

2 + T̂ (1, 2) + C(x1, x2; t
′′)
]}

, (2.83)

C(x1, x2; t) = C(x1; t) + C(x2; t).

Now let us put (2.82) into the first equation (2.78). Then, the resulting equation
takes the form [11,12]:

(
∂

∂t
+ iL(1)

)
G1(x1; t) =

∫
dx2 T̂ (1, 2)g2(r1, r2; t)G1(x1; t)G1(x2; t)− (2.84)

∫
dx2 T̂ (1, 2)

0∫

−∞

dt′ eε(t
′−t)Uhs(t, t

′)

{
∂

∂t′
+ iL0

2 + T̂ (1, 2) + C(x1, x2; t
′)

}
×

g2(r1, r2; t
′)G1(x1; t

′)G1(x2; t
′).

This equation can be called a generalized kinetic equation for the nonequilibrium
one-particle distribution function of hard spheres with a non-Markovian collision
integral in the generalized polarization approximation. The first term in the right-
hand side of this equation is the collision integral from the revised Enskog theory
[1,7,34,54]. Neglecting time retardation effects and assuming that the operator
C(x1, x2; t) does not depend on time when

G1(x1; t) = f0(p) = n
( m

2πkT

)3/2
exp

{
− p2

2mkT

}
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is a local equilibriumMaxwell distribution function, the next term can be rewritten
in a simplified form:

IR(x1; t) = −
t∫

−∞

dt′ eε(t
′−t)R0(x1; t, t

′)G1(x1; t
′)−

t∫

−∞

dt′ eε(t
′−t)R1(x1; t, t

′)G1(x1; t
′),

(2.85)
where

R0(x1; t, t
′) =

∫
dx2 T̂ (1, 2) exp

{
(t′ − t)

[
iL0

2 + T̂ (1, 2) + C(x1, x2)
]}

×
[
iL0

2 + C(x1, x2)
]
g2(r1, r2; t

′)G1(x2; t
′), (2.86)

R1(x1; t, t
′) =

∫
dx2 T̂ (1, 2) exp

{
(t′ − t)

[
iL0

2 + T̂ (1, 2) + C(x1, x2)
]}

×

T̂ (1, 2)g2(r1, r2; t
′)G1(x2; t

′), (2.87)

R1(x1; t, t
′) is a generalized ring operator. The kinetic equation (2.84) together

with (2.86) and (2.87) is the generalization of the kinetic equation for a system
of hard spheres which was obtained by Bogolubov in [49,70]. It coincides with the
case, when the quasiequilibrium pair distribution function of hard spheres is set
formally to be a unity.

2.4.3. Coulomb plasma in the polarization approximation

Here we shall study an electron gas, which is contained in a homogeneous pos-
itively charged equilibrating background. This background can be created, for ex-
ample, by hard motionless ions. Then, electrons interact according to the Coulomb
law:

Φ(|r12|) =
e2

|r1 − r2|
=

e2

|r12|
,

the Fourier transform of which exists in the form of a real function Φ(|k|):

e2

r12
=

∫
dk

(2π)3
Φ(|k|)eik·r12 , Φ(|k|) = Φ(k) =

4πe2

k2
, (2.88)

here k is a wavevector, e is an electron charge. Let us consider equation chain
(2.73), (2.74), when G3(x1, x2, x3; t) = 0, g3(r1, r2, r3; t) = 0 in the homogeneous
case, when G1(x1; t) = G1(p1; t) and pair distribution functions depend on |r12|.
Following the Bogolubov method [22], we shall assume that the one-particle dis-
tribution function G1(p1; t) is calculated in the “zeroth” order on the interaction
constant q, pair distribution functions G2(r12,p1,p2; t) and g2(r12; t) in the first or-
der on q, and G3(x1, x2, x3; t), g3(r1, r2, r3; t) ∼ q2, where q = e2

rd
Θ, rd =

√
Θ/4πe2n

is the Debye radius, n = N/V , Θ = kBT , kB is the Boltzmann constant, T is ther-
modynamic temperature. Therefore, to obtain an equation for G2(r12,p1,p2; t) in
the first approximation on the interaction constant q without time retardment ef-
fects, it is necessary to retain all integral terms, but omit all the others. In this case,
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using the Fourier transform with respect to spatial coordinates for a homogeneous
Coulomb electron gas, the set of equations (2.73), (2.74) yields:

∂

∂t
G1(p1; t) = − ∂

∂p1

∫
dk dp2 iΦ(|k|)g2(k; t)G1(p1; t)G1(p2; t)

− ∂

∂p1

∫
dk dp2 iΦ(|k|)G2(k,p1,p2; t),

or

∂

∂t
G1(p1; t) =

∂

∂p1

G1(p1; t)

∫
dk kΦ(|k|)ℑm g2(k; t)

+
∂

∂p1

∫
dk kΦ(|k|)ℑmG2(k,p1; t) (2.89)

and an equation for G2(k,p1,p2; t):
(

∂

∂t
+ ik

p12

m
+ ε

)
G2(k,p1,p2; t) = (2.90)

ikΦ(|k|)
{

∂

∂p1

G1(p1; t)

∫
dp3 G2(k,p2,p3; t)−

∂

∂p2

G1(p2; t)

∫
dp3 G2(k,p1,p3; t)

}
+

ikΦ(|k|)
{

∂

∂p1

G1(p1; t)g2(−k; t)G1(p2; t)−
∂

∂p2

G1(p2; t)g2(k; t)G1(p1; t)

}
,

ε → +0, and G2(k,p1; t) =
∫
dp2 G2(k,p1,p2; t); ℑm g2(k; t), ℑmG2(x1, x2; t)

are imaginary parts of the corresponding distribution functions. The following
properties should be noted:

G2(−k,p1,p2; t) = G∗
2(k,p1,p2; t),

g2(−k; t) = g∗2(k; t),

where ∗ denotes a complex conjugation. The solution to (2.90), neglecting time
retardment effects, reads:

G2(k,p1,p2; t) = (2.91)

kΦ(|k|)
k · p12

m
− i0

{
∂

∂p1

G1(p1; t)G2(−k,p2; t)−
∂

∂p2

G1(p2; t)G2(k,p1; t)

}
+

kΦ(|k|)
k · p12

m
− i0

{
∂

∂p1

G1(p1; t)g2(−k; t)G1(p2; t)−
∂

∂p2

G1(p2; t)g2(k; t)G1(p1; t)

}
.

It should also be noted that equation (2.89) contains an imaginary part of the
irreducible pair nonequilibrium distribution function, to be integrated with respect
to momentum of the second particle. Now one integrates equation (2.91) over all
the values of momentum p2 and defines in such a way some function G2(k,p1; t):

1 +

∫
dp2

kΦ(|k|)
k · p12

m
− i0

∂

∂p2

G1(p2; t)


G2(k,p1; t) = (2.92)
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∂

∂p1

G1(p1; t)

∫
dp2

kΦ(|k|)
k · p12

m
− i0

G2(−k,p2; t) +

∫
dp2

kΦ(|k|)
k · p12

m
− i0

{
∂

∂p1

G1(p1; t)g2(−k; t)G1(p2; t)−
∂

∂p2

G1(p2; t)g2(k; t)G1(p1; t)

}
.

Further, we should exclude from (2.92) the term with G2(−k,p2; t). To do this, we
follow Lenard [47,49] and integrate equation (2.92) over the momentum component
p1⊥, which is perpendicular to wavevector k. The resulting expression then reads:

[1 + Φ(|k|)χ(k, p1; t)]G2(k, p1; t) =
∂

∂p1

G1(p1; t)

∫
dp2

kΦ(|k|)
k · p12

m
− i0

G2(−k,p2; t) +

∫
dp2

kΦ(|k|)
k · p12

m
− i0

{
∂

∂p1

G1(p1; t)g2(−k; t)G1(p2; t)−
∂

∂p2

G1(p2; t)g2(k; t)G1(p1; t)

}
,.

(2.93)

Here the following conventional designations have been introduced:

χ(k, p1; t) =

∫
dp2

k

k · p12
m

− i0

∂

∂p2

G1(p2; t), p1 =
p1 · k
k

,

G1(p1; t) =

∫
dp1⊥ G1(p1; t), p2 =

p2 · k
k

,

G2(k, p1; t) =

∫
dp1⊥ G2(k,p1; t), k = |k|.

(2.94)

Now we multiply the both equations, (2.92) and (2.93), by ∂
∂p1
G1(p1; t) and by

∂
∂p1
G1(p1; t), respectively, and subtract them:

(
1 + Φ(|k|)χ(k, p1; t)

)[
G2(k,p1; t)

∂

∂p1
G1(p1; t)−G2(k, p1; t)

∂

∂p1
G1(p1; t)

]
=

Φ(|k|)χ(k, p1; t)g2(k; t)
[
G1(p1; t)

∂

∂p1
G1(p1; t)−G1(p1; t)

∂

∂p1
G1(p1; t)

]
. (2.95)

If we extract the imaginary part of this equation, one can find the unknown quan-
tity ℑmG2(k,p1; t), provided ℑmG2(k, p1; t) = 0 [11,12]:

∂

∂p1
G1(p1; t)ℑmG2(k,p1; t) =

Φ(|k|)ℑm [χ(k, p1; t)g2(k; t)]
|1 + Φ(|k|)χ(k, p1; t)|2

×
[
G1(p1; t)

∂

∂p1
G1(p1; t)−G1(p1; t)

∂

∂p1
G1(p1; t)

]
. (2.96)

Since ℑmχ(k, p1; t)=-π ∂
∂p1
G1(p1; t) [64], putting an expression for ℑmG2(k,p1; t)

into equation (2.89) gives the generalized Bogolubov-Lenard-Balescu kinetic equa-
tion for an electron gas in an equilibrating background:

∂

∂t
G1(p1; t) =

∂

∂p1

G1(p1; t)

∫
dk kΦ(|k|)ℑm g2(k; t) + (2.97)

∂

∂p1

∫
dp2 Q(p1,p2; t)

[
∂

∂p1

− ∂

∂p2

]
G1(p1; t)G1(p2; t),

714



A consistent description of kinetics and hydrodynamics

where Q(p1,p2; t) is a second rank tensor

Q(p1,p2; t) = −π
∫

dk
|Φ(|k|)|2 k · k

|1 + Φ(|k|)χ(k, p1; t)|2
ℑm g2(k; t)δ(k · (p1 − p2)), (2.98)

which coincides with Q(p1,p2) [64] at ℑm g2(k; t) = 1. In this case, the ki-
netic equation (2.97) transforms into the well-known Lenard-Balescu equation
[47–49,64]. Evidently, the generalized Bogolubov-Lenard-Balescu kinetic equation
(2.97) claims the description of a dense electron gas, since in both the general-
ized mean field and the generalized Bogolubov-Lenard-Balescu collision integrals,
many-particle correlations are treated by the imaginary part of g2(k; t). Neverthe-
less, the problem of divergence in the collision integral of equation (2.97) at small
distances (k → ∞) still remains. There are papers where the divergence of colli-
sion integrals is avoided with the help of a special choice of the differential cross
section (quantum systems [71]), or via a combination of simpler collision integrals
(classical systems [24]). These generalizations for collision integrals are attractive
by their simplicity and helpful for ideal plasma. But, contrary to the obtained
by us Bogolubov-Lenard-Balescu kinetic equation, they do not work for nonideal
plasma. In accordance with the proposed structure of the collision integral

Itotal = IBoltzmann − ILandau + ILenard−Balescu

the influence of particles interaction on plasma energy will be defined by the cor-
relation function g2(r). Its asymptotic is

lim
r→∞


exp

{
− eaeb
rkBT

}
− 1

︸ ︷︷ ︸
Boltzmann

+
eaeb
rkBT︸ ︷︷ ︸
Landau

− eaeb
rkBT

e−r/rD

︸ ︷︷ ︸
Lenard−Balescu


 =

1

r2
(!),

where r
D

denotes the Debye radius. In other combinations one arrives at false
expressions for thermodynamic functions [24]. Dynamical screening, which appears
in the generalized Bogolubov-Lenard-Balescu collision integral obtained by us, is
free of these discrepancies. Generally speaking, the problem of divergency could
be solved within the framework of a charged hard spheres model, combining the
results of this section and the preciding one. But this step is an intricate and
complicated problem and needs a separate consideration.

Evidently, an investigation of the obtained kinetic equation is important in view
of its solutions and studying transport coefficients and time correlation functions
for model systems.

In view of the dense systems study, where the consideration of spatial in-
terparticle correlations is important, the BBGKY hierarchy (2.73), (2.74) with
the modified boundary conditions and group expansions has quite a good per-
spective. The kinetic equation (2.84)–(2.87) is a generalization of the Bogolubov
one [49,70] for a system of hard spheres. M.Ernst and J.Dorfman [72] investi-
gated collective modes in an inhomogeneous gas and showed that the solution of
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a dispersion equation for hydrodynamic modes leads to a nonanalytic frequency
dependence on a wavevector. This is connected with the fact that the ring oper-
ator for inhomogeneous systems at small wavenumbers has a term proportional
to

√
k. Similar investigations of collective modes and time correlation functions in

the hydrodynamic region were carried out by Bogolubov [70]. Nevertheless, it is
necessary to carry out analogous investigations of hydrodynamic collective modes
and time correlation functions on the basis of kinetic equation (2.84), taking into
account (2.85)–(2.87), where some part of space correlations is considered in the
pair quasiequilibrium function g2(r1, r2; t). Obviously, these results may appear to
be good for very dense gases, which could be described by a hard spheres model.
An important factor is that in the kinetic equation (2.84)–(2.87), as well as in
the generalized Bogolubov-Lenard-Balescu one, collective effects are taken into
account both via the Vlasov mean field and the binary quasiequilibrium correla-
tion function which is a functional of nonequilibrium values of temperature and a
chemical potential.

Transferring the obtained results to quantum systems is not obvious. Such a
procedure is rather complicated and needs additional investigations. Nevertheless,
some steps in this way have been already done by Morozov and Röpke [9,10,16].

3. Generalized transport equations and time correlation
functions

3.1. Overview

One of the main problems of the nonequilibrium statistical mechanics of liq-
uids is an investigation of collective excitations, time correlation functions and
transport coefficients because, using these quantities, we can compare the corre-
sponding theoretical results with the data on light and neutron scattering as well
as with the results obtained by the method of molecular dynamics (MD) [73–79].
At present, one can distinguish three regions in these investigations.

The first one is the usual hydrodynamics in a linear approximation when the
time and spatial evolution of small excitations in liquids can be described in terms
of hydrodynamic modes (in terms of eigenvalues and eigenvectors of the linear
hydrodynamics equations) [26,31,77,80–82]. Such hydrodynamic modes are the
heat mode zH(k) = −DTk

2, two sound modes z±(k) = ±ick − Γk2 and two vis-
cosity modes zν1,2 = −νk2 (see, for example, [81]). In our notations k denotes
a wavenumber which describes spatial dispersion of excitations, DT = λ/ncp is
a coefficient of thermal diffusion, ν = η/mn is the kinematical viscosity, Γ =
2
3
ν + 1

3
κ/mn + 1

2
(cp/cV − 1)DT is the constant of sound decrement. λ, κ and η

are the thermal conductivity, bulk and shear viscosity coefficients defined by the
Green-Kubo formulas, n is the average density, m is the mass of a separate par-
ticle, cp and cV are specific heats at constant pressure and volume, c is the sound
velocity. In this region, where |k|−1 is much larger than atomic sizes of liquid σ,
and ωτ ≪ 1, where ω is frequency and τ is the characteristic correlation time,
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the dynamical structure factor S(k;ω) is well described by the Landau-Plachek
formula [26,81,84] in terms of Brillouin lines which corresponds to heat and sound
modes. With increasing wavevector values k, the precision of the hydrodynamic
description decreases, since correlations at short times and small spatial distances
which are inherent in neutron scattering in liquids are not described by linear
hydrodynamic equations.

Extensions of the usual hydrodynamics were performed on the basis of modern
methods of nonequilibrium statistical mechanics by Zwanzig and Mori [85–87]
with the use of the method of projection operators, by Sergeev and Tishchenko
[88,89] using the NSO method [50,51] and by Tserkovnikov with the use of the
method of Green functions [90–92]. Transport equations were obtained for the
average values of the densities of mass, momentum and energy. These equations
generalize the hydrodynamic ones. In these equations, thermodynamic quantities
cp, cV depend on wavevector k, whereas the transport coefficients λ, κ and η
depend on k, as well as on frequency ω. Moreover, new generalized transport
coefficients appear in the generalized hydrodynamic equations. These coefficients
describe dynamical correlations between the thermal and viscous motions which
vanish in the limit k → 0 and ω → 0. This is the second region, namely, the region
of the generalized hydrodynamics [26,77,83,87,59,89–94]. Papers by Götze, Lücke,
Bosse and others [95–101] are of special interest. In these papers, an investigation of
spectra for fluctuations of densities for the number of particles, their longitudinal
and transverse fluxes for small as well as for intermediate values of k and ω is
performed. For Argon [73,76] and Rubidium [74–76], a good coincidence with the
experimental data was obtained. It is necessary to point out papers by Yulmetyev
and Shurygin [102–106] where the dynamical structure factor S(k;ω) for Rubidium
[103–105] and Argon [102,106] was investigated by the projection operator method
taking into account non-Markovian effects. The results obtained in these papers
are valid in the low-frequency approximation.

The third region of investigations on collective modes and time correlation func-
tions in dense gases and liquids is connected with the kinetic theory [77,107–109]
on the basis of the method of projection operators by Mori and its generalizations
[77,79,87]. In this approach, the nonequilibrium one-particle distribution function
in phase space of coordinates and momenta is a variable for an abbreviated de-
scription of a nonequilibrium state of the system. At the same time, collective
effects arise explicitly in memory functions. Approximate calculations of mem-
ory functions (expansions on density, weak interaction) in the hydrodynamic limit
were performed in papers by Mazenko [109–114], Forster and Martin [108], Forster
[115] and others [100,116,117]. John and Forster unified paper [118] and proposed
a formalism similar to that of the generalized hydrodynamics [107–109,114,115].
This formalism is distinguished by the fact that the nonequilibrium one-particle
distribution function in phase space of coordinates and momenta, together with
the density of total energy are included into a set of variables of an abbreviated
description. The results of this theory for the dynamical structure factor S(k;ω)
of Argon agree well with the experimental data and MD calculations in the re-

717



M.V.Tokarchuk, I.P.Omelyan, A.E.Kobryn

gions of small and intermediate values of k and ω. The same formalism was used
later in papers by Sjodin and Sjolander [119] in which the dynamical structure
factor S(k;ω) for Rubidium was investigated. The authors of this paper touched
a number of interesting questions about the influence of one-particle motion and
temperature fluctuations on S(k;ω) in the regions of intermediate and great val-
ues of wavenumber k, as well as about the existence of short-length collective
modes [75]. Such questions and a number of others arise in discussing the results
of neutron scattering with ℓ ∼ σ, (|k| = 2π/ℓ), where the kinetic theory of liquids
is developed insufficiently. From the experimental results of neutron scattering
in Rubidium [75] it follows that there are sharp side peaks for S(k;ω) at points
ω = ±ck, where c is an adiabatic velocity of sound. Such side peaks could be
identified as Brillouin ones. However, the Landau-Plachek formula is not valid in
this region, where ℓ ∼ σ.

During the last period, the question of the existence of short-length collective
modes, beginning from the papers by de Schepper and Cohen [120,121], is inten-
sively discussed [122–135]. The proposed in [120,121] approach is based on the
kinetic equation of the revised Enskog theory (RET) [1,3,34], which was derived
by us sequentially in subsection 2.3.1. The linearized kinetic equation of RET for
hard spheres, which was used in [120,121], was obtained in papers by Mazenko and
others as well [112,113,117]. Although the kinetic theory considered by de Schep-
per and Cohen for short-length collective modes is related to a model system of
hard spheres, it has explained many questions which are significant for understand-
ing collective modes in the region of large k. First of all, it proposed a concept
of extending hydrodynamic modes into the region of large wavevectors [121,122].
Solving the problem on eigenvalues for the generalized Enskog operator (taking
into account a mean field) for hard spheres has shown [122,132] the existence of five
generalized (extended) hydrodynamic and kinetic modes. The generalized hydro-
dynamic modes are a generalization of hydrodynamic modes to the region of large
k and tend to zero at k → 0. The kinetic modes at k → 0 take positive nonzero
values. The dynamical structure factor S(k;ω) is presented in this approach in the
form of a sum of spectral terms which correspond to the Lorentzian form of lines.
Secondly, to confirm the theoretical predictions of papers [120–135], experiments
on neutron scattering in liquid Argon [123], Neon [125], as well as MD calculations
for a system of hard spheres [126] and for a liquid with the Lennard-Jones-like
interparticle potential of interaction [128] were made. In [123] short-length sound
modes and their decrement in the region ℓ ∼ σ for a liquid Argon were investigated.
The obtained results [131] for a nonanalytical dependence of the sound dispersion
on k were compared with the experimental data and the results of the theory of
coupled modes [136]. Eigenvalues for the heat mode zH(k), obtained on the basis
of the generalized Enskog equation, were investigated in [130]. The calculations
performed agree quantitatively with the MD data for hard spheres [125] and with
the data on neutron scattering for Argon [123,124,137] and Crypton [138].

Interesting results of the investigation of the dynamical structure factor S(k;ω)
and time correlation functions of flow particle and enthalpy densities, as well as

718



A consistent description of kinetics and hydrodynamics

collective modes for a liquid with the Lennard-Jones potential of interaction were
obtained in [139]. There a system of equations for time correlation functions of den-
sities for the number of particles, momentum and enthalpy, the generalized stress
tensor and the flow of energy obtained by the Mori projection operator method
was used. The basis of this system are equations of a generalized hydrodynamic
description obtained for the first time in [93] for simple liquid and ionic systems
with the use of the NSO method [140]. Solving the system of equations for time
correlation functions in the Markovian approximation on eigenvalues in the hydro-
dynamic limit k → 0, ω → 0 showed [139] that apart from the eigenvalues which
correspond to pure hydrodynamic modes, in particular, to heat zH(k) and two
sound modes z±(k), there exist two eigenvalues that correspond to kinetic modes.
They differ from zero in the limit k → 0. The analogous results were obtained
in our paper [141]. Further, such an approach was developed for a Lennard-Jones
fluid in a number of works [142–154]. The concept of generalized collective modes
was developed [142,143] on the basis of equations of extended hydrodynamics
and the relevant equilibrium static quantities which normally are obtained within
the method of molecular dynamics (MD). This approach gives the possibility to
calculate generalized-mode spectra of a Lennard-Jones fluid using nine- and four-
mode descriptions for longitudinal [142,147] and transverse [142,146] fluctuations,
respectively. The investigation of generalized transport coefficients dependent on
wavevector and frequency was carried out for the first time in [148]. Further, this
approach was developed for mixtures [154–156] and polar liquids, in particular, for
Stockmayer models and TIP4P water [157–165].

Problems of the description of kinetic and hydrodynamic fluctuations, taking
into account correlations in a simple fluid, were discussed in papers by Peletminskii,
Sokolovskii and Slusarenko [166,167]. They used a functional hypothesis and the
method of an abbreviated description [168].

On the basis of general equations of fluctuational hydrodynamics obtained in
[166], we carried out investigations of liquid hydrodynamics near the equilibrium
without taking into account far correlations and spatial dispersion of transport
coefficients [169,170].

It is necessary to point out a series of papers by Balabanyan [171–175] devoted
to the investigation of classical time correlation and Poisson Green functions and
spectra of collective modes on the basis of the Boltzmann kinetic equation by the
method of moments for a system of hard spheres and Maxwellian molecules.

The problem of the construction of interpolation formulas for density-density
and flow-flow correlation functions which are valid for a wide range of frequen-
cies and wavevectors was considered in papers by Tserkovnikov [91,92,176,177].
Here a method of Green functions was applied to the molecular hydrodynamics
of quantum Bose-systems. These questions were presented in detail in [176,177]
for a weakly nonideal Bose-gas. The obtained interpolation formulas for the Green
functions of transverse components of flow density [176], as well as of fluctuations
of the number of particles and energy [177], appear to be valid in the hydrody-
namic region and in the region of great frequencies and small wavelengths. These
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results are obviously valid in the classical case as well.
From the presented survey, one can draw the following conclusions: firstly,

for a more detailed study of collective modes, generalized transport coefficients
and time correlation functions in liquids and dense gases, it is necessary to have a
theory in which kinetic and hydrodynamic processes are considered simultaneously;
secondly, at the present time, a consistent theory for the description of light and
neutron scattering in the whole range of wavevector k and frequency ω has not
been formulated yet.

In our papers [1,3,5,7] we proposed an approach in which the kinetics and
hydrodynamics of transport processes in dense gases and liquids are considered as
coupled. As a result, we obtained a system of coupled generalized equations for the
nonequilibrium one-particle distribution function and the mean density of the total
energy. It can be applied to the description of nonequilibrium states of the system
of particles which are as close as they are far from the equilibrium state. In the
next subsections of this section we shall present this approach in comparison with
other theories and investigate time correlation functions, generalized transport
coefficients and collective modes in comparison with the molecular hydrodynamics
[77] and its extended versions [139,141–152].

3.2. The generalized kinetic equation for the nonequilibri um one-particle
distribution function with taking into account transport e quations for
the mean density of energy

According to the formulation of a modified boundary condition for the Li-
ouville equation (2.4) with choosing parameters of an abbreviated description
〈n̂1(x)〉t = f1(x; t) and 〈Ê(r)〉t (the definition of the quasiequilibrium distribution
function is presented by equation (2.12)), the dependence of the the quasiequilib-
rium distribution function on time is defined by variation in time of the average
values 〈n̂1(x)〉t and 〈Ê(r)〉t:

̺
(
xN ; t

)
= ̺

(
. . . , {〈n̂1(x)〉t, 〈Ê(r)〉t} . . .

)
. (3.1)

Time evolution of the parameters of an abbreviated description f1(x; t), 〈Ê(r)〉t is
described by transport equations. For obtaining these equations it is more conve-
nient to use the method of projection operators, which was widely used by Robert-
son [178,179] and modified by Kawasaki and Gunton [180]. We shall reformulate
the NSO method in order to take into account projection operators.

Let us write the Liouville equation with source (2.4) in the form:
(
∂

∂t
+ iLN + ε

)
△̺
(
xN ; t

)
= −

(
∂

∂t
+ iLN

)
̺q
(
xN ; t

)
, (3.2)

introducing △̺
(
xN ; t

)
= ̺

(
xN ; t

)
− ̺q

(
xN ; t

)
. We shall use the quasiequilibrium

distribution function ̺q
(
xN ; t

)
defined as follows:

̺q
(
xN ; t

)
= exp

{
−Φ(t)−

∫
dr β(r; t)Ê(r)−

∫
dx b(x; t)n̂1(x)

}
, (3.3)
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which is found from (2.12), taking into account (2.13), by redefinition of the pa-
rameter conjugated to 〈n̂1(x)〉t:

b(x; t) = a(x; t)− β(r; t)
p2

2m
. (3.4)

Parameters β(r; t) and b(x; t) in (3.3) are defined from the corresponding self-
consistency conditions:

〈Ê(r)〉t = 〈Ê(r)〉tq,
〈n̂1(x)〉t = 〈n̂1(x)〉tq.

(3.5)

Taking into account the structure of the quasiequilibrium distribution function
(3.3), the time derivative ∂

∂t
of this function in the right-hand side of equation (3.2)

can be presented as

∂

∂t
̺q
(
xN ; t

)
= −Pq(t)iLN̺

(
xN ; t

)
, (3.6)

where Pq(t) is the Kawasaki-Gunton projection operator, defined as follows:

Pq(t)̺
′ = (3.7){

̺q
(
xN ; t

)
−
∫

dr
∂̺q

(
xN ; t

)

∂〈Ê(r)〉t
〈Ê(r)〉t −

∫
dx

∂̺q
(
xN ; t

)

∂〈n̂1(x)〉t
〈n̂1(x)〉t

}∫
dΓN ̺′ +

∫
dr

∂̺q
(
xN ; t

)

∂〈Ê(r)〉t

∫
dΓN Ê(r)̺′ +

∫
dx

∂̺q
(
xN ; t

)

∂〈n̂1(x)〉t
∫

dΓN n̂1(x)̺
′.

This operator acts only on distribution functions and has the properties:

Pq(t)̺(x
N ; t′) = ̺q(x

N ; t),

Pq(t)̺q(x
N ; t′) = ̺q(x

N ; t),

Pq(t)Pq(t
′) = Pq(t).

Taking into account (3.6), the Liouville equation (2.4) transforms into the form

(
∂

∂t
−
(
1− Pq(t)

)
iLN + ε

)
△̺
(
xN ; t

)
= −

(
1− Pq(t)

)
iLN̺q

(
xN ; t

)
, (3.8)

the formal solution to which is

△̺
(
xN ; t

)
= −

t∫

−∞

dt′ eε(t
′−t)T (t, t′)

(
1− Pq(t

′)
)
iLN̺q

(
xN ; t′

)
, (3.9)

and one finds an expression for the nonequilibrium distribution function

̺
(
xN ; t

)
= ̺q

(
xN ; t

)
−

t∫

−∞

dt′ eε(t
′−t)T (t, t′)

(
1− Pq(t

′)
)
iLN̺q

(
xN ; t′

)
, (3.10)
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where

T (t, t′) = exp+

{
−
∫ t

t′
dt′′

(
1− Pq(t

′′)
)
iLN

}
(3.11)

is a generalized evolution operator with taking account the Kawasaki-Gunton pro-
jection operator, exp+ is an ordering exponent. Solution (3.10) is exact. It corre-
sponds to the idea of an abbreviated description of a nonequilibrium state of the
system (3.1). Acting by the operators (1 − Pq(t

′)) and iLN on ̺q(x
N ; t′) in the

right-hand side of expression (3.10), we write an expression for the nonequilibrium
distribution function in the explicit form:

̺
(
xN ; t

)
= ̺q

(
xN ; t

)
+

∫
dr

t∫

−∞

dt′ eε(t
′−t)T (t, t′)IE(r, t

′)β(r; t′)̺q
(
xN ; t′

)

−
∫

dx

t∫

−∞

dt′ eε(t
′−t)T (t, t′)In(x, t

′)b(x; t′)̺q
(
xN ; t′

)
, (3.12)

where

IE(r, t
′) =

(
1− P(t′)

)
˙̂E(r), (3.13)

In(x, t
′) =

(
1− P(t′)

)
˙̂n1(x) (3.14)

are generalized flows,
˙̂E(r) = iLN Ê(r), ˙̂n1(x) = iLN n̂1(x). P(t′) is a generalized

Mori projection operator which acts on dynamical variables Â(r) and has the
following structure:

P(t)Â(r′) = 〈Â(r′)〉tq + (3.15)
∫

dr
∂〈Â(r′)〉tq
∂〈Ê(r)〉t

(
Ê(r)− 〈Ê(r)〉t

)
+

∫
dx

∂〈Â(r′)〉tq
∂〈n̂1(x)〉t

(
n̂1(x)− 〈n̂1(x)〉t

)
.

The projection operator P(t) has the following properties:

P(t)Ê(r) = Ê(r), P(t)(1− P(t)) = 0,
P(t)n̂1(x) = n̂1(x), P(t)P(t′) = P(t).

(3.16)

With the help of the solution to the Liouville equation (3.12), one obtains a sys-
tem of coupled equations for the nonequilibrium one-particle distribution function
f1(x; t) and the average density of energy 〈Ê(r)〉t. To do it explicitly, it is necessary
to calculate

∂

∂t
〈n̂1(x)〉t =

∂

∂t
f1(x; t) = 〈 ˙̂n1(x)〉t,

∂

∂t
〈Ê(r)〉t = 〈 ˙̂E(r)〉t.
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To this end let us use the equalities

〈(
1− P(t)

)
˙̂n1(x)

〉t
= 〈 ˙̂n1(x)〉t − 〈 ˙̂n1(x)〉tq,

〈(
1− P(t)

)
˙̂E(r)

〉t
= 〈 ˙̂E(r)〉t − 〈 ˙̂E(r)〉tq

and perform averaging in the right-hand side with the nonequilibrium distribution

function (3.12). Then we obtain, calculating 〈 ˙̂n1(x)〉tq, 〈
˙̂E(r)〉tq [5]:

∂

∂t
f1(x; t) +

p

m

∂

∂r
f1(x; t) =

∫
dx′

∂

∂r
Φ(|r − r′|) ∂

∂p
g2(r, r

′; t)f1(x; t)f1(x
′; t) +

∫
dx′

t∫

−∞

dt′ eε(t
′−t)ϕnn(x, x

′; t, t′)b(x′; t′) +

∫
dr′

t∫

−∞

dt′ eε(t
′−t)ϕnE(x, r

′; t, t′)β(r′; t′), (3.17)

− ∂

∂t
〈Ê(r)〉t = 1

2

∫
dr′ dp dp′

p

m

∂

∂r
Φ(|r − r′|)g2(r, r′; t)f1(x; t)f1(x

′; t) (3.18)

+

∫
dr′ dp dp′

p

m

∂

∂r

[
p2

2m
+

1

2
Φ(|r − r′|)

]
g2(r, r

′; t)f1(x; t)f1(x
′; t)

−
∫

dx′
t∫

−∞

dt′ eε(t
′−t)ϕEn(r, x

′; t, t′)b(x′; t′)

−
∫

dr′

t∫

−∞

dt′ eε(t
′−t)ϕEE(r, r

′; t, t′)β(r′; t′),

where g2(r, r
′; t) is a binary quasiequilibrium distribution function (2.32), and

ϕnn(x, x
′; t, t′) =

∫
dΓN In(x; t)T (t, t

′)In(x
′; t′)̺q(x

N ; t′), (3.19)

ϕnE(x, r
′; t, t′) =

∫
dΓN In(x; t)T (t, t

′)IE(r
′; t′)̺q(x

N ; t′), (3.20)

ϕEn(r, x
′; t, t′) =

∫
dΓN IE(r; t)T (t, t

′)In(x
′; t′)̺q(x

N ; t′), (3.21)

ϕEE(r, r
′; t, t′) =

∫
dΓN IE(r; t)T (t, t

′)IE(r
′; t′)̺q(x

N ; t′) (3.22)

are generalized transport kernels which describe the kinetic and hydrodynamic
dissipative processes in a system. We obtained generalized transport equations for
a nonequilibrium one-particle distribution function and the average energy den-
sity, which describe both strong and weak nonequilibrium processes. From these
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equations one can derive interesting limiting cases. First of all, if two last terms in
the right-hand side of equation (3.17) are not taken into account (these terms de-
scribe non-Markovian dissipative processes), then one obtains a generalized kinetic
equation in the mean field approximation [5,38]:

∂

∂t
f1(x; t) +

p

m

∂

∂r
f1(x; t) =

∫
dx′

∂

∂r
Φ(|r − r′|) ∂

∂p
g2(r, r

′; t)f1(x; t)f1(x
′; t).

(3.23)
From equation (3.23) at g2(r, r

′; t) = 1 we have a usual Vlasov kinetic equation
for a nonequilibrium one-particle distribution function. The kinetic equation (3.23)
for f1(x; t) must be complemented by an equation for the average energy density
(3.18), without taking into account two last terms which describe non-Markovian
dissipative processes. It is important to remember here that the binary quasiequi-
librium distribution function g2(r, r

′; t) is a functional of the local values of inversed
temperature β(r; t) and average density n(r; t): g2(r, r

′; t) = g2(r, r
′|β(t), n(t)). If

spatial correlations connected with an interaction between a separated group of
particles and the media are neglected (that is valid in the case of small densities),
i.e. formally putting for ̺q

(
xN ; t

)
in (2.22) the density of interaction energy Ê int(r)

to be equal to zero (UN(r
N ; t) = 0), then (2.22) transforms into a quasiequilibrium

distribution (2.5) that corresponds to the usual boundary conditions of the weak-
ening of correlations by Bogolubov [22] for the solution of the Liouville equation.
In this case, from the system of equations (3.17), (3.18), we have a generalized
kinetic equation for the nonequilibrium one-particle distribution function which
was obtained earlier by Zubarev and Novikov [52]

∂

∂t
f1(x; t) +

p

m

∂

∂r
f1(x; t) =

∫
dx′

∂

∂r
Φ(|r − r′|) ∂

∂p
f1(x; t)f1(x

′; t) +

∫
dx′

t∫

−∞

dt′ eε(t
′−t)ϕnn(x, x

′; t, t′)a(x′; t′). (3.24)

However, in this equation, contrary to the kinetic equation for f1(x; t) of paper [52],
we used a projection procedure for the exclusion of time derivatives for parameters
a(x; t) which are determined from the self-consistency condition (3.5) and in our
case, according to (2.12), (2.22), (2.23) and u = e, they are equal to e−a(x;t) =
f1(x; t)/e. In the kinetic equation (3.24), the transport kernel has the following
structure:

ϕnn(x, x
′; t, t′) =

∫
dΓN

(
1− P

′(t)
)
˙̂n1(x)T (t, t

′)
(
1− P

′(t′)
)
˙̂n1(x

′)

N∏

j=1

f1(xj; t)

e
,

(3.25)
where the projection operator P ′(t) is defined as

P
′(t)Â(x′) = 〈Â(x′)〉tq +

∫
dx

∂〈Â(x′)〉tq
∂〈n̂1(x)〉t

(
n̂1(x)− 〈n̂1(x)〉t

)
, (3.26)
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and the average values 〈Â(x′)〉tq are calculated with the help of the quasiequilibrium
distribution function (2.5). The kernel ϕnn(x, x

′; t, t′) describes kinetic processes in
the system.

A coupled system of equations for the nonequilibrium one-particle distribution
function and the density of the total energy (3.17), (3.18) is strongly nonlinear.
It takes into account complicated kinetic and hydrodynamic processes and such a
system can be used for describing both strongly and weakly nonequilibrium states.

In the next subsection we apply equations (3.17), (3.18) to the investigation of
nonequilibrium states of the system, which are close to equilibrium. In this case
the equations are simplified significantly.

3.3. Kinetics and hydrodynamics of nonequilibrium state ne ar equilibrium

Let us assume that the average energy density 〈Ê(r)〉t, the nonequilibrium one-
particle distribution function f1(x; t) and parameters β(r; t), b(x; t) deviate slightly
from their equilibrium values. Then, being restricted to the linear approximation
[5], the quasiequilibrium distribution function ̺q

(
xN ; t

)
(3.3) can be expanded

over deviations of the parameters β(r; t), b(x; t) from their equilibrium values:

̺q
(
xN ; t

)
= ̺0(x

N)

[
1−

∫
dr δβ(r; t)Ê(r)−

∫
dx δb(x; t)n̂1(x)

]
, (3.27)

where ̺0(x
N) = Z−1e−β(H−µN) is an equilibrium distribution of particles, Z =∫

dΓN e−β(H−µN) is a grand partition function, β = 1/kBT is an equilibrium value
for inverse temperature, kB is the Boltzmann constant, δβ(r; t) = β(r; t) − β,
δb(x; t) = b(x; t)+βµ, µ is an equilibrium value of the chemical potential. In formula
(3.27) it is convenient to transform the dynamical variables Ê(r), n̂1(x) = n̂1(r,p)
and parameters δβ(r; t), δb(x; t) into Fourier-components. Then we obtain:

̺q
(
xN ; t

)
= ̺0(x

N)

[
1−

∑

k

′
δβ−k(t)Êk −

∑

k

′
∫

dp δb−k(p; t)n̂k(p)

]
, (3.28)

where
∑′

k
=
∑

k(k 6=0) and

Êk =
∫
dr e−ik·rÊ(r), δβ−k(t) =

∫
dr eik·rδβ(r; t),

n̂k(p) =
∫
dr e−ik·rn̂1(r,p), δb−k(p; t) =

∫
dr eik·rδb(x; t).

Using the self-consistency conditions (3.5), let us consequently exclude parameters
δβ−k(t), δb−k(p; t) in equation (3.28). From 〈n̂k(p)〉t = 〈n̂k(p)〉tq one finds:

∫
dp′ Φk(p,p

′)δb−k(p
′; t) = −〈n̂k(p)〉t − 〈n̂k(p)Ê−k〉0δβk(t), (3.29)

where 〈. . .〉0 denotes averaging over the equilibrium distribution, namely 〈. . .〉0 =∫
dΓN . . . ̺0(x

N), 〈n̂k(p)〉0 = 0, (k 6= 0);

Φk(p,p
′) = 〈n̂k(p)n̂−k(p

′)〉0 = nδ(p− p′)f0(p
′) + n2f0(p)f0(p

′)h2(k) (3.30)
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is an equilibrium correlation function, n = N/V , f0(p) = (β/2πm)3/2e−βp2/2m is a
Maxwell distribution, h2(k) is a Fourier-image of the function g2(R)− 1:

h2(k) =

∫
dR e−ik·R

(
g2(R)− 1

)
, (3.31)

g2(R) = g2(|r − r′|) is a pair equilibrium distribution function. Now let us define
the function Φ−1

k
(p,p′) inversed to the function Φk(p,p

′) by means of the relation
∫

dp′ Φ−1
k
(p′′,p′)Φk(p

′,p) = δ(p′′ − p). (3.32)

Taking into account (3.30), from (3.32) we find Φ−1
k
(p′′,p′) in an explicit form

Φ−1
k
(p′′,p′) =

δ(p′′ − p′)

nf0(p′′)
− c2(k), (3.33)

where c2(k) denotes a direct correlation function which is connected with the
correlation function h2(k) as: h2(k) = c2(k)[1 − nc2(k)]

−1. Let us multiply the
left-hand side of (3.29) by the function Φ−1

k
(p′′,p′) and integrate it with respect

to p′. Taking into account (3.32), we find:

δb−k(p; t) = −
∫

dp′ Φ−1
k
(p,p′)〈n̂k(p

′)〉t − δβk(t)

∫
dp′ Φ−1

k
(p,p′)〈n̂k(p

′)Ê−k〉0.

Substituting the obtained value of the parameter δb−k(p; t) in (3.28) we find after
some transformations:

̺q
(
xN ; t

)
= ̺0(x

N)

[
1−

∑

k

′
δβ−k(t)ĥ

int
k

+
∑

k

′
∫

dp dp′ 〈n̂k(p
′)〉tΦ−1

k
(p′,p)n̂k(p)

]
,

(3.34)
where

ĥint
k

= Êk −
∫

dp dp′ 〈Êkn̂−k(p
′)〉0Φ−1

k
(p′,p)n̂k(p) = Ê int

k
− 〈Ê int

k
n̂−k〉0S−1

2 (k)n̂k,

(3.35)

Ê int
k

=
1

2

N∑

l 6=j=1

Φ(|rlj|)e−ik·rl , n̂k =
N∑

l=1

e−ik·rl (3.36)

are the Fourier-components of densities for the interaction energy and the number
of particles, respectively. Further, it is more convenient, instead of the dynamical
variable of energy Êk, to use the variable ĥint

k
(3.35) which is orthogonal to n̂k(p)

by means of the equality:
〈ĥint

k
n̂−k〉0 = 0. (3.37)

From the structure of the dynamical variable ĥint
k

(3.35) it can be seen that it cor-
responds to a potential part of the Fourier-component of the generalized enthalpy
ĥk, which is introduced in molecular hydrodynamics [5,77,79]:

ĥk = Êk − 〈Êkn̂−k〉0n̂k = ĥkin
k

+ ĥint
k
, (3.38)
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where
ĥkin
k

= Êkin
k

− 〈Êkin
k
n̂−k〉0S−1

2 (k)n̂k (3.39)

is a kinetic part of the generalized enthalpy,

Êkin
k

=

N∑

l=1

p2l
2m

e−k·rl

is the Fourier-component of the kinetic energy density. S2 = 〈n̂kn̂−k〉0 is a static
structure factor of the system. Taking into account the orthogonality of the dynam-
ical variables ĥint

k
and n̂k (3.37), from the self-consistency condition 〈ĥint

k
〉t = 〈ĥint

k
〉tq

that is equivalent to 〈Êk〉t = 〈Êk〉tq one defines the parameter δβk(t):

δβk(t) = −〈ĥint
k
〉tΦ−1

hh (k), (3.40)

where Φhh(k) = 〈ĥint
k
ĥint−k

〉0. Finally, let us substitute (3.40) into (3.34). As a result,
we obtain a quasiequilibrium distribution function in the linear approximation:

̺q
(
xN ; t

)
= ̺0(x

N )

[
1 +

∑

k

′
〈ĥint

k
〉tΦ−1

hh (k)ĥ
int
k

+
∑

k

′
∫

dp dp′ 〈n̂k(p
′)〉tΦ−1

k
(p′,p)n̂k(p)

]
.

(3.41)
Taking into account (3.41), the nonequilibrium distribution function ̺(xN ; t) (3.10)
or (3.12) has the following form in this approximation [5]:

̺
(
xN ; t

)
= ̺0(x

N)× (3.42)
[
1 +

∑

k

′
〈ĥint

k
〉tΦ−1

hh (k)ĥ
int
k

+

∑

k

′
∫

dp dp′ 〈n̂k(p
′)〉tΦ−1

k
(p′,p)n̂k(p)−

∑

k

′
t∫

−∞

dt′ eε(t
′−t)〈ĥint

k
〉t′Φ−1

hh (k)T0(t, t
′)I inth (−k)−

∑

k

′
∫

dp dp′

t∫

−∞

dt′ eε(t
′−t)〈n̂k(p

′)〉t′Φ−1
k
(p′,p)T0(t, t

′)In(−k,p)
]
,

where

In(k,p) = (1− P0) ˙̂nk(p), (3.43)

I inth (k) = (1− P0)
˙̂
hint
k

(3.44)

are generalized fluxes in the linear approximation, ˙̂nk(p) = iLN n̂k(p),
˙̂
hint
k

=

iLN ĥ
int
k
, T0(t, t

′) = e(t−t′)(1−P0)iLN is a time evolution operator with the projec-
tion operator P0 which is a linear approximation of the generalized Mori projec-
tion operator P(t) (3.15), with taking into account orthogonalization of variables
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{Êk, n̂k(p)} → {ĥint
k
, n̂k(p)}. According to the structure (3.41), P0 acts on the

dynamical variables Âk

P0Âk
′ =

∑

k

〈Âk
′ ĥint−k

〉0Φ−1
hh (k)ĥ

int
k

+
∑

k

∫
dp dp′ 〈Âk

′ n̂−k(p
′)〉0Φ−1

k
(p′,p)n̂k(p).

(3.45)
For kinetics and hydrodynamics of nonequilibrium processes which are close

to an equilibrium state, the generalized transport equations (3.17), (3.18) in the
linear approximation for the nonequilibrium distribution function ̺

(
xN ; t

)
(3.42)

transform into a transport equation for fk(p; t) = 〈n̂k(p)〉t, hintk
(t) = 〈ĥint

k
〉t

∂

∂t
fk(p; t)+

ik · p
m

fk(p; t) = − ik · p
m

nf0(p)c2(k)

∫
dp′ fk(p

′; t)+iΩnh(k,p)h
int
k
(t)−

∫
dp′

t∫

−∞

dt′ eε(t
′−t)ϕnn(k,p,p

′; t, t′)fk(p
′; t′)−

t∫

−∞

dt′ eε(t
′−t)ϕnh(k,p; t, t

′)hint
k
(t′),

(3.46)

∂

∂t
hint
k
(t) =

∫
dp iΩhn(k,p)fk(p; t)− (3.47)

∫
dp

t∫

−∞

dt′ eε(t
′−t)ϕhn(k,p; t, t

′)fk(p; t
′)−

t∫

−∞

dt′ eε(t
′−t)ϕhh(k; t, t

′)hint
k
(t′),

where iΩnh(k,p), iΩhn(k,p) are normalized static correlation functions:

iΩnh(k,p ) = 〈 ˙̂nk(p)ĥ
int
−k

〉0Φ−1
hh (k), (3.48)

iΩhn(k,p) =

∫
dp′ 〈 ˙̂h

int

k
n̂−k(p

′)〉0Φ−1
k
(p′,p) (3.49)

and

ϕnn(k,p,p
′; t, t′) =

∫
dp′′ 〈In(k,p)T0(t, t′)In(−k,p′′)〉0Φ−1

k
(p′′,p′), (3.50)

ϕhn(k,p; t, t
′) =

∫
dp′ 〈I inth (k)T0(t, t

′)In(−k,p′)〉0Φ−1
k
(p′,p), (3.51)

ϕnh(k,p; t, t
′) = 〈In(k,p)T0(t, t′)I inth (−k)〉0Φ−1

hh (k), (3.52)

ϕhh(k; t, t
′) = 〈I inth (k)T0(t, t

′)I inth (−k)〉0Φ−1
hh (k) (3.53)

are generalized transport kernels (memory functions) which describe kinetic and
hydrodynamic processes. The system of transport equations (3.46), (3.47) is closed.
Eliminating hint

k
(t), it is possible to obtain a closed kinetic equation for a Fourier

component of the nonequilibrium one-particle distribution function. For this pur-
pose one uses a Laplace transform with respect to time, assuming that at t > 0
the quantities fk(p; t = 0), hint

k
(t = 0) are known

A(z) = i

∫ ∞

0

dt eiztA(t), z = ω + iε, ε→ +0. (3.54)
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Then, equations (6.46) and (6.47) are presented in the form:

zfk(p; z) +
ik · p
m

fk(p; z) = − ik · p
m

nf0(p)c2(k)

∫
dp′ fk(p

′; z) + (3.55)

Σnh(k,p; z)h
int
k
(z)−

∫
dp′ ϕnn(k,p,p

′; z)fk(p
′; z) + fk(p; t = 0),

zhint
k
(z) =

∫
dp′ Σhn(k,p

′; z)fk(p
′; z)− ϕhh(k; z)h

int
k
(z) + hint

k
(t = 0), (3.56)

where

Σnh(k,p; z) = iΩnh(k,p)− ϕnh(k,p; z), (3.57)

Σhn(k,p; z) = iΩhn(k,p)− ϕhn(k,p; z). (3.58)

Let us solve equation (3.56) with respect to hint
k
(z) and substitute the result into

(3.55). Then one obtains a closed kinetic equation for fk(p; z) (at h
int
k
(t = 0) = 0):

zfk(p; z) +
ik · p
m

fk(p; z) = − ik · p
m

nf0(p)c2(k)

∫
dp′ fk(p

′; z)−
∫

dp′ Dnn(k,p,p
′; z)fk(p

′; z) + fk(p; t = 0), (3.59)

where

Dnn(k,p,p
′; z) = ϕnn(k,p,p

′; z)− Σnh(k,p; z)
1

z + ϕhh(k; z)
Σhn(k,p

′; z) (3.60)

is a generalized transport kernel of kinetic processes, which is renormalized tak-
ing into account the processes of transport of the potential energy of interaction
between the particles. If we put formally in Dnn(k,p,p

′; z) that ĥint−k
= 0 (such

equality is valid when the contribution of the average potential energy of interac-
tion is much smaller than that of the average kinetic energy), then from (3.59) one
obtains a kinetic equation for fk(p; z),

zfk(p; z) +
ik · p
m

fk(p; z) = − ik · p
m

nf0(p)c2(k)

∫
dp′ fk(p

′; z)−
∫

dp′ ϕ′
nn(k,p,p

′; z)fk(p
′; z) + fk(p; t = 0). (3.61)

Equation (3.61) was derived for the first time by using the Mori projection opera-
tors method in [107–109], when the microscopic phase density n̂k(p) was a param-
eter of an abbreviated description. In this case the memory function ϕ′

nn(k,p,p
′; z)

has the following structure:

ϕ′
nn(k,p,p

′; t, t′) =

∫
dp′′ 〈I0n(k,p)T ′

0(t, t
′)I0n(−k,p′′)〉0Φ−1

k
(p′′,p′), (3.62)

where
I0n(k,p) = (1− P

′
0)
˙̂nk(p) (3.63)
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is a generalized flow, P ′
0 is the Mori projection operator introduced in [107–109]:

P
′
0Âk

′ =
∑

k

∫
dp dp′ 〈Âk

′n̂−k(p
′)〉0Φ−1

k
(p′,p)n̂k(p), (3.64)

T ′
0(t, t

′) = e(t−t′)(1−P′

0)iLN is the corresponding time evolution operator. The kinetic
equation (3.59) for the Fourier component of the nonequilibrium one-particle distri-
bution function stimulates investigations of the dynamical structure factor S(k;ω),
time correlation functions for transverse and longitudinal flows of the particles, dif-
fusion coefficients, viscosities for dense gases and liquids [77,79,107–119]. In papers
by Mazenko, there was performed a derivation of the linearized Boltzmann-Enskog
equation by expanding memory functions ϕ′

nn(k,p,p
′; t, t′) on density. In the case

of weak interactions a Fokker-Planck equation was obtained. Mazenko [114] and
Forster [115,136] calculated the generalized viscosity coefficient with the help of
kinetic equation (3.59). Self-diffusion of a one-component plasma [181], as well as
spectra of mass and charge fluctuations in ionic solutions were investigated on
the basis of this equation. In actual calculations, certain approximations for the
memory functions ϕ′

nn(k,p,p
′; t, t′) were used. However, the main drawback of the

kinetic equation (3.59) lies in its non-self-consistency with the conservation law of
the total energy for dense gases and liquids when the contribution of the inter-
action energy between the particles to thermodynamic quantities and transport
coefficients becomes important. This fact was also pointed out earlier in the paper
by John and Forster [118], where they performed an investigation of the dynamical
structure factor S(k;ω) in the intermediate region of wavevector k and frequency
values ω for a simple liquid on the basis of the set of dynamical variables of an
abbreviated description n̂k(p) and Êk.

In the next subsection, on the basis of a system of transport equations for
Fourier components of the nonequilibrium one-particle distribution function and
the potential part of enthalpy (3.46), (3.47), we shall obtain equations for time cor-
relation functions. We shall also investigate the spectrum of collective excitations
and the structure of generalized transport coefficients.

3.4. Time correlation functions, collective modes and gene ralized transport
coefficients

With the help of combined equations (3.46), (3.47) one obtains a system for
time correlation functions:

Φnn(k,p,p
′; t) =

∫
dp′′ 〈n̂k(p; t)n̂−k(p

′′; 0)〉0Φ−1
k
(p′′,p′), (3.65)

Φhn(k,p; t) =

∫
dp′ 〈ĥint

k
(t)n̂−k(p

′; 0)〉0Φ−1
k
(p′,p), (3.66)

Φnh(k,p; t) = 〈n̂k(p; t)ĥ
int
−k

(0)〉0Φ−1
hh (k), (3.67)

Φhh(k; t) = 〈ĥint
k
(t)ĥint−k

(0)〉0Φ−1
hh (k), (3.68)

where n̂k(p; t) = e−iLN tn̂k(p; 0), ĥ
int
k
(t) = e−iLN tĥint

k
(0).
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One uses the Fourier transform with respect to time

〈a〉ω =

∫ ∞

−∞

dt eiωt〈a〉t.

Then we write the system of equations (3.46), (3.47) in the form:

−iω〈n̂k(p)〉ω =

∫
dp′ Σnn(k,p,p

′;ω + iε)〈n̂k(p
′)〉ω +Σnh(k,p;ω + iε)〈ĥint

k
〉ω,(3.69)

−iω〈ĥint
k
〉ω =

∫
dp′ Σhn(k,p

′;ω + iε)〈n̂k(p
′)〉ω − ϕhh(k;ω + iε)〈ĥint

k
〉ω, (3.70)

where

Σnn(k,p,p
′;ω + iε) = iΩnn(k,p,p

′)− ϕnn(k,p,p
′;ω + iε), (3.71)

Σnh(k,p;ω + iε) = iΩnh(k,p)− ϕnh(k,p;ω + iε), (3.72)

Σhn(k,p;ω + iε) = iΩhn(k,p)− ϕhn(k,p;ω + iε). (3.73)

It is more convenient to present the system of equations (3.69), (3.70) in a matrix
form:

−iω〈ãk〉ω = Σ̃(k;ω + iε)〈ãk〉ω, (3.74)

where ãk = col(n̂k(p), ĥ
int
k
) is a vector-column and

Σ̃(k;ω + iε) =

[ ∫
dp′ Σnn(k,p,p

′;ω + iε) Σnh(k,p;ω + iε)
∫
dp′ Σhn(k,p

′;ω + iε) −ϕhh(k;ω + iε)

]
, (3.75)

Σ̃(k;ω + iε) =

∫ ∞

0

dt ei(ω+iε)tΣ̃(k; t).

Now, one uses the solution to the Liouville equation in approximation (3.41) with-
out introducing the projection operator Pq(t):

̺
(
xN ; t

)
= ̺q

(
xN ; t

)
−

t∫

−∞

dt′ eε(t
′−t)eiLN (t′−t)

(
∂

∂t

′

+ iLN

)
̺q
(
xN ; t′

)
.

Then, from the self-consistency conditions 〈ãk〉t = 〈ãk〉tq one obtains a system of

equations which connects the average values 〈n̂k(p)〉ω and 〈ĥint
k
〉ω with spectral

functions of time correlation functions:

iω

[ ∫
dp′ Φnn(k,p,p

′;ω + iε) Φint
nh(k,p;ω + iε)

∫
dp′ Φint

hn(k,p
′;ω + iε) −Φint

hh(k;ω + iε)

]
×
[
〈n̂k(p)〉ω
〈ĥint

k
〉ω

]
=

[ ∫
dp′ Φnn(k,p,p

′) 0

0 −Φhh(k)

]
−

i(ω + iε)

[ ∫
dp′ Φnn(k,p,p

′;ω + iε) Φint
nh(k,p;ω + iε)

∫
dp′ Φint

hn(k,p
′;ω + iε) −Φint

hh(k;ω + iε)

]
×
[
〈n̂k(p)〉ω
〈ĥint

k
〉ω

]
.
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Such a system can be presented in the next compact form:

iωΦ̃(k;ω + iε)〈ãk〉ω =
[
Φ̃(k)− i(ω + iε)Φ̃(k;ω + iε)

]
〈ãk〉ω. (3.76)

Let us multiply equation (3.74) by the matrix Φ̃(k;ω+iε) and compare the result
with equation (3.76). So we find

zΦ̃(k; z) = Σ̃(k; z)Φ̃(k; z)− Φ̃(k), z = ω + iε, (3.77)

Φ̃(k; z) = i

∫ ∞

0

dt eiztΦ̃(k; t), ε → 0

or in an explicit form:

zΦnn(k,p,p
′; z) =

∫
dp′′ Σnn(k,p,p

′′; z)Φnn(k,p
′′,p′; z) + (3.78)

Σnh(k,p; z)Φ
int
hn(k,p

′; z)− Φnn(k,p,p
′),

zΦint
nh(k,p; z) =

∫
dp′′ Σnn(k,p,p

′′; z)Φint
nh(k,p

′′; z) + Σnh(k,p; z)Φ
int
hh(k; z), (3.79)

zΦint
hn(k,p

′; z) =

∫
dp′′ Σhn(k,p

′′; z)Φint
nn(k,p

′′,p′; z)− ϕhh(k; z)Φ
int
hn(k,p

′; z),(3.80)

zΦint
hh(k; z) =

∫
dp′′ Σhn(k,p

′′; z)Φint
nh(k,p

′′; z)− ϕhh(k; z)Φ
int
hh(k; z)− Φhh(k),

(3.81)

where the condition Φhn(k,p
′) = Φnh(k,p) = 0 is taken into account.

Therefore, we obtained a system of equations for normalized correlation func-
tions (3.65)–(3.68) for the description of nonequilibrium states of the system when
kinetic and hydrodynamic processes are considered simultaneously. A similar sys-
tem of equations for time correlation functions in the method of projection opera-
tors was obtained in the paper by John and Forster [118]. In this paper the param-
eters of an abbreviated description were orthogonal dynamical variables n̂k(p) and
Êk. Solutions of such an equation system in the hydrodynamic limit were found
using the projection procedure for the first five moments of the nonequilibrium
one-particle distribution function. In view of this, the dynamical structure factor
S(k;ω) for intermediate values of k and ω was investigated using a parametric
approximation of memory functions for liquid Argon. However, in this paper the
question concerning collective modes and generalized transport coefficients, when
kinetics and hydrodynamics are connected between themselves, is not discussed.

In order to solve the system of equations (3.78)–(3.81) we also apply the pro-
jection procedure [108]. Let us introduce the dimensionless momentum ξ = k

mv0
,

v20 = (mβ)−1. Then the system of equations (3.77) can be rewritten in the matrix
form:

zΦ̃(k; ξ, ξ′; z)− Σ̃(k; ξ, ξ′′; z)Φ̃(k; ξ′′, ξ′; z) = −Φ̃(k; ξ, ξ′), (3.82)

where it is clear that the integration must be performed with respect to the re-
peating indices ξ′′. Further, let us introduce the scalar product of two functions,
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φ(ξ) and ψ(ξ), as

〈φ|ψ〉 =
∫

dξ φ∗(ξ)f0(ξ)ψ(ξ). (3.83)

Then, the matrix element for some “operator” M can be determined as

〈φ|M |ψ〉 =
∫

dξ dξ′ φ∗(ξ)M(ξ, ξ′)f0(ξ
′)ψ(ξ′). (3.84)

Let φ(ξ) = {φµ(ξ)} be the orthogonalized basis of functions with the weight f0(ξ),
so that the following condition is satisfied:

〈φν |φµ〉 = δνµ,
∑

ν

|φν〉〈φν | = 1, (3.85)

where
φµ(ξ) = φlmn(ξ) = (l!m!n!)−1/2H̄l(ξx)H̄m(ξy)H̄n(ξz), (3.86)

H̄l(ξ) = 2−l/2Hl(ξ/2), Hl(ξ) is a Hermite polynomial. Then, each function in the
system of equations (3.82), which depends on momentum variables ξ, ξ ′, can be
expanded over functions φµ(ξ) in the series:

Φ̃(k; ξ, ξ′; z) =
∑

ν,µ

φ∗
ν(ξ)Φ̃νµ(k; z)φµ(ξ

′)f0(ξ
′), (3.87)

Σ̃(k; ξ, ξ′; z) =
∑

ν,µ

φ∗
ν(ξ)Σ̃νµ(k; z)φµ(ξ

′)f0(ξ
′), (3.88)

where

Φ̃νµ(k; z) = 〈φν |Φ̃(k; ξ, ξ′; z)|φµ〉 =

∫
dξ dξ′ φ∗

ν(ξ)f0(ξ)Φ̃(k; ξ, ξ
′; z)φµ(ξ

′), (3.89)

Σ̃νµ(k; z) = 〈φν |Σ̃(k; ξ, ξ′; z)|φµ〉 =

∫
dξ dξ′ φ∗

ν(ξ)f0(ξ)Σ̃(k; ξ, ξ
′; z)φµ(ξ

′). (3.90)

Let us substitute expansions (3.87)–(3.90) into equation (3.82). As a result, one
obtains:

zΦ̃νµ(k; z)−
∑

γ

Σ̃νγ(k; z)Φ̃γµ(k; z) = −Φ̃νµ(k). (3.91)

In actual calculations, a finite number of functions from the set φν(ξ) is used.
Taking into account this fact, let us introduce the projection operator P which
projects arbitrary functions ψ(ξ) onto a finite set of functions φµ(ξ):

P =
n∑

ν=1

|φν〉〈φν | = 1−Q, P 〈ψ| =
n∑

ν=1

〈ψ|φν〉〈φν|. (3.92)

Here n denotes a finite number of functions. Then, from (3.91) we obtain a system
of equations for a finite set of functions φµ(ξ),

n∑

γ=1

[
zδ̄νγ − iΩ̃νγ(k) + D̃νγ(k; z)

]
Φ̃γµ(k; z) = −Φ̃νµ(k), (3.93)
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where

D̃νµ(k; z) = 〈φν|ϕ̃(k; z) + Σ̃(k; z)Q
[
z −QΣ̃(k; z)Q

]−1

QΣ̃(k; z)|φµ〉 (3.94)

are generalized hydrodynamic transport kernels and

iΩ̃νµ(k) = 〈φν|iΩ̃(k)|φµ〉 (3.95)

is a frequency matrix. Note that matrices iΩ̃(k) and ϕ̃(k; z) are defined according
to (3.48), (3.49) and (3.50)–(3.53).

Let us find solutions to the system of equations (3.93) in the hydrodynamic
region when a set of functions φµ(ξ) present five moments of a one-particle distri-
bution function:

φ1(ξ) = 1, φ2(ξ) = ξz, φ3(ξ) =
1√
6
(ξ2− 3), φ4(ξ) = ξx, φ5(ξ) = ξy. (3.96)

Then, the following relations are fulfilled:

〈1|n̂k(ξ) =

∫
dξ n̂k(ξ) = n̂k,

〈ξγ|n̂k(ξ) =

∫
dξ n̂k(ξ) ξγ = p̂γ

k
, (3.97)

〈6−1/2(ξ2 − 3)|n̂k(ξ) =

∫
dξ n̂k(ξ) 6

−1/2(ξ2 − 3) = Êkin
k

− 3n̂kβ
−1 = ĥkin

k
,

for the Fourier components of densities for the number of particles, momentum and
the kinetic part of generalized enthalpy. Besides that, the microscopic conservation
laws for densities of the number of particles and momentum can be written in the
form:

〈1| ˙̂nk(ξ) = −ikγ p̂
γ
k
m−1,

〈ξα| ˙̂nk(ξ) = −ikγ
↔̂
T k

γα,
(3.98)

where
↔̂
T k

γα is a Fourier component of the stress-tensor.

If we choose the direction of wavevector k along oz-axis, then φν(ξ), ν = 1, 2, 3
will correspond to longitudinal modes, whereas φν(ξ) at ν = 4, 5 will be related to
transverse modes.

From the system of equations (3.93), at ν = 4, 5, φ4(ξ) = ξx, φ5(ξ) = ξy, one
obtains an equation for the Fourier component of the time correlation function
connected with the transverse component of the momentum density Φ44(k; z).
From this equation one finds:

Φ44(k; z) = Φ⊥
pp(k; z) = − 1

z +D⊥
pp(k; z)

, (3.99)
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where

Φ⊥
pp(k; z) = 〈ξx|Φnn(k, ξ, ξ

′; z)|ξ′x〉, (3.100)

D⊥
pp(k; z) = D⊥(kin)

pp (k; z) +D⊥(int)
pp (k; z), (3.101)

D⊥(kin)
pp (k; z) = 〈ξx|ϕnn(k, ξ, ξ

′; z)|ξ′x〉, (3.102)

D⊥(int)
pp (k; z) = 〈ξx|

[
Σ̃(k, ξ, ξ′; z)Q

[
z −QΣ̃(k, ξ, ξ′; z)Q

]−1

QΣ̃(k, ξ, ξ′; z)

]

nn

|ξ′x〉,

(3.103)

D⊥
pp(k; z) = ik2η(k; z)(mn)−1, (3.104)

where η(k; z) denotes a generalized coefficient of shear viscosity. Such a coefficient

consists of two main contributions. The first one is D
⊥(kin)
pp (k; z), whereas the sec-

ond contribution D
⊥(int)
pp (k; z) describes a relation of kinetic and hydrodynamic

processes. If the last term is neglected, which formally corresponds to ĥint
k

= 0,
then one obtains an expression for the generalized coefficient of shear viscosity
η(k; z), obtained earlier by the authors of [114,115] when solving the equation

zΦnn(k,p,p
′; z)−

∫
dp′′ iΩnn(k,p,p

′′)Φnn(k,p
′′,p′; z) + (3.105)

∫
dp′′ ϕ′

nn(k,p,p
′′; z)Φnn(k,p

′′,p′; z) = −Φnn(k,p,p
′),

by using the method of projections [108] in the hydrodynamic region. Equation
(3.105) corresponds to kinetic equation (3.61) for the Fourier component of the
nonequilibrium one-particle distribution function. In ϕ′

nn(k,p,p
′; z) the projection

is performed on a space of dynamics of the “slow” variable n̂k(p) connected with
the microscopic conservation laws for the particle-number density and momentum
(3.98). In our approach in D⊥

pp(k; z), the projection is carried out on an extended

space of dynamics of the “slow” variables n̂k(p) and ĥ
int
k
. Moreover, ĥint

k
is a hydro-

dynamic variable, whereas n̂k(p) is a kinetic one and only its average value with
five moments (3.96) can be related to hydrodynamic quantities.

If we put ν = 1, 2, 3, φ1(ξ) = 1, φ2(ξ) = ξz, φ3(ξ)− 6−1/2(ξ2 − 3) in the system
of equation (3.93), then we obtain:

zΦna(k; z)− iΩnp(k)Φpa(k; z) = −Φna(k), (3.106)

zΦpa(k; z)− iΩpn(k)Φna(k; z) +D||
pp(k; z)Φpa(k; z) − (3.107)

Σphkin(k; z)Φhkina(k; z)− Σphint(k; z)Φhinta(k; z) = −Φpa(k),

zΦhkina(k; z)− Σhkinp(k; z)Φpa(k; z) + (3.108)

Dhkinhkin(k; z)Φhkina(k; z) +Dhkinhint(k; z)Φhinta(k; z) = −Φhkina(k),

zΦhinta(k; z)− Σhintp(k; z)Φpa(k; z) + (3.109)

Dhinthkin(k; z)Φhkina(k; z) +Dhinthint(k; z)Φhinta(k; z) = −Φhinta(k),
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where a = {n̂k, p̂k
, ĥkin

k
, ĥint

k
} and

Σphkin(k; z) = iΩphkin(k) − Dphkin(k; z),
Σphint(k; z) = iΩphint(k) − Dphint(k; z),
Σhkinp(k; z) = iΩhkinp(k) − Dhkinp(k; z),
Σhintp(k; z) = iΩhintp(k) − Dhintp(k; z),

(3.110)

iΩab(k) and Dab(k; z) are determined according to (3.95), (3.94). From the system
of equations (3.106)–(3.109) one can define the Fourier components of the particle
number density correlation functions

Φnn(k; z) = Φ11(k; z) = 〈1|Φnn(k, ξ, ξ
′; z)|1′〉, , (3.111)

as well as of the longitudinal component of the momentum density

Φ||
pp(k; z) = Φ22(k; z) = 〈ξz|Φnn(k, ξ, ξ

′; z)|ξ′z〉, (3.112)

for the kinetic part of generalized enthalpy

Φhkinhkin(k; z) = Φ33(k; z) = 〈6−1/2(ξ2− 3)|Φnn(k, ξ, ξ
′; z)|6−1/2((ξ′)2− 3)〉 (3.113)

as well as for the potential part of generalized enthalpy Φhinthint(k; z) and cross cor-
relation functions, especially Φhinthkin(k; z), Φnhkin(k; z), Φnhint(k; z), Φphkin(k; z),
Φphint(k; z). It is important to point out that the system of equations (3.106)–
(3.109) corresponds to the system of equations for Fourier components of the av-
erage values of densities for the number of particles 〈n̂k〉z, longitudinal momentum
〈p̂k〉z, kinetic 〈ĥkin

k
〉z and potential 〈ĥint

k
〉z parts of generalized enthalpy:

z〈n̂k〉z − iΩnp(k)〈p̂k〉z = −〈n̂k(t = 0)〉, (3.114)

z〈p̂
k
〉z − iΩpn(k)〈n̂k〉z + (3.115)

D||
pp(k; z)〈p̂k

〉z − Σphkin(k; z)〈ĥkin
k

〉z − Σphint(k; z)〈ĥint
k
〉z = −〈p̂

k
(t = 0)〉,

z〈ĥkin
k

〉z − Σhkinp(k; z)〈p̂k〉z + (3.116)

Dhkinhkin(k; z)〈ĥkin
k

〉z +Dhkinhint(k; z)〈ĥint
k
〉z = −〈ĥkin

k
(t = 0)〉,

z〈ĥint
k
〉z − Σhintp(k; z)〈p̂k〉z + (3.117)

Dhinthkin(k; z)〈ĥkin
k
〉z +Dhinthint(k; z)〈ĥint

k
〉z = −〈ĥint

k
(t = 0)〉.

This system of equations is similar in construction to the equations of molecu-
lar hydrodynamics [77]. The difference consists in the fact that instead of the
equations for the Fourier component of the mean enthalpy density 〈ĥk〉t which
is introduced in molecular hydrodynamics, there are two connected equations for
the Fourier components of mean values of the kinetic and potential parts of en-
thalpy density. Moreover, instead of the generalized thermal conductivity which
appears in molecular hydrodynamics, the dissipation of energy flows is described in
equations (3.114)–(3.117) by a set of generalized transport kernels Dhkinhkin(k; z),
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Dhkinhint(k; z), Dhinthkin(k; z), Dhinthint(k; z). Obviously, transport kernels give more
detailed information on the dissipation of energy flows in the system because they
describe the time evolution of dynamical correlations between the kinetic and po-
tential flows of enthalpy density.

Solving the system of equation (3.106)–(3.109) at a = n, one obtains an ex-
pression for the correlation function “density-density” Φnn(k; z)

Φnn(k; z) = −S2(k)

[
z − iΩnp(k)iΩpn(k)

z + D̄
||
pp(k; z)

]−1

, (3.118)

where

D̄||
pp(k; z) = D||

pp(k; z)− Σ̄phkin(k; z)
[
z + D̄hkinhkin(k; z)

]−1
Σ̄hkinp(k; z) −

Σphint(k; z) [z + Dhinthint(k; z)]−1Σhintp(k; z), (3.119)

Σ̄phkin(k; z) = Σphkin(k; z)− (3.120)

Σphint(k; z) [z +Dhinthint(k; z)]−1Dhinthkin(k; z),

Σ̄hkinp(k; z) = Σhkinp(k; z)− (3.121)

Dhkinhint(k; z) [z +Dhinthint(k; z)]−1Σhintp(k; z),

D̄hkinhkin(k; z) = Dhkinhkin(k; z)− (3.122)

Dhkinhint(k; z) [z +Dhinthint(k; z)]−1Dhinthkin(k; z).

In expressions (3.119)–(3.122) we can observe an interesting renormalization of
the functions Σab and Dab via the generalized transport kernels for fluctuations
of flows of the potential part of enthalpy density. It is important to point out
that in the mode-coupling theory developed by Götze [95,96], an expression for

Φnn(k; z) has the same form as in (3.118). However, D̄
||
pp(k; z) is connected only

with the generalized shear viscosity η||(k; z), since the densities of the number
of particles n̂k and momentum p̂

k
are included in the set of variables of an ab-

breviated description. In our case D̄
||
pp(k; z) takes into account both thermal and

viscous dynamical correlation processes. Excluding from (3.118) the imaginary

part Φ
||
nn(k;ω) of the correlation function Φnn(k; z), one obtains an expression for

the dynamical structure factor S(k;ω) in which contributions of transport ker-
nels corresponding to the kinetic and potential parts of the enthalpy density ĥk
are separated. It is evident that the main contribution of the transport kernel
Dhinthint(k; z) to the S(k;ω) for liquids was in the hydrodynamical region (the re-
gion of small values of wavevector k and frequency ω), whereas Dhkinhkin(k; z) will
contribute to the kinetic region (orders of interatomic distances, small correlation
times). In the region of intermediate values of wavevector k and frequency ω, it
is necessary to take into account all the transport kernels Σphkin(k; z), Σphint(k; z),
Dhkinhkin(k; z), Dhinthkin(k; z), Dhinthint(k; z). Since it is impossible to perform ex-
act calculations of the described above functions, it is necessary in each separate

737



M.V.Tokarchuk, I.P.Omelyan, A.E.Kobryn

region to accept models corresponding to the physical processes. Obviously, it
is necessary to provide modelling on the level of generalized transport kernels
ϕnn(k,p,p

′; t, t′), ϕnh(k,p; t, t
′), ϕhn(k,p

′; t, t′), ϕhh(k; t, t
′) (3.50)–(3.53). In par-

ticular, we can accept for ϕnn(k,p,p
′; t, t′) the Boltzmann-Enskog model for hard

spheres or the Fokker-Planck model for the case of weak correlation, as in the
papers by Mazenko [111,114,135]. Such approximations can be applicable to ki-
netic processes at interatomic distances (region of large values of wavevector k)
and small correlation times (region of large frequencies ω) of interatomic collisions.
Besides, it is necessary to take into account information about interactions of par-
ticles at short distances. In the transport kernels ϕnn(k; ξ, ξ

′; t, t′), ϕnh(k; ξ; t, t
′),

ϕhn(k; ξ
′; t, t′)ϕhh(k; t, t

′) it is important to distinguish processes connected with
a type of particles interaction at short and long distances, analogously to the
case of Enskog-Landau kinetic equation for a model of charged hard spheres. The
problems of modelling for these kernels are complicated by the absence of a small
parameter in terms of which the perturbation theory might be developed.

The transport kernel ϕ′
nn(k,p,p

′; t, t′) (3.62) and its moments on space[1, pl,
p2

2m
]

were analyzed in the limit z → ∞ and the hydrodynamic limit k → 0, z → 0 in
the paper by Forster [115]. The modelling problems of transport kernels for inter-
mediate values of k and ω are reflected in the details of the description of spectra
for collective excitations, as well as in the dynamical structure factor. In the limit
k → 0, ω → 0, the cross correlations between the kinetic and potential flows
of energy and shear flows become not so important and the system of equations
(3.118)–(3.122) gives a spectrum of the collective modes of molecular hydrodynam-
ics [77,79]. For intermediate values of k and ω, the spectrum of collective modes
can be found from the condition




z iΩnp(k) 0 0

iΩpn(k) z +D
||
pp(k; z) Σphkin(k; z) Σphint(k; z)

0 Σhkinp(k; z) z +Dhkinhkin(k; z) Dhkinhint(k; z)
0 Σhintp(k; z) Dhinthkin(k; z) z +Dhinthint(k; z)


 = 0, (3.123)

in which contributions of the kinetic and potential parts of generalized enthalpy
are separated. This will be reflected in the structure of a heat mode at concrete
model calculations of the wavevector- and frequency-dependent transport kernels
Dhkinhkin(k; z), Dhkinhint(k; z), Dhinthkin(k; z), Dhinthint(k; z) depending on k and ω.

The system of equations (3.93) for time correlation functions allows an extended
description of collective modes in liquids, which includes both hydrodynamic and
kinetic processes. Including on the basis of functions φν(ξ) (3.96) some additional
functions,

ψl
Q(ξ) =

1

5
(ξ2 − 5)ξl, ψlj

Π(ξ) =

√
2

2
(ξlξj −

1

3
ξ2δlj), (3.124)

which corresponds to a 13-moments approximation of Grad, one obtains a system
of equations for time correlation functions of an extended set of hydrodynamic

variables {n̂k, p̂k
, ĥkin

k
,
↔̂
Πk, Q̂k

, ĥint
k
}:

zΦ̃H(k; z)− iΩ̃H(k)Φ̃H(k; z) + ϕ̃H(k; z)Φ̃H(k; z) = −Φ̃H(k), (3.125)
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where

Φ̃H(k; z) =




Φnn Φnp Φnhkin ΦnΠ ΦnQ Φnhint

Φpn Φpp Φphkin ΦpΠ ΦpQ Φphint

Φhkinn Φhkinp Φhkinhkin ΦhkinΠ ΦhkinQ Φhkinhint

ΦΠn ΦΠp ΦΠhkin ΦΠΠ ΦΠQ ΦΠhint

ΦQn ΦQp ΦQhkin ΦQΠ ΦQQ ΦQhint

Φhintn Φhintp Φhinthkin ΦhintΠ ΦhintQ Φhinthint




(k;z)

(3.126)

is a matrix of Laplace images of the time correlation functions,
↔̂
Πk=

∫
dξϕΠ(ξ)n̂k(ξ),

Q̂
k
=
∫
dξ ϕQ(ξ)n̂k(ξ),

iΩ̃H(k) =




0 iΩnp 0 0 0 0
iΩpn 0 iΩphkin iΩpΠ 0 iΩphint

0 iΩhkinp 0 0 iΩhkinQ 0
0 iΩΠp 0 0 iΩΠQ 0
0 0 iΩQhkin iΩQΠ 0 iΩQhint

0 iΩhintp 0 0 iΩhintQ 0



(k)

(3.127)

is an extended hydrodynamic frequency matrix,

ϕ̃H(k; z) =




0 0 0 0 0 0
0 DH

pp DH
phkin DH

pΠ DH
pQ DH

phint

0 Dhkinp Dhkinhkin DhkinΠ DhkinQ Dhkinhint

0 DΠp DΠhkin DΠΠ DΠQ DΠhint

0 DQp DQhkin DQΠ DQQ DQhint

0 Dhintp Dhinthkin DhintΠ DhintQ Dhinthint




(k;z)

(3.128)

is a matrix of generalized memory functions, elements of which are transport ker-
nels (3.94) projected on the basis of functions φν(ξ) (3.96), (3.124). For such a
description, the spectrum of generalized collective modes of the system is deter-

mined for intermediate k and ω by the relation det
∣∣∣zĨ − iΩ̃H(k) + ϕ̃H(k)

∣∣∣ = 0

which takes into account kinetic and hydrodynamic processes. In the hydrody-
namic limit k → 0, ω → 0, when the contribution of cross dissipative correla-
tions between the kinetic and hydrodynamic processes practically vanishes, the
system of equations for the time correlation function (3.125), after some trans-
formations, can be reduced to a system of equations for time corelation functions
of densities for the number of particles n̂k, momentum p̂k, total enthalpy ĥk, the

generalized stress tensor π̂↔k = (1 − PH)iLN p̂k
and the generalized enthalpy flow

q̂k = (1−PH)iLN ĥk, where PH is the Mori operator constructed on the dynamical
variables {n̂k, p̂k, ĥk}. For such a system of equations, the spectrum of collective
excitations is determined from [139,141]:

∣∣∣∣∣∣∣∣∣∣

z iΩnp 0 0 0
iΩpn z iΩph iΩpπ 0
0 iΩhp z 0 0
0 iΩπp 0 z + ϕππ iΩπQ + ϕπQ

0 0 0 iΩQπ + ϕQπ ϕQQ

∣∣∣∣∣∣∣∣∣∣
(k;z)

= 0. (3.129)
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In the hydrodynamic limit this gives: the heat mode

zH(k) = DTk
2 +O(k4), (3.130)

two complex conjugated sound modes

z±(k) = ±iωS(k) + zS(k), (3.131)

where ωS(k) = ck+o(k3) is a frequency of sound propagation, zS(k) = Γk2+O(k4)
is a frequency of sound damping with the damping coefficient Γ; two nonvanishing
in the limit k → 0 kinetic modes

zπ(k) = ϕππ(0) +O(k2),
zQ(k) = ϕQQ(0) +O(k2).

(3.132)

Here DT denotes a thermal diffusion coefficient

DT =
v2TQ

γϕQQ(0)
=

λ

mncp
, v2TQ =

mΦQQ − h2

ncV
, γ = cp/cV

cp and cV are, correspondingly, thermodynamic values of specific heats at the
constant pressure and volume, λ is a thermal conductivity coefficient, h denotes a
thermodynamic value of enthalpy, c = γ/mnS(k = 0) denotes an adiabatic sound
velocity. In (3.131)

Γ =
1

2
(γ − 1)DT +

1

2
η|| (3.133)

is a sound damping coefficient with

η|| =
v2pπ

ϕππ(0)
=

(
4

3
η + κ

)
/nm, v2pπ =

mS(0)Φππ(0)− γ

mnS(0)
,

where η and κ are shear and bulk viscosities. This spectrum coincides with the
results of papers [139,141,142]. However, at fixed values of k and ω, the transport
kernels ϕππ, ϕπQ, ϕQπ, ϕQQ are expressed via the generalized transport kernels
Dνµ(k; z) of matrix (3.128), i.e. via ϕnn(k,p,p

′; t, t′), ϕnh(k,p; t, t
′), ϕhn(k,p

′; t, t′),
ϕhh(k; t, t

′) (3.50)–(3.53), according to the definition Dνµ(k; z) (3.94). Here, it is
important to point out that passing from the system of transport equations of a
self-consistent description of kinetics and hydrodynamics to the equations of gen-
eralized hydrodynamics, we can connect the generalized transport kernels (3.50)–
(3.53) with the hydrodynamic transport kernels Dνµ(k; z) in (3.123) or (3.128).
Therefore, we gain the aim of the present section, namely, to connect transport
kernels of a self-consistent description of kinetics and hydrodynamics with hy-
drodynamic transport kernels for time correlation functions for densities of the
number of particles n̂k, momentum p̂k, enthalpy ĥk, which can be calculated by
using the MD method [142–152,159], as well as by experiments on light scatter-
ing for different real systems. Evidently, the most important problem is model
calculations of transport kernels (3.50)–(3.53). Such calculations must take into
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account a type of interaction of particles at short and long distances, as well as
their structural distribution. From this point of view, of significant interest is the
modelling of transport kernels (3.50)–(3.53) for a system of charged hard spheres,
since for a system of hard spheres a transport kernel of the type ϕnn(k;p,p

′; t, t′)
(3.50) was computed via the Enskog collision integral [120,121].

4. Conclusion

We have presented one of the approaches for a self-consistent description of ki-
netic and hydrodynamic processes in systems of interacting particles, formulated
by the NSO method. It is based on a modification of the boundary condition to the
Liouville equation, which takes into account a nonequilibrity of the one-particle
distribution function, as well as the local conservation laws which constitute a ba-
sis for the hydrodynamic description. Using such a description, generalized kinetic
equations for dense gases and liquids can be derived. The result obtained can be ex-
tended to quantum systems of interacting particles [16–18]. In particular, it can be
applied to nuclear matter and chemically reacting systems, where kinetic processes
play an important role together with hydrodynamic ones. The method applied can
be extended to the investigations of nonlinear and hydrodynamic fluctuations in
polar, ionic and magnetic liquids and electrolyte solutions.

There is a significant interest in investigations of collective excitations, time
correlation functions and transport coefficients on the basis of equations (3.93),
(3.94), (3.123), (3.128) at the presence of transport kernels ϕ(k; z) which describe
an interference between kinetic and hydrodynamic processes. In particular, the
transport kernel ϕ(k,p,p′; t) can take into account processes of interaction of par-
ticles at short and long distances (at Coulomb and dipole interactions of particles).
To do this, we can apply an approach of collective modes [142–152].
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Узгоджений опис кінетики та гідродинаміки систем

взаємодіючих частинок методом нерівноважного

статистичного оператора

М.В.Токарчук, І.П.Омелян, О.Є.Кобрин

Інститут фізики конденсованих систем НАН України,

290011, Львів–11, вул. Свєнціцького, 1

Отримано 14 грудня 1998 р.

Представлено один із статистичних підходів узгодженого опису кіне-

тичних та гідродинамічних процесів систем взаємодіючих частинок,

що сформульований на основі методу нерівноважного статистично-

го оператора Д.М.Зубарєва. Показано, як із ланцюжка рівнянь ББГКІ

з модифікованими граничними умовами отримуються кінетичне рів-

няння ревізованої теорії Енскога для моделі твердих сфер, кінетич-

не рівняння для багатосходинкового потенціалу та кінетичне рівнян-

ня Енскога-Ландау для моделі заряджених твердих сфер. Проаналі-

зовано ланцюжки рівнянь ББГКІ на основі модифікованих групових

розкладів. Отримано узагальнені рівняння переносу узгодженого

опису кінетики та гідродинаміки. Для випадку слабо нерівноважних

систем класичних взаємодіючих частинок при взаємному врахуван-

ні кінетичних та гідродинамічних процесів досліджено часові кореля-

ційні функції, спектр колективних збуджень та узагальнені коефіцієн-

ти переносу.

Ключові слова: кінетика, гідродинаміка, кінетичні рівняння,

коефіцієнти переносу, (часові) кореляційні функції

PACS: 05.20.Dd, 05.60.+w, 52.25.Fi, 71.45.G, 82.20.M
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