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We consider a reformulation of the Yukawa model, in which fermions inter-
act via a mediating (massive or massless) scalar field. Covariant Green
functions are used express the mediating field in terms of the fermion
fields. The resulting Hamiltonian of the theory has an interaction term in
which the propagator of the mediating field appears directly. We show that
if processes involving emission of physical mediating field quanta can be
ignored and an unconventional empty vacuum is used, then exact few-
fermion eigenstates of the resulting truncated Hamiltonian can be obtained
in the canonical equal-time formalism. These eigenstates lead to two- and
three-body Dirac-like equations with scalar interactions. Two-fermion bo-
und states are obtained by the numerical solution of the eigenvalue equa-
tion for J = 0 states. Comparison is made with conventional treatments of
this model.
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1. Introduction

There are few realistic models in the quantum field theory (QFT) for which
exact solutions can be written down. In this paper we obtain exact, though un-
orthodox, few-particle eigenstates in a modified form of the Yukawa model in
which fermions interact via a mediating scalar field. The model is of interest be-
cause Yukawa couplings are relevant to the quark-Higgs interaction sector of the
standard model. The Yukawa model has also been used as a prototype of the
FTheoretic description of internucleon interactions, and generalizations that also
contain a vector, pseudoscalar, etc. boson exchange, continue to be useful in nu-
clear physics.

The Yukawa model with a scalar boson exchange is based on the Lagrangian

© J.Darewych 593



J.Darewych

density (h=c=1)

£= 3" Tule) (19" 8 — aex(x) — ) (o) = 5 (@) O°x(z) — 52 (). (1)

k=1

where N is the number of fermion types. The corresponding classical equations of
motion are the N Dirac equations:

(190 = mu )i (2) = gex (@) e (2), (2)

in which the boson field serves as a potential, and the Klein—-Gordon equation for
the mediating boson field,

0,0 x(x) + p*x(2) = p(a), (3)

in which the source density is provided by the fermion fields:

) =Y 0t (1) (2). (4)

As it is well known from the electromagnetic theory [1,2], equation (3) has the
formal solution

x(x) /D:E—:E («!)d*, (5)

where D(xz — z') is a Green function (or a boson propagator in the QFT terminol-
ogy), defined by
9,0'D(x — ') = §*(x — 2'), (6)

and xo(z) is a solution of the homogeneous (or “free field”) equation (3) with
p(z) = 0. Equation (6) does not define the covariant Green function D(z — z’)
uniquely. One can always add a solution of the homogeneous equation 0,0"D(x —
2') = 0. A unique D(z — z') requires specification of the boundary conditions or,
in the momentum representation, specification of the contour of the integral. This
is discussed in standard texts (e.g. [1,2]). A momentum space representation is

5 . 1 d4k efik-(mfm’) .
=)=yt [ P e )

where D is known as the principal value Green function if € = 0, and the Feynman
propagator if € > 0.

Substitution of the formal solution of the mediating-field equation (5) into
fermion equations (2) modifies the latter to the set of coupled nonlinear equations:

(199, = m)ine) = (ole) + [ 4DE - o) e (®)
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The reduced equations (8) are derivable from the stationary action principle

§ S[yy] = 6/£R d'z =0, (9)
with the Lagrangian density
N 1
Lr =Y Bl@) (070, = me — axo(@)(o) + 5 [ dla'p(a) Dl )ola), (10)
k=1

provided that the Green function is symmetric:
D(x —2') = D(2' — x). (11)

We shall consider the QFT based on the Lagrangian density (10). Note that
there are two interaction terms in this formulation of the Yukawa theory: a “lo-
cal” interaction containing yo, and a “nonlocal” one given by the last term of
eq. (10). The latter contains the boson propagator explicitly. Thus, in the con-
ventional covariant perturbation theory it leads to Feynman diagrams without
external (physical) boson lines. The “local” term is of the conventional form and
can be used to generate Feynman diagrams that cannot be generated by the “non-
local” interaction term, particularly diagrams with external boson lines. Of course,
care must be taken not to double the physical effects count.

We shall not pursue the covariant perturbation theory. Rather, we shall con-
sider an approach that leads to exact few-fermion eigenstates in the Hamiltonian
formalism of the QFT (a brief review of the Hamiltonian method in treating few-
body bound and quasi-bound states is given in [3]). In the Hamiltonian method
one seeks solutions of the QFT equation P*P,|¥) = M?|¥) where P* = (H,P) is
a QF Theoretic 4-momentum operator, and M is the invariant mass of the system
under study. However, this equation is complicated because of the appearance of
quadratic Hamiltonian and momentum operators, so it is customary to do the
calculation in the rest frame of the system, P|¥) = 0, whereupon solutions of the
equation H|U) = M|¥) are sought, as they are evidently solutions of the covariant
quadratic equation in this frame.

2. Hamiltonian in the canonical equal-time formulation and
few-fermion states

For the sake of simplicity we shall consider the case of only two different fermion
fields denoted by 94 = v and 9, = ¢, with masses and “charges” m; = m,q; =
g and my = M,q = (@, respectively. We consider this theory in the canonical
equal-time formalism. Equal-time quantization corresponds to the imposition of
anticommutation rules for fermion fields, namely:

{Wa(x,0),¥}(y. 1)} = {$a(x,1), D} (y. 1)} = a8’ (x — ), (12)
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and all the others vanish. In addition, there are usual commutation rules for the
xo field, and commutation of x, field operators with 1) and ¢ field operators.

We choose to work in the Schrodinger picture where we can take ¢ = 0 in the
expressions for field operators, that is ¢(z) = ¢(x,t = 0), p(z) = p(x,t = 0), etc.
Therefore, for the symmetric (“principal value”) Green function of equation (7) it
follows that

/oodt Dl —ay = < (13)

- 4r|x — |

In that case, the “nonlocal” term of the Hamiltonian density corresponding to the
Lagrangian (10) takes on the form:

1 e Hlx—7|

Ha(x) = 87

[ & ot (14)

x —a'|
We shall suppress the “local” interaction term that contains x, in what follows.
Such a truncated model is suitable for describing few fermion states without decay
or annihilation involving physical bosons. Thus, the (normal-ordered) Hamiltonian
for our model, in the Schrodinger picture with ¢ = 0, is given by the expression

Hy = Hy + Hy + Hi, (15)
where
Hy = /d% B (x,0) (=i @ -V + mB)i(x, 0), (16)
H,— /d% (%, 0)(=i @ -V + MB)d(x,0), (17)

and Hj is given by

—plx—a’|
= ——/d3zd3 ! (18)

Jx —a'|

x|aTB@ ) + Qed(E V)6 + 4@ ¢ )b + Q208 69|
where 1) = ¢(x) and ¢ = $(x'), etc.

We define the unconventional (or “empty”) vacuum state [0) b

Ya(x,0)[0) = ¢a(x,0)[0) = 0. (19)

This unconventional empty vacuum definition (19) means that 1 (x) is interpreted
as a (free) Dirac-particle annihilation operator, while 1f(x) is, correspondingly,
a Dirac-particle creation operator. By a “Dirac-particle” we mean one described
by the full Dirac spinor, including positive- and negative-frequency components.
(Recall that in the conventional approach, i.e. using a Dirac “filled negative-energy
sea” vacuum, it is only the negative-frequency component of ¢ that is an antiparti-
cle creation operator, and the positive-frequency component of /' that is a particle
creation operator).
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Note that the normal ordering is achieved by using the anticommutation re-
lations (12), as usual, but it is not identical to the conventional normal ordering
because of the unconventional definition of v) and ¢ as annihilation operators and
of ¢, ¢ as creation operators.

We note that the state defined by

1) = / a2yt (x) F(x)|0). (20)

where F(x) is a 4 x 1 c-number coefficient vector, is an eigenstate of Hy, provided
that F'(x) satisfies the equation

(—ia-V+mp)F(x) = EF(x), (21)

which is a usual time-independent one-particle Dirac equation (with positive and
negative energy solutions), so that F'(x) is a Dirac spinor. Therefore, we refer to
|1) as a one-Dirac-fermion state.

Similarly, the two-Dirac-particle state,

2) = [ dady P 3)v )6} (3)10), 22)

(summation on «a, 3 = 1,2, 3,4 implied) is an eigenstate of Hg, provided that the
4 x 4 eigenmatrix F' satisfies the equation

hn(X)F(x,y) + [ (0) FT(x,3)]" + V(x = y)1°F(x.y)70 = EF(x.y), (23)

qQ e

where h,,(x) = —i a -V, +mp, Vi(r=|r|) =

indicates the transpose of the matrix in question. Equation (23) is a two-fermion
Dirac-like or Breit-like equation with positive and negative energy solutions, and
is, in this respect, different from those obtained in the conventional approach [4]
in which the negative-energy components are effectively projected out. In the rest
frame of the two-fermion system (i.e. when |2) is taken to be an eigenstate of the
momentum operator for this QFT, with eigenvalue 0), equation (23) reduces to an
analogous equation in the single relative co-ordinate r = x — y:

, and the superscript T

I (1) F(x) + [har(—) FT(1)] " + V(x)7° F(x)70 = EF(x). (24)

It is, therefore, equivalent to 16 ordinary, coupled, first-order differential equations
for states of the given J¥ (not all of which are independent). The reduction of such
Breit-like equations to a radial form has been discussed by various authors [5-8]
and will not be repeated here. Such equations can at least be solved numerically.

Generalizations to systems of more than two fermions are readily obtained.
Thus, the three-fermion state, corresponding to the system like e~ e p™) (with
scalar exchange interactions in this case) defined by

3) = [ Qs Foyoses (30 35) 03, (x0) 0, ()l (00, (25)
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is an exact eigenstate of Hy with eigenvalue Es, provided that the 4% = 64 coeffi-
cient functions Fy,a,a, (X1, X2, X3) satisfy the three-body Dirac-like equation

[hm(xl)]ala Faaga:g (Xl, X9, X3) + [hm(XQ)]aza Fa1aa3 (xla X9, X3)
+ [hM(X3)]a3a FO&IOCQOC(X17 X27 X3)

qQ e Hlxz—xi1]
_E |X3 - X1|

qQ e Hlx3—xs|
_E |X3 - X2| K

('Yo)ala (70)013/3 Facmﬂ(xla X2, X3) (26)

O)aga (70)0436 Fmaﬂ(xla X9, XB)

¢ e Hlx1—x2|

0
A Ixe — %ol a1 Q: Fa e} ) )
A7 %1 — %o 7 ara (Y0)ass Fagas (X1,%2,X3)

- E3 Fa1a2a3 (XI: Xa, X3)7

where summation on repeated spinor indices is implied. In the rest frame of the
three-body system the equations depend only on two independent vectors, however,
the reduction of these equations for states of the given J¥ is more formidable than
in the two-body case. Even then one is left with the full complexity of a relativistic
three-body system.

3. Some explicit solutions for the two-body case

The 4 x4 matrix equation (24) for the relative motion of the two-fermion system
is very similar to that derived previously [8] for a related model, namely, Coulomb
QED (QED in the Coulomb gauge, with the ¢ ‘transverse photon” interaction,
—a- A, turned off). That model [8] is a “vector coupling” analogue of the present
Yukawa model with ¢ = 0. Equation (24) is the same as equation (26) in [8] if
7% — 1 in the present equation (24). Therefore, the reduction of equation (24)
is essentially the same as presented in [8], and will not be repeated here. We
shall, however, recount some salient points. In the first place equation (24) has the
Schréodinger equation as a non-relativistic limit, and the Dirac equation (with a
scalar coupling in this case) as a one-body limit if one of m; — co. If we write

ro-[0) ) g

where s, t,u, v are each 2x 2 matrices, then for .J = 0 states, which are the only ones

that we shall discuss here in some detail, they take on the form s(r) = —s(r)¢(t),

and similarly for ¢, u, v, where ¢(t) are 2 x 2 spherical bi-harmonics defined in [8].
The number of coupled radial equations is generally six for singlets and uncoupled
triplet states, and eight for coupled triplet states (of the type 1~ :* Sy +3 Dy),
though not all of them are independent. It turns out that there are only four
radial equations in the J = 0 case. They are explicitly

K

(my+ma+V(r)—E)s(r)—t'(r) — %t(r) —u'(r) — 7u(7“) =0 (28)

598
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(M1 — ms + 0V (1) — EY(r) + 8'(r) — “os(r) + 0'(r) — o) =0 (29)

r r
! K ! K
(—mq +mo + 0V (r) — E)u(r)+s'(r) — 75(7“) +'(r) — 71}(7") =0 (30)
! K ! K
(—my —mo +V(r)— E)u(r)—t'(r) — 7t(r) —u'(r) — 7u(r) = (31)
, _ds Gi1go ™" ) ) )
where s’ = o V(r) = B Pa— E is the eigenenergy (two-particle bound-state
r T

mass) to be determined, while K = 1 for the 0~ (15;) states and K = —1 for the
0" (*P,) states. The parameter n = —1 for the present Yukawa model for which
the coupling is with a scalar mediating field. However, if n = 1, then for = 0 we
recover the equations for the “vector coupling” Coulomb QED model discussed in
[8].

Equations (28)-(31) are not independent. Indeed, elementary manipulations of
these equations show that

_E—ml—mg—V(r)
_E+m1+m2—V(r)

_ E—my+my—nV(r)
E+my —my—nV(r)

v(r) s(r), u(r) t(r),  (32)

so that the four equations (28)—(31) reduce to only two:

§'(r) = (% + R(r)) s(r) + Py(r)t(r), (33)

() = (%400 ) )+ Pr)str), (34)

where

B (my +mo)V'(r) =

B = E—vonE v tm g E 0 (35)
B (my — maJV'(r) _

) = N E =g @) =) 00 (36)

Py(r) = (E—=V(r)+my 42-(77;2)_(?/(;)7;11 + my — V(1)) LB, = 2, (37)

_ (E=V(r)=my —ma)(E+my —my —nV(r))

h=- 2(E - V() )

%E:—Egiﬂaww»

where € = ' —m; —my and the quantities with overbars are non-relativistic limits
(p/m; < 1).

In general, for arbitrary mass p of the mediating field, equations (33) and (34)
must be solved numerically. For the case p = 0 (massless quantum exchange)
equations (28)—(31), and also (33) and (34), have the well known analytical solu-
tions in the non-relativistic limit. These analytical solutions can be used to obtain
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1 2
O(a*) perturbative corrections to the non-relativistic result € = —Emra—Q, where
n
a = q1q2/(4m) and m; = mymy/(my + my), by using the expression
e=F — (m;+my) =€+ Ag, (39)
where .
AH
(Ylv)
ith (| = [5(r), #(r)], (r) ! 5'(r) K_( ) | and
i = [5(r), t(r r)= —(5(r) — —35(r) | an
v ’ ’ 2me r

(15 = / TR0 + P (41)
etc., and also (puy = my/(my + ms))

At {PS+M1(€—V) —Q ] (42)

m -R pi(e —€) + 2my — P,

Evaluating (40) to the lowest order in « gives the following results for the lowest
0~ state

1 m
A =11 S 4 - 4
es(n So) Smra <3 - m2> , (43)
1 ™
A =1'S)) = ~ma* [ —=— — 1 44
ev(n 0) Sma <m1+m2 )a (44)

where subscript S stands for the “scalar coupling” (the present Yukawa model
with x4 = 0), while V stands for the “vector coupling” (that is, the Coulomb QED
model treated in [8]). It is of interest to note that these results agree, to this order,
with the previously derived expressions that used a conventional approach (with
the Dirac “filled negative energy sea” vacuum (see [9] for Aey, and [4] for Aeg).
Note also, that expressions (43) and (44) have correct O(a*) one-body Dirac limits
(one of m; — oo) which, according to [10], are:
m

1 3
Fo=—— —m(l—=a?2+Zar+... 45
s= s —m(1 - ot Sat (45)

for the scalar coupling and

1 1
Ey=m 1—a2:m(1—§a2—§a4+---) (46)

for the vector coupling.
The analogous results from equations (39)-(42) for the lowest, 07 (23 F), equal
mass (m; = my = m) state are
1 49

Fs=m(2—- —a*+ —a* +--- 47
s=m2= 50+ ggpe ) (47)
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and | 03
2 4

Once again, these agree to O(a?) with the conventionally derived values [4,9].

Equations (33) and (34) were also solved numerically for the lowest J = 0
states in the equal mass case (m; = my = m) with g = 0 (the Maple Runge—
Kutta program was used for this purpose). The results for the ground state are
given in table 1. It is seen that E(«) for this two-body system has a behaviour
analogous to that obtained in a one-body limit, equation (45). Thus, for the ground
state, the mass E of the two-fermion system starts from the perturbative value
E/m = 2 — a%/4 4+ 11a*/64 at low a, and then decreases monotonically to an
apparent asymptotic value of unity for large . Note, from equation (45), that this
asymptotic value is zero in a one-body limit (when one of m; — o0). Note also,
that there is no critical value of a beyond which E ceases to be real (as it is in the
case of a vector coupling). In the latter case (vector coupling) E(«a) is real only
for a < a,, where for the ground state a. = 2 in the equal-mass case [8] and .
decreases to unity in a one-body limit (which is the well-known Dirac result, cf.
equation (46)).

Table 1. Ground state n = 1, 07 (!Sp) values of Ey/m for m; = mo = m and
pu/m = 0.

«Q Numeric Perturbative

(equations (33-34)) (equation (43))

0.01 1.999975 001 7180 1.999975 001 7188

0.05 1.999 376 066 1.999 376 074
0.1 1.997516 74 1.99751718
0.5 1.945 266 1.948 242

1.0 1.830 30 1.921 875

2.0 1.50707 3.75

5.0 1.293 45
10. 1.15067
100. 1.01506

The behaviour for the lowest (n = 2) excited state, 07(23P,) is qualitatively
similar. These results are given in table 2. F/m again follows the perturbative
expression (47) for small values of o and then decreases monotonically with in-
creasing « towards an apparent asymptotic value of about unity.
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Table 2. Excited state n = 2, 07 (3P,) values of Ey/m for m; = mgy = m and
pu/m = 0.

«Q Numeric Perturbative

(equations (33-34)) (equation (47))

0.01 1.999993 750 1595 1.999993 750 1595

0.05 1.999 843 849 586 1.999 843 849 691
0.1 1.999 376 588 1.999 376 595

0.5 1.985 281 1.985 372

1.0 1.94911 1.953 450

2.0 1.85949 2.005 208

5.0 1.661 50
10. 1.50241
100. 1.168 404

Equations (33) and (34) also have unphysical bound-state eigenvalues of the
form E = |my — ma| + ---. Such solutions are a consequence of the use of the
“empty” vacuum which leads to the retention of negative-energy solutions in the
formalism. This, however, is the price that has to be paid in order to obtain exact
eigenstates. Such “unphysical” solutions will arise in any two-body equation that
has the Dirac one-body limit (or the Klein-Gordon one-body limit in the case of
spinless particles [11]).

4. Concluding remarks

We have shown that exact few-fermion eigenstates of the QFTheoretic Hamil-
tonian can be obtained for a reformulated Yukawa model. These eigenstates corre-
spond fo few-fermion systems without decay or annihilation into physical quanta
of the mediating scalar boson field. An unconventional empty vacuum state (in
contrast to the Dirac filled-negative-energy-sea vacuum) is used, which results
in few-body equations with positive and negative energy solutions. The resulting
two- and three-fermion equations are written out explicitly. The two-body equation
has the relative-motion Schrédinger equation as a non-relativistic (weak coupling)
limit and the Dirac equation as a one-body limit (in which the mass of one of the
constituent fermions becomes infinite). Positive-energy solutions of the two-body
equations are obtained for the lowest .J = 0 states in the case of a massless boson
exchange for any strength of the coupling. The two-body bound-state mass, F(«)
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is found to decrease monotonically from the non-relativistic Schrodinger result to
a constant asymptotic value at a strong coupling (high «). Analytical results for
E(a) are obtained to O(a*) for the J = 0 states under study. These perturbative
results are found to agree to the order a* with the results obtained previously by
the conventional approach which uses a Dirac vacuum.
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BnacHi ctaHu cuctemm KisibKOX 4aCTUHOK y Moaeni
lOkaBu

tO0.dapeBuny

dakynsTeT Pi3nKmM Ta aCTPOHOMII, MIOPKCbKMit yHiBEpCUTET
TopoHTO, OHTapio, KaHana

Otpumano 13 notoro 1998 p.

Poarnapnaetbca nepedopmynioBaHHa mogeni KOkasu, y akin pepmioHn
B3aEMO/II0Tb 4Yepe3 MNnocepedHnUTBO (MacuBHOro abo 6e3macoBoOro)
CKaNsPHOro noss. 3a 4ONOMOro0 KOBAPISHTHMX dGYHKLIN 'piHa none, wo
NnepeHoOCnTb B3AEMOLII0, BUPAXEHO Y TepMiHax depMioHHMX nonis. Pe-
3YNbTYIOHYUIA FaMifIbTOHISIH TeOPIi MICTUTB YEH, LLO ONWUCYE B3AEMOLII0, Y
AKNIA ABHO BXOAMUTL npornaraTop nong — Hocig B3aemogii. NokasaHo, Lo
KON MOXHA 3HEXTYBATMW MPOLECaMu, L0 BKJIOYAKTb BUMPOMIHIOBAHHS
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®Ii3NYHUX KBAHTIB MOSA-HOCIS, TO 3 BUKOPUCTAHHAM HECTaHOapTHOro
0O3Ha4YeHHS BakKyyMHOr0o CTaHy MOXHa OTpMMaTKn y pamkax KaHOHIHHOro
04HO4YacoBOro popmaniamy TO4YHI BlaCHi CTaHW Pe3ybTyOHOro ramisb-
TOHIAHY Onsa Aekinbkox depmioHis. Li BnacHi ctaHn npmBoasTb 40 OBO-
Ta TPMYACTUHKOBUX PiIBHAHL [1ipakoBOro TUny i3 CKansapHUMM B3aEMOLis -
MU. HUCNOBUM PO3B’A3YBaHHAM PIBHSAHHA HA BNACHI 3HAYeHHA oTpuMa-
HO ABodepMioHHI 3B’a3aHi ctaum gnsa J = 0. [NpoBeaeHO NOPIBHSHHS i3
CTaHOAPTHUM PO3rMsgA0M Liei moaeni.

Knio4voBi cnoBa: crictemu kinbkox pepmioHis, mogesnb KOkaBu, criekTp
mac

PACS: 71.10.Qr, 11.10.st
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