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Basic equations of nonequilibrium thermo field dynamics of dense quan-
tum systems are presented. A formulation of nonequilibrium thermo field
dynamics has been performed using the nonequilibrium statistical operator
method by D.N.Zubarev. Hydrodynamic equations have been obtained in
thermo field representation. Two levels of the description of kinetics and
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kinetics and hydrodynamics have been obtained, as well as limiting cases
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1. Introduction

The development of methods for the construction of kinetic and hydrodynamic
equations in the theory of nonequilibrium processes for temperature quantum field
systems is, in particular, important for the investigation of nonequilibrium prop-
erties of a quark-gluon plasma [1-5] — one of the nuclear matter states which can
be created at ultrarelativistic collisions of heavy nuclei [6-9]. The description of
strongly nonequilibrium processes of a nuclear matter appears also in the laser
thermonuclear synthesis in systems D-D, D-T, D-*He, p-B [10-13]. In theoretical
investigations of the laser thermonuclear synthesis there is a problem of descrip-
tion of a laser beam propagation and its absorption by the target (in particular, by
the D-T mixture), electron and photon energy transport in an ionized magnetized
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plasma with the creation of a corona — an electron liquid (n, ~ 102! = 10?2 ¢cm™3),
and the creation of a core — a super dense ion liquid (n ~ 10?*+10% c¢m?). In tar-
get ablation and implosion processes it is important to note transport coefficients,
such as thermal conductivity, electron’s conductivity, as well as dielectric proper-
ties, generation and evolution of spontaneous magnetic fields (with the inductivity
of thousands of Tesla), nuclear synthesis mechanisms and energy transport by a-
particles and neutrons which are products of synthesis reactions. In this connection,
there is a series of important problems, when kinetic and hydrodynamic processes
in a magnetized super dense electron-ion plasma should be described consistently.
Nonlinear hydrodynamic fluctuations of a magnetized degenerate electron liquid
in a corona should be considered by taking into account both the kinetics of su-
per heat electrons and nonlinear hydrodynamics of a super dense magnetized ion
liquid, where nuclear synthesis reactions take place with the creation of high en-
ergy neutrons (with concentration ~ 10** cm™3) and a-particles. The kinetics of
these particles affects the synthesis processes and energy transport in the whole
system. From the point of view of theoretical methods, in order to describe such
strongly correlated nonequilibrium processes, one needs to construct the kinetics
and hydrodynamics of a super dense high temperature electron-ion plasma and
a nuclear matter at ultrarelativistic collisions of heavy nuclei. A nuclear matter
— a stage of a quark-gluon plasma — appears after the compression of the target
core of D-D, D-T plasma. As this takes place, its density increases by a factor of
ten in the fourth degree and the distance between nuclons in the centre reaches
~ 1071 cm. Such systems are examples of strong both long-range and short-range
(nuclear) interactions. There is no small parameter for these systems (density, for
example). Nonequilibrium processes have a strongly correlated collective nature.
That is why methods which are based on a one-particle description, in particular,
on the basis of Boltzmann-like kinetic equations, cannot be used. In addition to
high temperature dense quantum systems, there are Bose and Fermi systems at
low temperatures with decisive many-particle dissipative correlations. Neither the
linear response theory nor Boltzmann-like kinetic equations are sufficient for their
description.

Analysis of the problem of a description of kinetic processes in highly nonequi-
librium and strongly coupled quantum systems on the basis of the nonequilib-
rium real-time Green functions technique [14-16] and the theory in terms of non-
Markovian kinetic equations describing memory effects [17-19] was made in re-
cent paper [20] and then in monograph [21]. It is important to note that in [20]
the quantum kinetic equation for a dense and strongly coupled nonequilibrium
system was obtained when the parameters of a shortened description included a
one-particle Wigner distribution function and an average energy density. On the
basis of this approach the quantum Enskog kinetic equation was obtained in [21].
This equation is the quantum analogue of the classical one within the revised En-
skog theory [22,23]. Problems of the construction of kinetic and hydrodynamic
equations for highly nonequilibrium and strongly coupled quantum systems were
considered based on the nonequilibrium thermo field dynamics in [24-29]. In par-
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ticular, a generalized kinetic equation for the average value of the Klimontovich
operator was obtained in [25] with the help of the Kawasaki-Gunton projection
operator method. The formalism of the nonequilibrium thermo field dynamics was
applied to the description of a hydrodynamic state of quantum field systems in
paper [26]. Generalized transport equations for nonequilibrium quantum systems,
specifically for kinetic and hydrodynamic stages, were obtained in [27] on the basis
of the thermo field dynamics conception [31,32] using the nonequilibrium statisti-
cal operator method [21,33,34]. In this approach, similarly to [20,21], the decisive
role is that a set of the observed quantities is included in the description of the
nonequilibrium process. For these quantities one finds generalized transport equa-
tions which should agree with nonequilibrium thermodynamics at controlling the
local conservation laws for the particles-number density, momentum and energy.
It gives substantial advantages over the nonequilibrium Green function technique
[14-16], which quite well describes excitation spectra, but practically does not
describe nonequilibrium thermodynamics, and has problems with the local con-
servation laws control and the generalized transport coefficients calculation.

In this paper we consider the kinetics and hydrodynamics of highly nonequi-
librium and strongly coupled quantum systems using the nonequilibrium thermo
field dynamics on the basis of the D.N.Zubarev nonequilibrium statistical operator
method [27]. Within this method we consider two different levels of a description
of the kinetics and hydrodynamics of dense quantum nuclear systems: strongly
coupled states and a quark-gluon plasma. The nonequilibrium thermo field dy-
namics on the basis of the nonequilibrium statistical operator method constitutes
sections 2 to 7. A nonequilibrium thermo vacuum state vector is obtained here in
view of equations for the generalized hydrodynamics of dense quantum systems.
Transport equations of a consistent description of the kinetics and hydrodynam-
ics in thermo field representation are obtained in section 8. We mean that these
equations are applied to dense quantum systems where strong coupled states can
appear. This item implies, as one of the approaches, to investigate a nonequilib-
rium nuclear matter [8,9]. Another level of the description (rather a microscopic
one) of nonequilibrium properties of dense quantum systems is considered in sec-
tion 9. A consistent description of the kinetics and hydrodynamics is obtained here
for a quark-gluon plasma.

2. Thermo field dynamics formalism. Superoperators and state
vectors in the Liouville thermo field space

In this section we reformulate the nonequilibrium statistical mechanics of quan-
tum systems using the thermo field dynamics formalism [31,32].

Let us consider a quantum system of N interacting bosons or fermions. The
Hamiltonian of this system is expressed via creation a;" and annihilation a, oper-
ators of the corresponding statistics:

H=H(a",a). (2.1)
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Operators a;", a, satisfy the commutation relations:
[al ) ]] - 51]? [al :aj] [al—l—a ;—] =0, (2'2)

where [A, B], = AB — 0BA, 0 = +1 for bosons and o = —1 for fermiouns.

The nonequilibrium state of such a system is completely described by the
nonequilibrium statistical operator o(¢). This operator satisfies the quantum Li-
ouville equation

£ o(t) — <, o(1)] = 0. (23

The nonequilibrium statistical operator p(¢) allows us to calculate the average
values of operators A

(A)! = Sp (Ao(1)), (2.4)

which can be observable quantities describing the nonequilibrium state of the sys-
tem (for example, a hydrodynamic state is described by the average values of
operators of particle number, momentum and energy densities).

The main idea of thermo field dynamics [31,32] and its nonequilibrium formu-
lation [35-37] consists in doing the calculation of average values (2.4) with the
help of the so-called nonequilibrium thermo vacuum state vector:

(A)" = ((11A0(1))) = ({1l A]e(1))), (2.5)

where A is a superoperator which acts on state |o(t))). Nonequilibrium thermo vac-
uum state vector |o(t))) satisfies the Schrodinger equation. Starting from equation
(2.3), we obtain the relation

SH10(0) = |1H{1,201 ) =0

or, opening commutator,

9ot ~ = Hlo(0)) = 0. (2.6

Here the “total” Hamiltonian H reads:
H=H-H, (2.7)

and it is known that ((1/H = 0; H = H(a*,a), H = H*(a't,d) are superoperators
which consist of creation and annihilation superoperators without and with a tilde,
and which represent the thermal Liouville space [38,39]. Superoperators Hand H
are defined in accordance with the relations:

|Ho(t))) = Hlo(1))),
lo(t)H)) = H|o(t))). (2.8)
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Hence, it appears that at going from the quantum Liouville equation (2.3) for
nonequilibrium statistical operator o(¢) to the Schrédinger equation (2.6) for non-
equilibrium thermo vacuum state vector |o(t))), according to (2.5), the number

of creation and annihilation operators is doubled. Superoperators a;', a;, a,, a;
satisfy the same commutation relations as for operators a;", a; (2.2):
(@ 71y = la,af]e = by s a5, = (&, 5], = 0, (2.9)

[dla dj]a - [al ) J ] 0 [al? aj]a = [al ’ j ] = 0.
Annihilation superoperators a, , a, are defined in accordance with their action on
the vacuum state — the supervacuum [38]

@,/00)) = @,|00)) = 0, (2.10)
where |00)) = [/0)(0])) is a supervacuum; and it is known that @, |0) = @, [0) =0,
and (0|a, = 0, i.e. a supervacuum |00)) is an orthogonalized state of two vacu-

um states (0| and |0). Taking into account commutation relations (2.9), (2.10), one
can introduce unit vectors |1)) = | >, |[)(1])) and ((1] = ((3_, [{){!|| in the following

forms:
1) = exp { Sarar | o0,
((1] = ({00| exp {21: a, } )

With the help of these expressions one can find relations between the action of
superoperators a; , @

(2.11)

Jo a;—’ aj
a ) = &), (1l = (1 012
a 1)) = oq 1)), ({lg, = {1l o '
In such a way, in the thermal field dynamics formalism [31,32] the number of oper-
ators is doubled by introducing both without tilde and tildian operators A(a*,a),
A(Eﬁ, a) for which the following properties take place:

A Ay, = AjAy, A=A,

A1 + 2 Ay = ¢ A; + G Ay, (2.13)

4)) = A[1)),
[A142)) = Ai|As)).
Here * denotes a complex conjugation. Some detailed description of the properties
of superoperators a;", a; , a,", @, , as well as a thermal Liouville space is given in
papers [31,32,38,39].
The nonequilibrium thermo vacuum state vector is normalized

{({Tle(®))) = ((te(®)[1)) = 1, (2.14)

where §(t) is a nonequilibrium statistical superoperator. It depends on superoper-
+
ators a; , q

o(t) = o (a*,ast), (2.15)

YR

~+ ~
depends on superoperators a;", @, .
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3. Nonequilibrium statistical operator in thermo field space

To solve the Schrodinger equation (2.6) a boundary condition should be given.
Following the nonequilibrium statistical operator method [21,27,33,34], let us find
a solution to this equation in a form, which depends on time via some set of
observable quantities only. It means that this set is sufficient for the description
of a nonequilibrium state of a system and does not depend on the initial moment
of time. The solution to the Schrodinger equation, which satisfies the following
boundary condition

|0(0))) 1=t = l2q(t0))), (3.1)

reads:
00 = exp { (= t) o1 | len() (3.2

We will consider times ¢ > ¢y, when the details of the initial state become inessen-
tial. To avoid the dependence on ?¢, let us average the solution (3.2) on the initial
time moment in the range between ¢y and ¢t and make the limiting transition
to —t — —oo. We will obtain [27]:

oft) =< [ dt e b g e+ o)), (3.3

where ¢ — +0 after the thermodynamic limiting transition. Solution (3.3), as
it can be shown by its direct differentiation with respect to time ¢, satisfies the
Schrodinger equation with a small source in the right-hand side:

(55— 551 1ot = = (1e(0) ~ leuto)) (3.4

This source selects retarded solutions which correspond to a shortened description
of the nonequilibrium state of a system, |g,(t))) is a thermo vacuum quasiequilib-
rium state vector

|2q(£))) = 04(%)[1)). (3.5)

Similarly to (2.14), it is normalized by the rule

((1leq(1))) = ((12q()|1)) = 1, (3.6)

where g4(t) is a quasiequilibrium statistical superoperator. The quasiequilibrium
thermo vacuum state vector of a system is introduced in the following way. Let
(pn)t = ((1]pn|0(t))) be a set of observable quantities which describe the nonequi-
librium state of a system. p, are operators which consist of the creation and an-
nihilation operators defined in (2.2). Quasiequilibrium statistical operator gq(t) is
defined from the condition of informational entropy Siys extremum (maximum) at
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t

additional conditions of prescribing the average values (p,)" and conservation of

normalization condition (3.6) [21,34]:

0q(t) = exp {—Q(t) - ZFJ(t)pn} :

(3.7)
®(t) = InSpexp {— Z F;:(t)pn} )

where ®(t) is the Massieu-Planck functional. A summation on n can designate a
sum with respect to the wave-vector k, the kind of particles and a line of other
quantum numbers, a spin for example. Parameters F,(¢) are defined from the
conditions of self-consistency:

) = () (=50 (- a(1). (3.8)

According to (2.5), let us write these conditions of self-consistency in the following
form:

((Upnle(®))) = ((L|pnleq(t)))- (3.9)
Taking into account behaviours (2.13), we have:
l0q(1))) = 4(1)[1)) = 24 (D)[1)), (3.10)

where

8(t) = exp {—@(t) - ZF::(t)ﬁn} :
n
(3.11)
04 (t) = exp {—@(t) -> F, (t)ﬁn}
n
are quasiequilibrium statistical superoperators which contain superoperators p,
and p,, correspondingly:

ﬁn = pn(d+7€l)7
B = pi(a".a). (3.12)

If self-consistency condition (3.9) realizes, we shall have the following relations (at
fixed corresponding parameters):

50 (1) ) A
5E )~ ((HPnlea(®)) = ((11pnlo(®))), .
s = (e (0) = (1720
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Relations (3.13) show that parameters F(t), F,(t) are conjugated to averages
((1|pn]o(t))) and ((1|p,|o(t))), correspondingly. On the other hand, with the help
of |04(t))) and self-consistency conditions (3.9) we can define the entropy of the
system state:

S(1) = = {(1](In gq(t)) eq +ZF* ((1]pnlo(®)))- (3.14)

The physical meaning of parameters F(¢) can be obtained now on the basis of
the previous relation:

3S(t)

B0 = Spale

(3.15)

4. Projection operators in thermo field space

Now the auxiliary quasiequilibrium thermo vacuum state vector |g4(%))) is de-
fined. Let us represent solution (3.3) of the Schrédinger equation (2.6) in a form
which is more convenient for the construction of transport equations for averages
((1|pn]o(t))). We shall start from the Schrodinger equation with a small source
(3.4). Let us rebuild this equation by introducing A|o(t))) = |o(t))) — |oq(t))):

(5 - 5+ <) 2leto) = = (5 - ) la(o)) (4.1)

The calculation of time derivation of |g4(¢))) in the right-hand side of equation
(4.1) is equivalent to the introduction of the Kawasaki-Gunton projection operator
Z,(t) [27] in thermo field representation:

9 0a(0)) = Palt) - Hlo(1)). (1.2
Zq0)( -0 = |Qq( )+ (4.3)
0 ng t) 0loq(t) X

> sttty (Ul ~ X s gy Ul )
Projection operator Z,(t) acts on state vectors | ...)) only and has all the operator
properties:

Za)le(t)) = lea(®))),

Zq(t)]eq(t))) = lea(t))),

ng(t)ng(t’) = ‘@q(t)-

Taking into account condition Z,(t)--H Alo(t))) = 0, one may rewrite equation
(4.1), after simple reductions, in a form:

(%—0—9«®%H+QAmmw=0—%ﬁ0%m@®» (4.4
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The formal solution to this equation reads:

t

plo = [ a e IT(t0)(1 - 2ue)) 7 Hlou(t)),

—00
or
t

o)) = lea(®) + [ a o OT() (1= ) Ha)) (49

—00

where

T(t,1) = exp, { /t Car (1- 2a)) %H} (4.6)

is an evolution operator with projection consideration, and exp, is an ordered

exponent. Then, let us consider expression (1 - @q(t’)> L H|oq(t))) in the right-
hand side of (4.1). The action of o H and (1—@q(t’)) on |g4(t))) can be represented

in the form:

(1_9(1({)) H|Qq ZF*

where p,, and Z(t) read:

1

Dn = 1h[H Dnl, (4.8)

P(Op = (W20 + 3 S o (po— (AleD). (9

1| n|9t

0(1-20))bdy 0 )07

Here Z(t) is a generalized Mori projection operator in thermo field representation.
It acts on operators and has the following properties:

@(t)pn = Pn,

PP = P(b). (4.10)

Let us substitute now (4.7) into (4.5) and, as a result, we will obtain an expression
for the nonequilibrium thermo vacuum state of a system:

o) = leu(t)) + 3 / AT () | farg ()00 (0 D (D)

(4.11)

Here
To(t) = (1 . @(t))jan (4.12)

are generalized flows.
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Let us obtain now transport equations for averages ({1|p,|o(t))) in thermo field
representation with the help of nonequilibrium thermo vacuum state vector |o(t)))
(4.11). To achieve this we will use the equality

§t<<1lpn|9( £)) = ((1Upulo(t))) = ((LBalea(®))) + ({Ju(t)] 0())- (4.13)

By making use of |o(¢))) in (4.11) in averaging the last term, we obtain transport
equations for ((1|p,|o(t))):

§t<<1|pn|g< D)) = ((11h.lea(t))) + (4.14)

Z/dt’ e t<< (T (¢, 1)

where ﬁn = —%H Pn- Relations (4.14) are treated as a general form of transport
equations for average values of a shortened description. These equations can be
applied to completely actual problems.

In the case of weakly nonequilibrium processes, the generalized transport equa-
tions (4.14) are reduced appreciably. We shall consider this case in the next section.

(107 (0) ) Fi (o)

5. Transport equations in linear approximation

Let us consider the nonequilibrium state of a quantum field system near equilib-
rium. In this connection let us suppose that average values ((1|p,|o(t))) of variables
for a shortened description and their conjugated parameters F;(¢) differ in their
equilibrium meanings slightly. In such a case, one can expand the quasiequilib-
rium thermo vacuum state vector |gq(t))) (3.5), (3.11) into a series on deviations
of parameters F(t) from their equilibrium values F,(0) and restrict a linear ap-
proximation only:

|24(1))) = leo(F, ZéF*

de 2 ( (0))anéT(Fn(0))>>, (5.1)

where |0o(F,(0)))) is an equilibrium thermo vacuum state vector which depends on
equilibrium values of F},(0) parameters (local inversed temperature 3 and chemical
potential p), F(t) = F;(t) — F;7(0). With the help of self-consistency conditions
(3.9) and taking into account (5.1), let us define parameters 0 F;(t):

SF;(t) = = > ((plp)un{(11Pm|0(t))), (5.2)

m

where 0p,, = pm — ((1|Pm|00(F(0)))), ((p|p)),.}, are elements of the inverse matrix
of ((p|p)). Elements of the matrix ((p|p)) are equilibrium correlation functions in
thermo field representation

(alpmlo = (|

[dr oipmey >> - (5.3)
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Substitution of (5.3) into (5.1) for |g,(%))) results in

a0 = au(FOD) + (0155 o0D) () Ode G (F(O0))pnl™ T(F(O))>>.
(5.4)

To calculate nonequilibrium thermo vacuum state vector |o(t))) (4.11) in linear
approximation (5.4), let us rewrite transport equations (4.14) in another form:

B (A9 I0) = 3 O (15l = 3= J O a5l
(5.5)
where

—

Jdr egmioy T >> (®P))im (5.6)

are equilibrium quantum correlation functions, and

pun(t) = 3 (o (g™ ) (), (5.7

are transport cores in thermo field representation, which describe dissipative pro-
cesses in the weakly nonequilibrium state of a quantum system, .J,, is defined
similarly to (4.12):

Jn = (1 - ﬁﬂ)pn;
To(t) = exp {t(l - @@%H}

is the time evolution operator with taking into account the projecting where
is the Mori projection operator with the following structure:

ZoA = (1|A]20)) + Y (Alpa))((2IP)) mim- (5.8)

m,n

To(t, 1)

Projection operator #; satisfies conditions (4.10). As it can be shown [27], for
transport equations (5.5) correspond to equations for quantum time correlation
functions in thermo field representation:

P (t) = ((Pn ()P (0)00)), (5.9)

8 Z@n@lm Z/dt’ =) g (1) By (), (5.10)

where the time evolution of superoperators p,(t) in the Heisenberg representation
reads:

o 1-1. 1
Pn(t) = exp{—EHt}pnexp{ﬁHt}. (5.11)
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As it is indicated by (5.5), (5.10), transport equations for values ((1|p,|o(t))) and
the corresponding equations for time correlation functions ®,,,(¢) in linear approx-
imation (5.4) are closed.

If spectral magnitudes ®,,,,(w) for quantum time correlation functions ®,,,,(t)
are defined as follows:

By (1) = ;ﬁ / dt €1, (1), (5.12)

—00
then, according to the definition of Green functions [21,33] and the condition that
®,,,,(w) is a real function (w is a real number), one finds imaginary parts of spectral
magnitudes of the corresponding retarded, advanced and causal Green functions

SmGE2 (W) = Fo= (7 — 0) D (W), (5.13)

)
SMGE,, (W) = — = (€7 +0) By (w), (5.14)

w|+—t§,|>—\

where functions G%, (t,t'), G2, (t,t'), GS, (t,1') in time representation constitute,
correspondingly, retarded, advanced and causal Green functions in thermo field
representation:

G (1) = i%aa — YU Pa(®), Pr(#)]s | 00)) = (5.15)
20— 1) (1P (0) P 0) =
i%ﬁ(t — )1 (E) D (') — 0B ()P () 0)),

1

/ 1 /
Gum(t, 1) = (1T Pa(t)pm(t) 20) (5.16)
1 / ~ ~ ! 1 / ~ ~ !
= 00 = ) {(Upn()Pm(t)|00)) + =0 = E)(L1Pn ()Pm(t')|00))
1,t>0, . . . -
where 6(t) = is a unit step function. As it is seen from (5.15) and

0,t<0,
(5.16), retarded (advanced) and causal Green functions are defined via time corre-
lation functions ((L{pn(£)pm(t')|20)), (1P (£)P, ()| 0)), which satisfy conditions
(5.10). For completeness, let us write dispersion relations which connect the imag-
inary parts SmGL2 (w), SmGS, (w) (5.13), (5.14) and the real parts Re GL2 (w),
Re G, (w) of spectral functions of the corresponding Green functions [21,33]:

w' —w

Re G2 () = +- @/d ’%), (5.17)

ImG(w') ' — o
W—w e 4o

Re G, (w) = —W/d'
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It should be pointed out that Green functions in thermo field representation, which
are calculated with the help of equilibrium thermo vacuum state vector |go(53))),
were investigated in many papers [32,38,40,41]. Specifically, the diagram technique
for their calculation, which generalizes the Feynman method, was developed in [42].

An application of the general structure of nonequilibrium thermo field dynam-
ics on the basis of the nonequilibrium statistical operator method [21,27] will be
considered in sections 7 and 8. We will obtain equations of hydrodynamics and
transport equations of a consistent description of the kinetics and hydrodynam-
ics for dense quantum systems in thermo field representation. While investigating
such systems, one of important problems is the calculation of transport cores (or
transport coefficients) both for weakly and strongly nonequilibrium systems.

The problem is that quasiequilibrium thermo vacuum state vector |gq(1))).
(3.10) or (5.4), in each case is not a vacuum state for superoperators a, a*, a,
a*. The subject of this question consists in the construction of dynamical reflec-
tion of superoperators a, a*, a, a* into superoperators for “quasiparticles” for
which the quasiequilibrium thermo vacuum state is a vacuum state. One method
of constructing such superoperators is considered in the next section.

6. Creation and annihilation superoperators of “quasiparticles”
for the quasiequilibrium thermo vacuum state

In our further consideration we assume that Hamiltonian H (2.1) of a system
can be represented in the form:

H = Hy+ Hy, (6.1)

where H;,; contains a small parameter. This small parameter can be used for
the construction of perturbation theory series. At the same time Hj, is a non-
perturbed part of the Hamiltonian (6.1). It depends on creation and annihilation
operators a;, a, bilinearly. According to the nonequilibrium thermo field dynamics
formalism, Hamiltonian H of a system reads:

H = Hy +Hyy,
Hy = Hy —H, (6.2)

Hint = Hint_Hint-

H, depends on superoperators a*, a, a®, a bilinearly. In such a case, to construct

the perturbation theory for operators it is convenient to use the Heisenberg rep-
resentation on the non-perturbed part of Hamiltonian Hy:

- 1 - - 1 -
At) = ——Hgtp A —Hyt ;. 6.3
(1) exp{ = 0} exp{ih 0} (6.3)
It is known that A(t) satisfies the Heisenberg equation

O A0) = - [ (®). AD)] . Fu(t) = exp {—%ﬁgt} Hexp {%H@}.(GA)
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Superoperators a*, @, a*, a in the Heisenberg representation read:

N —Ligts LA . —Ligtat LA

a(t)= e~ mtolgem ot at(t)= e wHolgtemthot,
~ 1 i ~ 1 Hot~ 1 i
aeir ot at(t)= e mHolgtemtol,

They satisfy the “classical” commutation relations:

[d(t)’ &+(t)]a = [d(t), a+(t)]0 =1, [d(t)’ a(t)]a = [d+(t)7 a+(t)]0 =0, (66)
[d(t)’ &(t)]a = [d+(t)7 &+(t)]0 =0, [a(t)’ a(t)]a = [a+(t)7 a+(t)]a = 0.

Let us assume that the quasiequilibrium thermo vacuum state vector describes
the initial state of a quantum system by the non-perturbed part of Hamiltonian
Hy. |oq(to))) is not a vacuum state for annihilation superoperators a(t), a(t), i.e.

a(t)]eg(to))) = f(t—to)a"(t)]oq(t))),
a(t)|eq(to))) = o f (t = to)a™ (t)|eq(tn))), (6.7)
((1a*(t) = o((1la* (1),
where function f(¢—t¢) will be defined below. Nevertheless, the linear combination

of superoperators a*, a, a*, a allows us to define new creation and annihilation
superoperators 4, 4(t) and 7 (t), 7(¢) [35-37):

A(t) = QY*(t —to)la(t) — f(t —to)a™ (1)), (6.8)

FH(t) = QV2(t —to)la* (1) — oa(t)). (6.9)

So, taking into account (6.7), the action of new operators on state vectors reads:
A(0)lea(to))) = 0. {(1A*(1) = 0. 6.10)

7()leg(to))) = 0, ((1[7"(#) = 0.

Superoperators 4, 4(t) and 77 (t), 7(t) satisfy the “canonical” commutation rela-
tions:

[(®), 57 (")]o = 1,
.7 Ol =1, [3(®).70]e = [3"(#), 7" ()]s = 0. (6.11)

A connecting expression between multiplier Q(t — ¢¢) and function f(¢ — ty) may
be found on the basis of relations (6.8), (6.9) and (6.11):

Qt—ty) =[1—af(t—ty)] " (6.12)

But, to define f(¢ — o) function let us use the second equality in (6.7). It aids to
obtain the following;:

((Lla(t)a(t)|oq(to))) = o f (t — to){(1|a(t)a™ (t)]q(t0)))- (6.13)
And, using the third equality in (6.7) and (6.13) we arrive at
((Lla™(H)a(t)]oq(to))) = f(t — to){(1|a(t)a™ (t)]q(t0)))- (6.14)
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As far as

n(t —to) = ((1a” (t)a(t)|eq(t))) = ((1]a* (1)a(t)]q(to))) (6.15)

is the average particle number, then, using in the right-hand side of (6.14) com-
mutation relation a(t)a™ (t) —oa™ (t)a(t) = 1, we obtain a linkage between n(t —t)
and function f(t — to), and vice versa:

n(t —ty) = f(t—to)(1+ on(t —tg)),

flt—1ty) = n(t—to)/(1+ on(t —ty)). (6.16)

Finally, if to substitute (6.16) into (6.12), one finds a linkage of normalized multi-
plier Q(t — to) and average particle number n(t — ty):

Q(t —to) = 1+ on(t — to). (6.17)

Now, taking into account (6.16) and (6.17), relations (6.8), (6.9) for superoperators
1, A(t), and 37(t), 7(t) read:

i) = (1+on(t — 1))’ [&(t) _ %d+(t)} ,
() = (1+on(t —10)) () - o), (6.18)

Inversed transformations for superoperators a*, a(t) and a*(t), a(t) can be easily
obtained from (6.18):

3 n(t — to)
a(t) = (1 t—t V() + ————————7 (¢
alt) = (14 an— )" [0+ i)
at(t) = (1 +on(t— t0)>§ 7 (1) + o4(1)]. (6.19)
A(t), 47 (t), ¥(t), ¥7(t) can be defined as annihilation and creation superoperators

of quasiparticles for which quasiequilibrium thermo vacuum state |g4(t))) is a
vacuum state. These superoperators are functions of thermodynamic parameters
F,,(t) which describe the quasiequilibrium state of a system. Relations (6.18), (6.19)
are a dynamical reflection between a(t), a*(t), a(t), at(¢t) and 4(¢t), 47 (t), ¥(t),
7t (t). While calculating transport cores in transport equations (4.14) and (5.7),
or connected with these quantities Green functions, superoperators a(t), a*t(¢),
a(t), a*(t) are multiplied according to the Wick theorem about normal products
:at(t)a(t):, :a*(t)a(t):. Coming now to superoperators ¥(t), 41 (¢t), 7(t), ¥+ (¢) with
the help of inversed transformations (6.19), one can obtain for the calculation of
transport cores or the corresponding Green functions, a generalization of the Wick
formulae and Feynman diagram technique on a nonequilibrium case. It is one of
important features of the nonequilibrium thermo field dynamics. It consists in
the possibility of constructing the quasiequilibrium thermo vacuum state vector
as a vacuum state vector for the solution to the Schrodinger equation (2.6) of a

quantum field system.
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In the following section we consider equations of thermo field hydrodynamics
of quantum systems of both strongly and weakly nonequilibrium states using the
base transport equations (4.14). We obtain expressions for generalized transport
coefficients of viscosity and thermal conductivity in thermo field representation.

7. Generalized hydrodynamic equations in thermo field repre-
sentation

In the case of description of the nonequilibrium state of a quantum system the
following quantities can be chosen as parameters of a shortened description: they
are density operators of particle number ng, momentum p, and energy Ej. For
such a set of values quasiequilibrium statistical operator g,(t) reads [21,33,34]:

(1) = exp {—@(t) 5 [aB0) = oletorpe =[5 (= 5?)], 0 } ,

k
(7.1)

where parameters p_g(t), v_g(t), f_r(t) are defined from the self-consistency con-
ditions

(k| 0q(8))) = (Ll (1)),
((Uprloq(t))) = (b (1)), (7.2)
(1 Ekleq(1))) = (1 Exle(1))),

and mean a chemical potential, average hydrodynamical velocity and a local value
of inversed temperature, respectively [21]. Expression (7.1) aids to obtain a set
of equations of generalized hydrodynamics in thermo field representation. Taking
into account (4.14), we obtain:

§t<<1|”’“|9( £)) = (L] 0a(1))), (7.3)
§t<< [Brlo(t)) = ((1pgloq(1)) — (7.4)

> / at 0 () |11 | far G006 0,7 (0)) (o)) +

> / a0 (o 0) 10,0 | far 2500 )6k (0) ) 5l

jt«lwkm( 0)) = {1 Exlea(®)) — (75)

Z/dt’ et t<< (k:t)‘Ttt’

)& t')gaf<t'>>> (Bo)s(t) +
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Z/dt’ s(t'=1) <<JE(k;t) ‘T(t t')

where

() Ipl: )y (1) ) Bult).

), k) = (1-20) b
By = By (af,a,),  Ju(kit) = (1 - @(t))Ek,

are generalized flows. But the Mori projection operator () at the description of
the hydrodynamic state reads:

PO = (] @)+ P S o — (laela(0)
a={n,p,E} k

(7.6)

Transport cores

(s
(e

((tist \T(m’)
(et e

n (7.4), (7.5) are calculated with the help of quasiequilibrium thermo vacuum
state vector (7.1).

For the description of nonequilibrium hydrodynamic state of a quantum field
system near equilibrium, the set of equations of generalized hydrodynamics (7.3)—
(7.5) according to (5.1)—(5.5) becomes closed:

i)
Dt ),
)

Jdr 0 (") T,(g
0

(7.7)

ar g(0) el )at (@) ).

§t<<1|6nk|g = 3" k8116, 0(1). (7.9
(1154l 0(1)) = 3 Oy, £)((1501glo(1)) + (7.9
> Qn(k. ) (LIdhglo(1))) -

S [ ar et kth gt t) - gl(1p o) -
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t
E:/&%W”hQthu@gww%Mﬁ»

g

%<<1|53k|9(t)>> = Up(k, g){(116D,l0(1))) - (7.10)

g

t
S [t Ok Gk gt < gl(110B o) -
8 _x

t
S [ at etk Ak g 0) - g1 5kl

g

In these relations all quantities Q,,(k, 8), Qpn(k, 8), Qpn(k, 8) and Qyp(k, g) are
defined by the relation (5.6) and are equilibrium quantum correlation functions;
n(k,g;t,t'), \N(k,g;t,t'), &onl(k, g5, 1), Enp(k, 8; 1, 1) are, correspondingly, time-de-
pendent generalized transport coefficients of viscosity, thermal conductivity and
cross transport coefficients. They are defined as follows:

k(g t) g = ((BRIT0.0) | [ar (@)™ )Xo, (1)

1
k:&pn(k, gt t') -k = (( Jp(k)To(t,t') | [dr gth(g)gé_T X,:,}(g), (7.12)
0

1
k-&pk, gt t): g Jn(R)To(t, 1) | fdr of Jp(&)op™™ ) Xpp(8),  (7.13)
0

I
ANIEANIEAANG
NIRRT N

1
k-Ak,g;t, 1) -g = ({ Ju(R)To(t,t) | [dT 05 Tn(g)es ™ ) X (8),  (7.14)
0
where
Jp(k’) = (1 - r@o)f’k,

and X pp(k), Xnn(k), Xen(k), Xun(k) are equilibrium quantum correlation func-

tions:
! 1
Xop(8) = <<pg Jdr ogp_goy " >> , Xnn(g) = <<hg Jdr ogh-goy" >> ;
0 0
! 1
Xnn(g) - <<ng de an—gg(l)_T >> ’ XEn(g) = <<Eg de an—gQ(l)_T >> .
0 0

In (7.15) the Mori projection operator & is defined in accordance with (5.8) and
is built on operators ng, p;,, hx in thermo field representation. Operator hy, appears
due to the inclusion into |oq(t))) (7.1) parameters (g (t) and ug(t) with the help
of self-consistency conditions (7.2) in the linear approximation (see (5.1)—(5.4))
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and has the meaning of generalized enthalpy. On the basis of hydrodynamic equa-
tions (7.8)—(7.10) one can investigate quantum correlation functions like “density-
density” ®@,,(k;t), “flow-flow” ®,,(k;t), “enthalpy-enthalpy” ®,,(k;t) and the
corresponding Green functions for specific quantum field systems.

A separate and very important problem is the calculation of transport coef-
ficients (7.11)—(7.14). Consideration of nonequilibrium thermodynamics in a field
theory on the basis of nonequilibrium statistical operator [33] and approximate
calculation of viscosity and thermal conductivity coefficients for the &* field model
were done in paper [43]. These calculations were carried out using the Green-Kubo
formulae which connect transport coefficients of viscosity and thermal conductivity
with the corresponding Green functions. The last ones are built on the stress ten-
sor and energy flow operators. In their turn, the Green functions were calculated
using the Dzyaloshinski diagram method [44].

8. Transport equations of a consistent description of the
kinetics and hydrodynamics of dense quantum systems

In the studies of nonequilibrium states of quantum field systems, such as a
nuclear matter [8,9], there arises a problem of taking into consideration coupled
states. Kinetic and hydrodynamic processes in a hot, compressed nuclear matter,
which appears after ultrarelativistic collisions of heavy nuclei or laser thermonu-
clear synthesis, are mutually connected and we should consider coupled states
between nuclons. This is of great importance for the analysis and correlation of
final reaction products. Obviously, a nuclon interaction investigation based on a
quark-gluon plasma is a sequential microscopic approach to the dynamical de-
scription of reactions in a nuclear matter. The problem of a consistent description
of the kinetics and hydrodynamics of a dense quark-gluon plasma is considered
in section 9. For the description of kinetic processes in a nuclear matter on the
level of model interactions, the Vlasov-Ueling-Uhlenbeck kinetic equation is used.
This equation is used mainly in the case of low densities. The problems of a dense
quark-gluon matter were discussed in detail in [8,9,20,45-47].

We will consider a quantum field system in which coupled states can appear
between the particles. Let us introduce annihilation and creation operators of a
coupled state (A«a) with A-particle:

010(P) = D Waap(l,.... Aa(l)...a(A),

8.1

af,(p) =D Wip(l,... A)a’(1)...a"(4), (®.1)
L., A

where Wy,,(1,..., A) is a self-function of the A-particle coupled state, a denotes

internal quantum numbers (spin, etc.), p is a particle momentum, the sum cov-

ers the particles. Annihilation and creation operators a(j) and a™(j) satisfy the

following commutation relations:

[a(D). a™ (Do =015, la(l), a(i)]o = [a™ (1), a™(5)]o = 0, (8.2)
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where o-commutator is determined by [a,b], = ab — oba with 0 = £1: +1 for
bosons and —1 for fermions.
The Hamiltonian of such a system can be written in the form:

dpd
H= Z/ 217)rhq6 2%, 20 (p_ g) @Aa <p+ g) + (8.3)
ZZ/depquAB( o ( q—2p'> hns(@)an, (p_ q—2p/>’
A,B a3

where Vsp(q) is interaction energy between A- and B-particle coupled states, q is
a wavevector. Annihilation and creation operators a,,(p) and a7, (p) satisfy the
following commutation relations:

(@40 (P), :% (P)]e = 04,80a,50(P — p),

(00 (P), as(P))]o = [a2a (). a5 (P)]o = 0. (8.4)

nps(q) in (8.3) is a Fourier transform of the B-particle density operator:

. dp
nBﬂ(q):/(27rh)3 Gy gl q-

As parameters of a shortened description for the consistent description of the
kinetics and hydrodynamics of a system, where coupled states between the parti-
cles can appear, let us choose nonequilibrium distribution functions of A-particle
coupled states in thermo field representation

<<1|ﬁAa(rap)|Q(t)>> = an(rap;t) = an(l‘;t)a T = {’)",p}, (85)
here f,,(x;t) is a Wigner function of the A-particle coupled state where

R _ . dg = 14, AW q

arp) =) = [ Gty (p- )i (p+])  60)

is the Klimontovich density operator; and the average value of the total energy
density operator

(L H()]e(t)) = (L H (F)e(t))). (8.7)

By this [dr H(r) = H, H(r) is a superoperator of the total energy density which
is constructed on annihilation and creation superoperators a ,,(p) and a}_(p).
The latter satisfy commutation relations (8.4). Following [27], one can rewrite
quasiequilibrium statistical operator g,(t), |04(t))) = 04(t)|1)) for the mentioned
parameters of a shortened description in the form:

04(1) = exp {@*(t) - [ ar perst (fff(r) = [ G aale t)fua(x)) } ,
A,

(8.8)
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where Lagrange multipliers 5(r;¢) and p,,(z;t) can be found from the self-con-
sistency conditions, correspondingly:

(1 HT)]et) = (LH(r)|og(1)), (8.9)
(Ui aa(@)]0(?))) = ((LA4a()]eq(1))), (8.10)

®*(t) is the Massieu-Planck functional and it can be defined from the normalization

condition (3.6):
@*(t):1n<<1 exp{ /drﬁ ( Z/ dPBMAaxt)nAa( ))}>>
(8.11)

Using now the general structure of nonequilibrium thermo field dynamics (4.1)—
(4.14), one can obtain a set of generalized transport equations for A-particle
Wigner distribution functions and the average interaction energy:

(;9 (L aa(2)0(1)) = (Lnga(@)]0a(1))) + (8.12)

t
/ ar / A e gl (o w5 ) B(r's 1) +

Z / a4’ / a0 AP (o ts 1 ) B ) g (s ),

a<<1|H( )o(®)) = ((UH () ag(1))) + (8.13)

/d'r /dt'e” Dpyr, vt )6t +

Z / da’ / a0 BB (., 2t 1, ) B )y s ),

where 2/ = {r',p'}, d2’ = (27h) 3dr’ dp'. Here

Aa N 1
pnn (v, 251, 1) = (( 1], (2, )T(t,1)

. 1
17, (@ t)T(tt)

o) Tu(r'st)og (') ), (8.15)

)
(01,5006 7)) (819

<<

elitartint) = ((

o8 (e st 1) = <<1 Ju(r, )T (t,1") 1
<<

R 1
1 Jg(r, t)T(t, 1)
0

opp(r, vt 1) =
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are generalized transport cores which describe dissipative processes. In these for-
mulae

Tu(rit) = (1= 2())H()
Ju, (rpit) = (1= 2() )it1a ()

are generalized flows,

(8.18)

f(r) = o H(r)

iipa(r,p) =~ [H.110(0),

P(t) is a generalized Mori projection operator in thermo field representation. It
acts on operators

P ()P = ({|Plog(1))) + (8.19)

SUPLea®) (e i
[ s >|g<t>>>( () = (A @) o)) +

drd 5{(1 A
> | et LD (n10) = (1))

and has all the properties of a projection operator:

PWHr) = H(r), POPE) = 20,
P(Onan(rp) = naa(rp), (1= 21)20) = 0.

The obtained transport equations have the general meaning and can describe
both weakly and strongly nonequilibrium processes of a quantum system with
taking into consideration coupled states. In a low density quantum field Bose-
or Fermi-system the influence of the average value of interaction energy is sub-
stantially smaller than the average kinetic energy, and coupled states between the
particles are absent. In such a case the set of transport equations (8.12), (8.13) is
simplified. It transforms into a kinetic equation [27] in thermo field representation
for the average value of the Klimontovich operator ((1|n(z)]o(%))):

aat<<1lnk( o)) = ({Llnk(p)leq(?))) +

Z/dp/dt' et t<< (kt)‘

Using the projection operators method, this equation was obtained in [24].

In the next step we will construct such annihilation and creation superoper-
ators, for which the quasiequilibrium thermo vacuum state vector is a vacuum
state. Analysing the structure of quasiequilibrium statistical superoperator (8.8),

(O)Iagit )6l () b8 ).
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one can mark out some part which would correspond to the system of noninter-
acting quantum A-particles. Let us write gq(¢) in an evident form and separate
terms which are connected with the interaction energy between the particles:

0q(t) = exp {—(P*(t) - /dr B(r;t) x (8.20)

Using operator equality (A and B are some operators)
1
eATB |1 4 /dT eT(A+B) B o=T(A+B) | oA
0
the relation for gq(¢) can be rewritten in the following form:

1

oat) = |1- / dr 5(r; 1) / dr () Flm () (3(5)) 7| 8200), (8.21)

& (t) = exp {(I)(t) - / dr 3(ri1) x (8.22)

or

& (1) :exp{ () — /drﬁ ri) Z/ Grbaa @i )i (x)}, (8.23)

2

where b, (z;t) = [;n—AﬁAa(z) — Paq (s t)ﬁAa(x)} . Quasiequilibrium statistical

superoperator @g(t) is bilinear on annihilation and creation superoperators a 4, (P)
and a, (P), as well as on the non-perturbed part of Hamiltonian Hy. One can write
the total quasiequilibrium superoperator as some non-perturbed part of §) () and
the part which describes interaction of quantum particles in the quasiequilibrium
state. Further, we introduce the following designation:

0a(t) = 0q(t) + 04 (1), (8.24)

where

2(t) = — / ar (1) / dr 57 (1) Fu () (34(1)) 7200, (8.25)
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Quasiequilibrium thermo vacuum states |94(t))) and [3](t))) are not vacuum states
for annihilation and creation superoperators a ,,(P), a}, (P), a,,(P), a},(P).
But for [9)(t))) one can construct new superoperators 4 ,,(P), Y1 (P), ¥4q(P),
1 (P) as a linear combination of superoperators a ,,(P), a},(P) and a,,(P),
a’,(P) in order to satisfy the conditions:

Faa(P31)]0q(1))) =0, (17 4a(Ps 1)
Yaa(P31)]0g(1))) =0, ((L7ia(Ps 1)

To achieve this let us consider an action of annihilation superoperators a 4, (P;1),
a4, (P;t) on quasiequilibrium state |of(t))):

Q40(Pit)|0g(to))) = faa(Pst —to)aji, (P t)]gg(t))),

a0 (P31 o(10))) = 0 faa(Pt — 1) (Pi1)] (1)), (8.27)

where superoperators a ,,(p;t), a},(p;t), ., (P;t), a},(p;t) are in the Heisenberg
representation

g (8.26)

_1
ik
At 1Y — o Hot 5+ L Hot = 1) — o Hot >+ L fot
aAa(P’t) =€ it aAa(P) en=, aAa(Pat) =€ i aAa(P) en—=,
and satisfy commutation relations:

(G40 (P5t), G5(P'51)] = 04,500,50(P — P'),
G0 (P3t), aps(P'it)] = 04,500,50(P — P),
(6,4, (P t),&Bﬂ(P';t)} = [a},(P31), aps(P"; )} = 0.

g

It is necessary to note that superoperators H(r), fi,, (x) are built on superoper-
ators G,,(p+ %), ah,(p—2), ay,(p+ 2), a},(p — 2). Therefore, for convenience
here a unit denotion was introduced for arguments like P = p 4 I a . This should be
taken into account in further calculations where obvious expressions are needed.

According to general relations of section 6 (6.7)—(6.19), we can introduce new
operators 4, (P;1t), 1., (P;t), Y4, (P;t), Y4, (P;t) via superoperators a ,,(P;t),
al (P;t), a,, (Pst), al, (P;t):

N N n (Pt t(]) ~

P:t) = /1 Pt t P;t) — Aal” 0 > * (Pt
Taa(Pit) = /1 oman (Prtote) |4 (Pit) = 120 = S80Sl (P
a(Pit) = 1+ 0n, (Pit.to) [, (Pst) — 0t (P 1)] (8.28)

Relations (8.28) satisfy conditions (8.26). Here

40P G o) = 140 (Pit,10), = (115, (Pi )10 (Pi1)] o5 (1)) =
(Ut (p = 3D (p+ 338)l] (1)),

is a quasiequilibrium distribution function of A-particle coupled states in momen-
tum space p, q, which is calculated with the help of quasiequilibrium thermo
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vacuum state vector g)(to))) (8.23). Function fa,(P;t — to) in formulae (8.27) is
connected with n,(P;t, 1) by the relation

nAa(P; t: t(])

(Pt —1y) = .
Jol 0) 1+ onaa(P;t, ty)

Superoperators 4 ., (P;t) and 3,,(P;t), 41, (P;t) and 71 (P;t) satisfy the “ca-
nonical” commutation relations:

(Va0 (P:1). As(P's)] = 04,500s0(P — P'),
HAa(PQt)a:YEﬂ(PI;t)]U = 04,800,30(P — P’), (8.29)
[Faa(P3): A5(P'51)] = [Y4a(P31), 755(P'31)] = 0.

Inversed transformations to superoperators a ,  (P;t), a},(P;t) are easily obtained
from (8.28):

N N n (Pt t(]) ~

P:t) = 4/1 P:tt P:t Aal” 0 > * (Pt
40 (Pit) =\ om0 (Pitote) [aa(Pt) + 20 ™ B0 (Pi1)|.
@40 (Pit) = /14 0n,(Pitto) [T5a(P5t) + 09,10 (P: )] (8.30)

Yo (Pit), Y4, (Ps5t), Fa4u(P31), Y4, (P;t) could be defined as some operators of
annihilation and creation of A-quasiparticle coupled states, for which quasiequi-
librium thermo vacuum state |0)(to))) (8.23) is a vacuum state. In such a way, we
obtained relations of dynamical reflection of superoperators a, (P;t), a}, (P;t),
a0 (P5t), al, (P;t) to new superoperators of “quasiparticles” 4, (P;t), ¥4, (P;t),
&Aa(P;t% f?jl—a(P?t)

A set of transport equations (8.12), (8.13) together with dynamical reflections
(8.28), (8.30) of superoperators in the thermo field space constitute the basis for
a consistent description of the kinetics and hydrodynamics of a dense quantum
system with strongly coupled states. Both strongly and weakly nonequilibrium
processes of a nuclear matter can be investigated using this approach, in which
the particle interaction is characterized by strongly coupled states, taking into
account theirs nuclear nature [1,2,8,9].

It is much sequential to describe investigations of kinetic and hydrodynamic
processes of a nuclear matter on the basis of quark-gluon interaction. The quantum
relativistic theory of kinetic and hydrodynamic processes has its own problems and
experiences its impetuous formation [1-6]. In the next section we consider one of
the possible ways of describing the kinetics and hydrodynamics of a quark-gluon
plasma.

9. Thermo field transport equations for a quark-gluon plasma

Investigation of the nonequilibrium properties of a quark-gluon plasma — QGP
which can be created after ultrarelativistic collisions of heavy nuclei [1-10] or laser
thermonuclear synthesis is topical from the point of view based on the statistical
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approach [8,9,14,15,48-55]. Thus, it is important to construct kinetic and hydrody-
namic equations for QGP because such a state of a nuclear matter is characterized
by high temperature, large density and strong interactions between quarks and
gluons which are described by chromodynamics [51-53]. At present there are cer-
tain achievements in this direction. The classical theory of transport processes in
QGP, based on the relativistic Vlasov-Boltzmann equation, was proposed by Heinz
[54,55]. On the basis of these works, transport coefficients for weakly nonequilib-
rium QGP were studied in [56-58]. The Lenard-Balescu-type collision integral for
the classical model of a quark plasma was obtained in [59] using the Klimontovich
method [60,61]. Hydrodynamics of QGP is considered in papers [49,50,62,63]. The
Vlasov-Boltzmann equations, like the quantum kinetic ones for Wigner distribu-
tion functions for quarks and gluons, were obtained in [49,64—66]. Some interesting
results were obtained in paper [67] where the temperature behaviour of the kinetic
coefficients of a gluon gas had been studied using the Green-Kubo formalism and
$*-model.

However, it is necessary to note that the Vlasov-Boltzmann kinetic equation is
correct for a rarefied plasma only (small densities). Thus, it is only the first step
in the investigation of transport processes of QGP.

In a dense high temperature quark-gluon plasma, which is characterized by
strong interactions, kinetic and hydrodynamic processes are mutually connected
and should be considered consistently. In this section we carry out a consistent
description of the kinetics and hydrodynamics for QGP on the basis of a nonequi-
librium thermo field dynamics using the method of nonequilibrium statistical op-
erator [27,33,34]. We will obtain generalized relativistic quantum transport equa-
tions of the consistent description of the kinetics and hydrodynamics for QGP. It
should be also noted that problems of the description of nonequilibrium properties
of QGP were considered in papers [29,68,69].

Consider QGP with the Lagrangian from quantum hydrodynamics [51-53],

1 a a : g a a
L= o F+ 0 (laﬂ +2 Am) v, (9.1)

Fi, = 0,A, —0,A;, + gf“bCAZAfj,

where the fields of the matter are spinor quark fields ¥ for which one employs the
collective designation ¥(z) with components ¥/, where i = 1,2, 3 (index of colour:
red, green, yellow); f = 1,...,6 (flavour indices: b, ¢, d, s,t, u); « = 1,...,4 (spinor
indices); A% are gauge vector fields (Jang-Mill’s fields) that correspond to gluons;

a = 1,...,8 indices of colour; A* means eight Gell-Mann matrices satisfying the
commutation relations

PUEDL A€

| T ifabc_a

2° 2 2

fa% are the structural constants of groups SU(3); ¢ is the gauge constant of con-
nection; 9, = 9/9dx,, z, = (2° = ct, x); v, are Dirac matrices [51-53].

The nonequilibrium state of such a system is described by a relativistic quan-
tum nonequilibrium statistical operator o(t) which satisfies the relativistic Liouville
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equation admitting an obviously covariant form. Such a Liouville equation for a
thermal quantum field system in a covariant form in the interaction representa-
tion was written down in [67,70] on the basis of the Tomonaga-Schwinger equation
[71,72] in the next form:

0 u(0) — o [Hi(2). 0 (0)] = O 92)

do(x)
where the nonequilibrium statistical operator o(o) is defined on an arbitrary space-
like surface o(z) [71-73]. When the surface o(x) tends to the plane ¢ = const,
equation (9.2) transforms into the quantum Liouville equation in the interaction
representation,

0 1
5 Oint () = [
where g;n(2) is a nonequilibrium statistical operator in the interaction representa-

tion, given on the plane ¢ = const:

Hint(iﬂ), Qint(t)] =0,

1 1 1
Hini(t) = exp {—ﬁﬂot} H;in exp {ﬁﬂot} , Oint(t) = exp {—Eﬂot} o(t),

H, and Hj,; are noninteracting and interacting parts, correspondingly, of the total
Hamiltonian H of the system. The Hamiltonian of a quark-gluon system corre-
sponding to the Lagrangian (9.1) was obtained in [74] using the Coulomb gauge.
We will represent it in the following form:

H = Hy+ Hin, (9.3)
1 1
Hy = SR+ 50,410, 45,

2
1
Hin = gf®0,A% AP A 4 % et foe A A ALAG — S ARAAG +
s [(i@l + g)\“A;’) i m— gA“AS% v,

selecting the “free field” Hamiltonian H, and the one which describes an interaction
between quark and gluon fields. Here m is a colour independent mass matrix for
quark flavour indices, P means a canonical momentum conjugated to gluon field
A¢, while zeroth components A, like in electrodynamics, are not independent and
should be inserted in H;,; after the solution of the equation of motion:

AAS = gfoe Al (PF+ 9AS) + gu'ﬁww.
On the contrary, proceeding from electrodynamics, it is possible only in the form
of infinite series, so that Hamiltonian (9.3) really consists of an infinite number of
vertices.
To solve the relativistic Liouville equation (9.2), boundary conditions should
be set. Let us search the solutions which depend on time through a certain set
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of observable quantities only, the number of which is sufficient for the descrip-
tion of the nonequilibrium state of a system, using the method of a nonequilib-
rium statistical operator. For this purpose, we introduce the infinitesimal source
—n(gint( ) — o (o )) in the right-hand side of equation (9.2), which corresponds

to the boundary condition gint(0) = 0l (0) with 0 — —oo and, according to the
formalism of nonequilibrium thermo field dynamics, write down this equation in
the thermo field representation:

o
do(x)

where the source selects retarded solutions with respect to a reduced description of
the nonequilibrium state of a system. [o}"(0))) is a quasi-equilibrium state-vector;
Hiyni(7) is the Hamiltonian of interaction between the quark and gluon superfields,

o (@) — < H @l (@) = =1 (law (@) = o @), (94)

~ — A ~

Hy(z) = Ho(z) — Ho(z), Hin () = Hiny(2) — Hing(2),

where Hy and H, bilinearly depend on Bose superfields fl“ and fl“ (without and
with a tilde line) with corresponding commutation relatlons analogous to those
for the Bose fields [51]; Hiy and Hi,, are Hamiltonians composed of gluon Bose
superfields flz and flz, of quark Fermi superfields Ut and ¥ without a tilde line,

and ¥+ and ¥ with a tilde with corresponding commutation alignments which are
similar for both Bose Aj, and Fermi fields ¥ [51]. We shall write “Schrédinger”
equation (9.4) in an integral form, introducing

|0int (0))) = log" (o)) — (9.5)

r 51,

4 int

[ 4 0 00200) T(0,0) (s = 3l ) 18010

where €,/ , means the volume enclosed between the surface of integration o'(z')
and the second one o(z); T(o,0’) is an evolution operator,

o 1
T(o,0") = exp, /d4xl EHint(Ul)

UI

The quasiequilibrium statistical superoperator g,(0) in |oq(0))) = 04(0)|1)) is
defined generally [27.33,34] from the entropy extreme with keeping the normal-
ization and under the conditions that observable quantities (p,)* = ((1|pn|o(c)))
are given. There are the following characteristic values for QGP: mean density of
the quark barion charge (b,(r))", mean densities of the colour currents (j¢ ,(z))!
for quarks and (j§ ,(2))" for gluons and also values of the densities of the energy-
momentum tensor (79, (x))" for quarks and (T8, (x))" for gluons, in which densities
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bu(x), 58 () + 4% ,(x), T, (x) + TE,(x) satisfy the local conservation laws,

ubu(z) =0,
O 170 (@) + 7% 1(@)] + gf €Al (@) [jE (@) + 55 u(2)] =0,
0, [T9,(2) + T2 ()] + g [i% u(x) + j& ,(x)] F2, (2) =0, (9.6)

OuF, (@) + g AL (@) Fe (@) = (72 (@) + G5y ,(2)) = 0.

The densities of operators b, (z), ji () + j& ,(x), T (x) + T8, (x) are “slowly-
changing” and their mean values on the long time scale satisfy the relativistic
equations of hydrodynamics; it is necessary to co-ordinate with them the kinetic
equations for quark and gluon distribution functions. Local laws (9.6) impose some
restrictions on the kinetic processes, and what is more, their role is considerably
important at large densities and strong interactions. It shows that the kinetics and
hydrodynamics of a quark-gluon system are strongly correlated. That is why, in
writing down the kinetic equations for such systems, it is natural to choose the
reduced description of the nonequilibrium state in such a way that the proper
dynamics of conserved quantities is taken into account automatically.

We introduce Wigner operators for quarks and gluons [50,64,65,75] to obtain
the kinetic equations:

o == [ o (G} U@ wt @) UG 00
is the Wigner operator of quark density;
Gu(z;p) = /%exp {%py} X (9.8)
[U(m,z_)Fu,\(x_)U(:E_,:E)} ® [U(m,x+)F,j\(x+)U(x+,z)

is the Wigner operator which is connected with the density operator of an energy-
momentum tensor for gluons:

T8 = [ a9 (80 Gunlo) — J0u S GA)) (9.9

Here U(2', x) is an operator which was introduced in paper [73],

Il

U(z',x) = exp, —i/dz“ Au(2) g,

ihc
' Fidg 9.10
r.=x—y/2, P, =F,(v) ( 5 ) , (9.10)
hAa
Ty =1 +y/2, Au(z) = A} () < 5 ) .

U(z',x) is a connection operator, where the integration path z(s) = = + s(z' + z),
0 < s <1 lies in the plane ¢ = const. The densities of barion charge b,(z), quark
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colour current j¢ ,(z) and energy-momentum tensor T, (z) are defined via the
Wigner operator of quark density, for example,

bu(x) = /d4p (Spuf (2 p)), (9.11)
Jg u(2) = /d4p <SpgAmf(:r;p)>, (9.12)
13,(0) = [ d' Soruf )P (9.13)

To provide a consistent description of a quark-gluon system, we define the quasi-
equilibrium statistical superoperator g4(c), 04(0)|1)) = |04(0))) in a standard way
with keeping to the normalization condition and the following requirements of the
averages [27,33,34]:

((1]bu(2)]e(0))). ((11f (z:p)]0(0))),
(UTw(@)e@)), (UG (z:p)le(a))).

Then §,(o) takes the form:

ba() = exp {-5(0) } . (9.15)

where

S(o) = ®* (o) + / do* [P”T,w - géﬂ(x)} n (9.16)

/da“/d4 )f(a;p) + W (a ;p)éﬂy(rﬂ;p)},

(9.14)

o(x) is an arbitrary space-like surface passing through point z: do# = don” is a
surface element vector; n* is a normal vector (do® = d*z); P¥(z), &(w), a(z;p),
w”(x;p) are the Lagrange factors that are defined from the self-consistency condi-
tions:

((Hbu(@)le(@))) = ((A[bu(2)]0g(0))),

(UTw(2)le(0))) = (T (x)]eg(0))); (9.17)
(Uf(z;p)le(e))) = (LS (w:p)]eg(0))),

(UG (w;3p)]e(0))) = (UG (2 p)]eg(0))),

P, = puy, f = 1/T(x) denotes inverse invariant temperature, u,(x) is a local hy-
drodynamic velocity; & = [u, p.(x) is a local chemical potential of a-sort quarks
(a: b, ¢, d, s, t, u). Parameters a(v;p) and w”(z;p) are conjugated to averages
(L1520 ((11G (3 ) 2(0)))- T ), by(2), F(z5p), Gunlip) are super-
operators constructed according to (9.7)-(9.13) and the thermo field dynamics
formalism [27], on Bose superfields AZ(I) and Fermi superfields ¥, ¥. &1 (o) is
calculated from the normalization condition: ((1|g,(c))) equals to 1. Accordingly,
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superoperator g (o) is built on operators Tu,,(x), Bu (), f(z:p), éwj(x; p) which are
expressed via Bose superoperators le(:ﬁ) and Fermi superoperators ¥+, (with a
tilda line). Taking into consideration the structure of quasiequilibrium statistical
superoperator (9.15) and (9.16), one can write the nonequilibrium thermo vacuum
state vector (9.5) in the interaction representation in the following form:

g

() = (@) — [ d'a’ e T(o, ') x (0.19

—o0

1
int( ./ ) 1 - i int(5
—T S (o in TS (o") in
/dTe ( ){W_EHM(@J)}S t(o_l)e ( )th(a')>>'
0

Using the rule [71,72] —— f dot(2') A,(2") = :2-A,(x), for <6Sint(a'))/(50'(z'))

0xy
we obtain
) . 0
Smt ! —
do'(x") (o) ox),

/d4p [a(z'; p) ™ (2" p) + w”(x';p)Gith(x';p)} ]

P — e a') +

1 )

%Hint(x) on S™(g’) reads:
i

1

G Hu(2)S™ () = - [ dora) [PE ) - i) +

]

The action of the operator —

g

/da“(a&”)/d‘lp [ (x ”’p)flnt( ip) +w’ (2" p)Gi?Vt(x”;p)],

0—/

where
.. 1 . . 1 .
bZIt(x/I) — _E [Hint(x’);bzlt(x”)} , fmt(x//;p) — _E [Hint(xl),fmt(fﬁ’l;p)] ,
.. 1 .. 1 .
T;I;t(x”) = i [Hint( ):T;;t( )] ,G}?ﬁ(fﬂ”;p) = i [Hint(xl)aGi?yt(x”;p)] .

Using the nonequilibrium thermo vacuum state vector (9.18), we obtain a system
of coupled equations for averages (9.14) in the interaction representation:

P @) =0, (019
Vo (Tlen(0) = PG (Tl o)+ (020)
Vo [ 47 U T

— 00

int/ ./ ) 1 in 78int (51 ip
/ ar =78 m{ —Eﬂimw)}s (o) g (o)),
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p- D@){(Llf (@, p)|em(0))) = p- D(2)((1]f (2, )]0} (0))) + (9.21)

g

p-D(x) / dta’ e (1) (2, p) T (0, 0")| ¥

[ el ) | ST ),
p - D(@){(1|G(x, p)|owi(0))) = p - D(@){({(1|G v (w, p) | " () + (9.22)

g

D - D(x) /d4x' e"ﬂv’a(<1|éw(x,p)T(a, a')| x

— o0

1
int/ ./ 5 1 . int/ ./ .
—7Snt(g in 7S (g") in
Jar e ot ) e ),
0

while the space-like surface () tends to the plane ¢ = const. Here D(z) and D(z)
are covariant derivatives. They act on the Wigner operators of quarks and gluons,
correspondingly:

0 1
D) a.0) = (o + ke, (o)) Fo.0).
where A,(v) = Af(x)T, with (T,),, = —ilifa. is an 8 x 8 matrix. The tildian
covariant derivative acts on the Wigner operator of gluons

. o q
Da(2) G @.9) = 5—Gos @)= [Aa G 2. )]

N ab
with a commutator between two 8 x 8 matrices (A,)™" = A2 (T,)"™" and (Guv) :

An action of these covariant derivatives on the Wigner operator of quarks p -
D(x)f(z,p) and on the Wigner operator of gluons p - D(z)G,,(z,p) was calcu-
lated in papers [64,65]. The set of equations (9.19)-(9.22) without taking into
account the barion charge transport ((1]b,(z)|o(t))) and the total momentum ten-
sor ((1/T},(x)|o(t))) turns to a connected system of kinetic equations for the average
values of Wigner operators of quarks ((1|f(z,p)|o(t))), gluons ((1|1G,u(z,p)|o(1))).
It generalizes the results of papers [64-66)].

We have obtained a system of coupled relativistic transport equations of a
consistent description of the kinetics and hydrodynamics for QGP in thermo field
representation. This system of equations is strongly nonlinear and could be used
to describe both strongly and weakly nonequilibrium states of a system. How-
ever, it should be noted that the following transformations for the use of the
system of relativistic transport equations (9.19)—(9.22) have to be made. Since
the quasiequilibrium thermo vacuum state vector |o,(c))), which is used in ave-
raging equations (9.19)—(9.22), is not a vacuum state vector for Bose superfields
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AZ, AZ of gluons and Fermi superfields ¥, ¥+, ¥, ¥* of quarks, it is necessary
to construct Bose superfields of gluons and Fermi superfields of quarks for which
it is a vacuum state vector, as in paper [27]. Such superfields will depend on the
parameters of state P¥(z), fu, a(x;p), w”(x;p), besides, all the superoperators
T (), bu(x), f(z3p), Gu(@;p), Hin(x), T(0,0") in a system of relativistic trans-
port equations (9.19)—(9.22) should be expressed in a such way where |g4(0))) is
the vacuum state vector. Besides, the use of space-like surface o(z) is justified
at the calculation of generalized equations in the invariant form. Since the final
results do not depend on the choice of surface o, one has to rewrite equations
(9.19)-(9.22) on the surface directed to the plane ¢ = const. So, it is useful to
choose 7 = eV, where V denotes the volume occupied by system [70]. Then
Qe = (t' — 1)V and 1y, = £(t' —t). Thus, in transport equations (9.19)—(9.22),

o t
[ d*a’ exp (779(,/0) — [ dt' exp (5(15’ - t)) and superoperators din(t), 02" (t),
— 00 — 0o

T(t,t") will be given on the plane ¢ = const. Such questions will be considered
in the next paper, in particular, in the investigation of the relativistic transport

equations for weakly nonequilibrium QGP.

10. Conclusions

In this paper the conception of nonequilibrium thermo field dynamics on the
basis of a nonequilibrium statistical operator has been applied to the construc-
tion of transport equations of dense quantum systems. Hydrodynamic equations
in thermo field representation have been obtained for both strongly and weakly
nonequilibrium processes. Transport cores, connected with transport coefficients
of viscosity and thermal conductivity, have been defined, too. They are calculated
with the help of a quasiequilibrium thermo vacuum state vector. The last one
is a vacuum state vector for annihilation and creation superoperators which de-
pend on thermodynamic parameters F,,(t) of a system. The consistency of both
annihilation and creation superoperators and the corresponding vacuum state is
accomplished then by the mentioned approach. In particular, it is achieved by the
generalization of the Bogolubov transformations in thermo field dynamics [32] for
a nonequilibrium case. General transport equations within nonequilibrium thermo
field dynamics — nonequilibrium statistical operator made it possible to obtain
an equation of a generalized description of the kinetics and hydrodynamics for
a dense quantum system with strongly coupled states. In such a case, faq(z;?)
— the Wigner function of the A-particle coupled state, and the average value of
the total energy density operator ((1|H(r)|o(t))) have been chosen as parameters
of a shortened description. Particle annihilation and creation superoperators for
the quasiequilibrium thermo vacuum state vector of noninteracting particles were
defined in (8.22). It gives us the possibility for the construction of a diagram tech-
nique in the calculation of the corresponding transport cores. These investigations
and calculations are important for actual nuclear systems [8,9].
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We have considered a method for obtaining generalized transport equations for
QGP — one of the nuclear matter states. These equations were obtained in the most
general form. To be used, their structure needs a lot of transformations, especially
for transport cores. The consistent description of the kinetics and hydrodynamics
is based on a set of fundamental parameters of a shortened description: the average
values of Wigner operators for quarks and gluons ((1|f(z)]o(t))), ((1|G . (z)]o(t)))

A

and the average values of the density operator of barion charge ((1|b,(x)|o(t))) and
the total energy-momentum tensor (1|7}, (z)|o(t))) of quarks and gluons which
constitute the basis for the hydrodynamic description. The set of equations ob-
tained permits the investigations of weakly nonequilibrium processes and kinetic
equations like the Boltzmann-Vlasov or Lenard-Balescu ones for diluted QGP.

The problem of the investigation of transport coefficients: viscosity and thermal
conductivity as well as excitations of QGP still remains. It might be considered
in view of the obtained transport equations. This will be the subject of our future
work.
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PiBHSIHHSI TEPMONOJILOBOI KIHETUKU Ta riapoaANHaMIKuN
rycTUX KBaHTOBUX SAEPHUX CUCTEM

M.B.Tokapuyk ', T.Apimitcy 2, O.€.KoB6puH '

IHCTUTYT ®i3nku KoHaeHcoBaHux cucteMm HAH Ykpainum, 290011
M.J1bBiB, ByNn. CBEHL,LbKOro, 1

IHCTUTYT disnku YHiBepcuteTy M. Tcykyba, I6apaki 305, AnoHis

OTtpumaHo 23 4yepsHsa 1998 p.

lMpenctaBneHO OCHOBHI PIBHAHHA HEPIBHOBaXHOI TEPMOIMOJILOBOT AVHA-
MiKM F'YCTUX KBAHTOBMX cucTeM. PopMytoBaHHS HEPIBHOBAXXHOI TEPMO-
NoJSIbOBOT AMHAMIKM NOgAaHO METOAOM HEPIiBHOBaXXHOr0 CTaTUCTUYHOIO
onepartopa [.M.3ybapesa. OTprUMaHO PIBHAHHSA FopoOANHAMIKK Y Tep-
MOMONLOBOMY NpeacTaBfieHHi. PO3rnsiHYTO ABa PiBHI ONMCY KIHETUKK Ta
rinpoamHamikm ryctoi a4epHoi MaTepii: KBaHTOBI CUCTEMU CUIIBHO 3B’4-
3aHVX CTaHiB Ta KBapK-rlooHHA nnasma. [na umx cuctemM oTpMMaHo y3a-
rafibHEHi PiIBHAHHSA NEPEHOCY Y3ro4KeHOro onucy KiHeTuku Ta rigpoam-
HaMiku. PO3rmaHyTO rpaHuYHi BUNagKu.

KnioyoBi cnoBa: HepiBHOBaXxHa TepMOrioJiboBa AMHamika, KiHeTvka,
rigpoguHamika, KiHeTUYHIi PIBHSIHHS, KOeQilieHTV nepeHocy, 3B ’93aHi
CTaHW, KBapK-rJiloOHHa rnjia3ma

PACS: 12.38.Mh, 24.85.+p, 52.25.Dg, 52.25.Fi, 82.20.Mj
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