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Representations from the supplementary series of unitary irreducible rep-
resentations of the proper, ortochronous Lorentz group are labelled by
the parameter 2z, 0 < z < 1. There are qualitative differences between
representations with 0 < z < 1/2 and those with 1/2 < z < 1. Two
such differences are described in this paper: the probability density of
parabolic rotations in a spherically symmetric state is singular at the ori-
gin for 0 < z < 1/2 but regular for 1/2 < z < 1; the Casimir operator of
the little group, which preserves a space-like vector, has for 0 < z < 1/2 a
bound state which disappears for 1/2 < z < 1.
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1. Introduction and motivation

This paper is dedicated to Professor Roman Gaida on the occasion of his 70"
birthday. Professor Gaida has always been interested in problems in which both
the theory of relativity and quantum mechanics play a role. Self-consistent union
of these two great theories remains an unsolved problem of modern theoretical
physics. Nothing illustrates better the immense difficulty of this problem than the
phenomenon of charge quantization: electric charges of all elementary particles
seem to be exactly the same. In the case of electron and proton, their charges are
of equal magnitude with the experimental accuracy 1 : 102!, Coincidence of two
independent quantities, which holds with such a fantastic accuracy, obviously calls
for an explanation.

My view on the problem of charge universality can be summarized as follows.
It is completely absurd to suppose that a coincidence which holds with the ac-
curacy 1 : 1072 is of a dynamical origin. There must be a purely kinematical
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principle which explains this coincidence. I formulated this principle in [1]. The
quantum mechanics of the electric charge described in this paper allows us to
treat the Coulomb field quantum-mechanically i.e. as a ray in a Hilbert space. In
[2] T proved the following theorem: the quantum Coulomb field, when decomposed
into unitary irreducible representations of the proper, ortochronous Lorentz group,
contains only the main series if e?/hic > 7. €?/hc is the fine structure constant in
unrationalized Gaussian units. If, however, 0 < e?/hc < 7, then the quantum
Coulomb field contains the main series and a single representation from the sup-
plementary series corresponding to the special value of the Casimir operator

1 e’ e’
=M, MW =—_2—-—.
¢ 2 K 7rhc< 7rhc>

This theorem seems to be of fundamental importance because it establishes a
functional relation between the fine structure constant and a purely kinematical
quantity, namely the parameter which labels unitary irreducible representations
from the supplementary series. It is thus natural to investigate how various prop-
erties of the supplementary series depend on the numerical value of the parameter
z, which selects a single representation from the series. Two results of such an
investigation are reported in this paper.

2. The supplementary series

The supplementary series of unitary irreducible representations of the proper,
ortochronous Lorentz group was discovered independently by Gelfand and Neu-
mark [3], Bargmann [4] and Harish-Chandra [5]. It is described in the book by
Gelfand, Graev and Vilenkin [6]. Let me summarize very briefly the relevant ter-
minology and notation.

The four-vector k is called null if kk = (k%)% — (k')? — (k*)? — (k*)? = 0. It is
called future oriented if k° > 0. The set of all future oriented null vectors forms
the future light cone. The light cone consists of rays. A ray is a set of null vectors
parallel to a given null vector. The set of all rays has the Lorentz invariant volume
two-form, which Gelfand, Graev and Vilenkin give on page 426 of their book [6]:

U AR2AEY] + K2 [dR3dE'] + B3[dk dk?)
L0
The function f(k) defined on the future light cone is said to be homogeneous of
degree z — 2, 0 <z < 1, if
f(Ak) = \*72f(k) for each A > 0.

Functions homogeneous of degree z — 2 form a linear space. Introducing in this
space the Lorentz invariant and the positive definite scalar product

d?kd?l——
= k)g(l
(fl9) = [ Sy T®9)
we obtain a Hilbert space in which the proper, ortochronous Lorentz transforma-
tions are unitary and irreducible.

d*k =
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3. Probability density of parabolic rotations in a spherically
symmetric state from the supplementary series

There are three kinds of one-parameter subgroups of the proper, ortochronous
Lorentz group: rotations which preserve a time-like plane, hyperbolic rotations,
sometimes called “boosts”, which preserve a space-like plane and parabolic rota-
tions preserving a null plane. If M, are generators of the proper, ortochronous
Lorentz group, then, for example, M, generates a rotation, Mys generates a hy-
perbolic rotation, while My, + M5 generates a parabolic rotation.

Let |f), (f|f) = 1 be an arbitrary state and A — a self-adjoint operator i.e.
observable in Dirac’s terminology. The matrix element

(fle™1f),

where )\ is a real number, is called an autocorrelation function. Its Fourier trans-
form

+oo
pr() = 5 [ dde A (fleMf)

is a probability density of the observable A in the state | f). By the well-known the-
orem of functional analysis this Fourier transform is non-negative and summable
to 1, thus, it is indeed a probability density.

I shall calculate the probability density of parabolic rotations in the spherically
symmetric state |u) from the supplementary series. u is a four-velocity of the
inertial reference frame in which the state |u) is spherically symmetric. It is easy
to calculate that
_ sinh[(1 — 2)0]

(ulv) = (1 — 2)sinho ’
where o is a hyperbolic angle between the four-velocities v and v. However, this
angle is not equal to the canonical parameter A of the parabolic rotation which
transforms u into v. One rather has

1
1+ 5)\2 = cosho

or o
A = 2sinh —.
2

Hence, putting x = 0/2, we have

sinh[2(1 — 2)z]
(1 —2)sinhz

+oo
1
p(p) = %_/ dz cos(2p sinh )

This integral can be calculated in terms of Bessel functions:

w / drKo-s)(2)

2|y

p(p) =
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where

K,(z)= /dte_‘”COShtcosh(l/t).
0

It is seen that for y — 0

limy p (1)

exists for 1/2 < z < 1 but does not exist for 0 < z < 1/2. This shows that there
is an observable, qualitative difference between representations with 0 < z < 1/2
and those with 1/2 < z < 1.

4. Spectrum of the Casimir operator of a little group of a space-
like vector

A set of proper, ortochronous Lorentz transformations which preserve a fixed
vector a is called a little group of this vector. If vector a is time-like, then its little
group is simply a group of rotations in the inertial reference frame which moves
with the four-velocity a. In what follows I consider the little group of the space-like
vector a, aa = —1.

Consider the function

f(k) = 6(ak)f1(k),

where § is the Dirac delta function, while f;(k) is a function homogeneous of degree
z—1,
fi(Ak) = X7 f(k) for each A > 0.

Assume that fi(k) is well behaved, e.g. continuous at each £ in the circle ak = 0.
Then, the state f(k) is normalizable for 0 < z < 1/2:

(111 = [ G S RIS a0 < o0

for 0 < 2z < 1/2. Take a parallel to the third axis, ak = k*. Introduce the spherical
coordinates
k' = ksin 9 cos ¢,

k* = k%sindsin @,
k2 = k% cos ),
and write f(k) in the form:
fk) = o(k") fi(k)
k' 4 ik?

_ 3y(7.0y2—1
= ) 2<k0+k3>
= O(k)(K) " fae™) .
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Then,
(FIf) =27 /d /d¢f2€“"f2 )’

0<z<1/2.
This is the scalar product given by Bargmann [4] on page 617 of his paper. The
Casimir operator of the little group of vector a has the value z(1 — z) < 1/4,

(Mgl + Mg, — M122)f =z2(1-2)f.

Thus, we have a normalizable eigenstate of the operator Mg, + M3, — M2, i.e.
a bound state. No such a bound state exists for 1/2 < z < 1, which means
that representations with 0 < z < 1/2 are qualitatively different from those with
1/2 <z < 1.
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Mpo cTpyKTYypy A0AATKOBOI cepil YHITApHUX HE3BIAHUX
300pa)keHb BJIAaCHOI OPTOXPOHHOI rpynu JlopeHua

A.CtapywikeBuny

ArennoHCbKNM YHIBEPCUTET, IHCTUTYT Di3vKu,
Byn. Penmonpa, 4, Kpakis, 30-059, MNonblia

OTpumaHo 26 ciyHa 1998 p.

3006paxeHHs 3 00OaTKOBOI Cepii YHITapHNX HE3BIAHMX 300paXXeHb Bnac-
HOi OPTOXPOHHOI rpynn JlopeHua xapakTepuayloTbCa napaMmeTpomM z,
0 < z < 1. ICHYIOTb SIKiCHI BIAMIHHOCTi MiX 306paxeHHAMN i3 0 < z < 1/2
Tai3 1/2 < z < 1. ABi Taki BiAMiHHOCTi ONNCaHO y CTaTTi: ryCTMHA MMOBIp-
HOCTU NapaboniyHMX NOBOPOTIB Y CHEPNYHO-CUMETPUYHOMY CTaHi CUH-
rynsipHa B noyatky koopamHat ans 0 < z < 1/2, ane perynsipHa ons
1/2 < z < 1; onepatop Kasnmunpa manoi rpynu, sika 36epirae npoctopo-
BO-NoAi6HUI BekTop, Mae onst 0 < z < 1/2 3B’A3aHWiA CTaH, SKWIA 3HU-
Kae, konm 1/2 < z < 1.

Kniouvoei cnoBa: rpyna JlopeHua, yHiTapHi 300paxeHHs!
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