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Electron density of states and spectrum
of disordered s -d model
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Structurally disordered s-d model of magnetism in metals is investigated.
The simplified model of binary alloy structure is offered, the structural corre-
lation functions are calculated. The self-consistent equations for calculation
of a spectrum, magnetization, electronic spin polarization and temperature
of phase transition are obtained.
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1. Introduction

The exchange s-d model is used to describe the alloy properties, that contains
transitional and rare-earth elements. The exchange s-d model offered by Shubin and
Vonsovskii was further developed by Ziner, Turov, Kassuj, Iosid and others, and it
found a further application in different fields of solid state physics. First the electric
and magnetic properties description of transitional d-metals was suggested and at
present it is a basic magnetism theory of the rare-earth metals, magnetic quasi-
conductors [1] and dissolved alloys of transitional metals [3]. From the theoretical
point of view, the importance of the s-d model is determined by a lot of wonderful
and non-trivial effects that it contains: formation of spin polarons, ferrons, fluctuons
in magnetic quasi-conductors [1,4], occurrence of the spin glass state in metallic
alloys [2], Kondo effect etc.

2. Spin-electron model of amorphous magnet

An amorphous system of N atoms in volume V ⊂ R
3 is considered, part of which

has got localized magnetic moments (further – magnetic alloy subsystem), and other
atoms do not have localized magnetic moments (non-magnetic subsystem of amor-
phous alloy). Atomic coordinates (R1, ...,RN) = R

N ∈ V accept random values.
Quantitative relation between magnetic and non-magnetic atoms is described by
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concentration c (0 6 c 6 1). The microscopic model of amorphous magnet consists
of two quantum subsystems i.e., a subsystem of the localized atomic spins and a
subsystem of conductivity electrons.

Hamiltonian of model has the form

Ĥ = Ĥs + Ĥel + Ĥel−s. (1)

The first term describes the energy of the subsystem of localized spins, which are
in the external magnetic field h, and the pair couple by the Heisenberg exchange
interaction

Ĥs =
1

2
N cS(S + 1)J(|R| = 0)− µh

∑

16j6N

ĉjS
z
j −

1

2

∑

q∈Λ

JqSqS−q . (2)

Here µ is the moment of magnetic atoms, and Sj is the spin operator of the magnetic
atom placed in point Rj ∈ V .
The subsystem of conductivity electrons is described in the pseudopotential ap-
proach

Ĥel =
∑

k∈Λ

∑

σ=±1

Ekσa+k,σak,σ +
∑

k,q∈Λ

∑

σ±1

Wqa
+

k,σak−q,σ . (3)

Here a+kσ(akσ) are Fermi operators of creation (annihilation) of electrons in states
{k, σ}. The index σ takes values respective to two possible projections of the electron
spin on the axis of quantization OZ. In the paper we also employed notation σ = (↑
, ↓). The wave vector k ∈ Λ, where Λ = {k : k =

∑
16α63

2π V −1/3nαeα, nα ∈ Z,
(eα, eβ) = δαβ} is momentum quasi-continuous space. The spectrum of free electronic
gas in presence of external magnetic field h is

Ekσ =
~
2k2

2m
− κσµBh. (4)

Scattering potential of the conductivity electrons on the ions is given by

Wq =
1

N

N∑

j=1

e−iqRjwq , wq =
N

V

∫

V

drw(|r|) e−iqr , (5)

where w(|r|) is an electron-ions pseudopotential. For local pseudopotentials, the
matrix element of scattering potential of electrons on ions wq depends only on the
module of impulse transfer.

The Hamiltonian of spin-electron interaction takes the form

Ĥel−s = − 1√
N

∑

q∈Λ

Iq

{
Sz
qσ̂

z
−q +

1

2

[
S+
q σ̂

−
−q + S−

q σ̂
+
−q

]}
. (6)

In expression (6), which is similar to (2), the operator

Sα
q =

1√
N

∑

16j6N

ĉjS
α
j e−iqRj , α = z,+,− (7)
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where S±
j = Sx

j ± iSy
j . In the case of lattice systems (Rj ∈ Z

3) the operator (7) is
the exact Fourier-transform of operators Sα

j .
In formula (6) the bilinear combinations of electrons creation and annihilation

operators are defined

σ̂z
q =

∑

σ=↑,↓

κσ

2
n̂q,σ, n̂qσ =

∑

k∈Λ

a+k,σ ak+q,σ,

σ̂+
q =

∑

k∈Λ

a+k,↑ ak+q,↓, σ̂−
q =

∑

k∈Λ

a+k,↓ ak+q,↑. (8)

The Fourier-components n̂q of the density operator are

n̂q =

∫
dr n̂(r) e−iqr; n̂(r) =

1

V

∑

q∈Λ

n̂q e
iqr. (9)

Hermitian operator σ̂z
q is the Fourier-component of the operator of the electronic

spin polarization density.
It is convenient to describe the structure of amorphous system by correlation

functions
Qn(k1, . . . ,kn; c) = 〈ĉk1

. . . ĉkn
〉irr
conf

. (10)

Here the Fourier-coefficient of the atomic density fluctuations is

ĉk =
1√
N

N∑

j=1

ĉj e
−ikRj , k 6= 0.

The structure correlation functions are reduced to such a form

Q1(k; c) = 0, Q2(k1,k2; c) = c (1− c+ c S2(k1,−k1)) δk1+k2,0 , . . . . (11)

The correlation functions of the atomic density fluctuations Sm(k1, . . . ,km) are
impossible to calculate from the first principles, and were accepted as phenomeno-
logical values.

Let us suppose that fluctuations of atomic density ̺k are described by the Gaus-
sian law. Probability distribution function of fluctuations of the atomic density is

P (. . . , ̺k, . . .) =
∏

k 6=0

1√
2πS2(k)

exp

[
−
∑

k 6=0

̺k̺−k

S2(k)

]
. (12)

Dispersion of Gaussian distribution

S2(k) =

∫
(d̺k) ̺k ̺−k P (. . . , ̺k, . . .) (13)

is the pair structural system factor. Integration in formula (13) over ̺k with distri-
bution function (12) is equivalent to the operation of configurational averaging. The
structural functions of higher order as follows:

Sm(k1, . . . ,km)
def
= 〈̺k1

, . . . ̺km
〉R =

∫
(d̺k) ̺k1

· · · ̺km
P (. . . , ̺k, . . .). (14)
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When m is even (m = 2n), then

S2n(k1, . . . ,k2n) =
∑

{p}

S2(ki1)δki1
+kj1

,0 S2(ki2)δki2
+kj2

,0 · · ·S2(kin)δkin+kjn ,0. (15)

In this formula the sum is taken over for all possible decomposition wave numbers
k1, . . . ,k2n on pairs.

3. Dispersion law and density of electron states

The Green function Gσ(k,q|ω) = 〈〈ak,σ|a+q,σ′〉〉
ω
is needed to evaluate the distri-

bution of electrons in momentum space

nk,σ = i lim
ε→0

+∞∫

−∞

Gσ(k,k|ω+iε)−Gσ(k,k|ω−iε)

eβω + 1
dω. (16)

Where β = (kBT )
−1 is the inverse temperature in energy units.

For Hamilton operator (1) the equation of motion for one-electron Green function
has the form

(~ω − Ek,σ)Gσ(k,q|ω) = 1

2π
δk,q +

∑

p∈Λ

WpG
σ(k− p,q|ω)

− 1

2
√
N

∑

p∈Λ

Ip {κσL
σ(p,k− p;q|ω) +Mσ(p,k− p;q|ω)} , σ = ±1 (↑, ↓). (17)

The equation (17) contains the Green functions of higher order

Lσ(p, l;q|ω) = 〈〈Sz
pal,σ|a+q,σ〉〉ω, Mσ(p, l;q|ω) = 〈〈S−σ

p al,−σ|a+q,σ〉〉ω. (18)

We introduce here the decoupling procedure

Lσ(p,k− p;q|ω) → 〈Sz
p〉 〈〈ak−p,σ|a+q,σ〉〉ω, Mσ(p,k− p;q|ω) ≡ 0. (19)

The thermodynamic average value is 〈S z
p〉 = yN−1/2

N∑
j=1

e−ipRj , where y ≡ 〈Sz
j 〉 is

the magnetization of atom. Then from equation (17) we obtain

(~ω − Ek,σ)Gσ(k,q|ω) = 1

2π
δk,q +

∑

p∈Λ,p6=0

W̃p,σG
σ(k− p,q|ω). (20)

Here the effective scattering pseudopotential

W̃p,σ ≡ 1

N

n∑

j=1

(
wp − 1

2
Ip y κσ

)
e−ipRj =

1

N

n∑

j=1

w̃p,σ e
−ipRj . (21)
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We write the following equation to calculate the configurational averaging of
one-electron Green function

(~ω − Ek−p,σ)〈W̃p,σG
σ(k− p,q|ω)〉

conf
=

=
1

2π
δk−p,q〈W̃p,σ〉conf +

∑

p′∈Λ

〈W̃p,σW̃p′,σG
σ(k− p− p′,q|ω)〉

conf
. (22)

In the latter formula we made approximation

〈W̃ W̃G〉 → 〈W̃ W̃ 〉〈G〉. (23)

The value 〈W̃p,σ〉conf = 0 because in initial Hamiltonian in the sum over p the
term with p = 0 is absent. The configurational averaged value is equal to

〈W̃p,σW̃p′,σ〉conf =
1

N
S2(p)w̃p,σw̃p′,σδp,−p′,

where S2(p) = 〈̺p̺−p〉 is pair structural factor. From the equation for the averaged
Green function in such an approach, the final expression is obtained

G(k,q|ω) ≡ 〈Gσ(k,q|ω)〉
conf

=
δk,q
2π

1

(~ω − Ek,σ − Σσ(k|ω))
. (24)

The self-energy part of the one-electron Green function in this approximation is

Σσ(k|ω) =
1

N

∑

p∈Λ

S2(p)|w̃p,σ|2
~ω − Ek−p,σ

.

Equation for electron spectrum in Stonner subband with spin orientation σ takes
the form

~ω = Ek,σ +
1

N

∑

p∈Λ

S2(p)|w̃p,σ|2
~ω − Ek−p,σ

. (25)

The electron energy in the long-wavelength region (small k)

E(k) = ∆(h) +
~
2k2

2m∗
+ . . . , (26)

where m∗ is the effective electron mass in the external magnetic field

m∗ =
m

1 +
16Ω0m

2

3π2~2

∞∫

0

dp1
p21

S2(p1)|w̃p1,σ|2
(27)

and

∆(h) =
2Ω0m

π2~2

∞∫

0

dp1S2(p1)|w̃p1,σ|2 − κσµBh (28)
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is Stonner gap in the electron spectrum.
For non-perturbation case when Σσ(k|ω) ≡ 0 the well known formula is obtained

̺σ(ω) =
m3/2

√
2π2 ~3

√
~ω + κσµBh, (29)

which describes the density of states of free electrons in the external magnetic field.
In the Σσ(k|ω) 6= 0 case the self-energy part contains the real and imaginary

parts
Σσ(k|ω) = Σ′(k|ω) + i Σ′′(k|ω),

where

Σ′(k|ω) = 1

N
P
∑

p∈Λ

S2(p)|w̃p,σ|2
~ω − Ek−p,σ

, Σ′′(k|ω) = − π

N

∑

p∈Λ

S2(p)|w̃p,σ|2 δ (~ω − Ek−p,σ) .

Equation for density of states may be written in such a form

̺σ(E) =
m

2π2~

∑

i

p̃i

∣∣∣∣∣∣
−1−Ω0m

2

4π2~4

1

p̃3i

∞∫

0

dp p S2(p)|w̃p,σ|2 ln
∣∣∣∣∣
Eσ − ~2

2m
(p̃i − p)2

Eσ − ~2

2m
(p̃i + p)2

∣∣∣∣∣

− Ω0m
2

4π2~4

1

p̃i

∞∫

0

dp p S2(p)|w̃p,σ|2
(

p/p̃i − 1

Eσ − ~2

2m
(p̃i − p)2

+
p/p̃i + 1

Eσ − ~2

2m
(p̃i + p)2

)∣∣∣∣∣∣

−1

.(30)

In this equation Eσ = E + κσµBh, and p̃i denotes simple roots of equation

Eσ −
~
2

2m
p̃2 − Ω0m

4π2~2

1

p̃

∞∫

0

dp p S2(p)|w̃p,σ|2 ln
∣∣∣∣∣
Eσ − ~

2

2m
(p̃− p)2

Eσ − ~2

2m
(p̃+ p)2

∣∣∣∣∣ = 0.

If we don’t employ approach (23), and start with the iteration procedure, then
the expression for the averaged function of configurations will be written in series
form

(~ω − Ek,σ)G(k|ω) =
1

2π

{
1 +

1

N

∑

p1∈Λ

|w̃p1,σ|2S2(p1)

(~ω − Ek−p1,σ)(~ω − Ek,σ)

+
1

N2

∑

p1,p2∈Λ

|w̃p1,σ|2|w̃p2,σ|2S2(p1)S2(p2)

(~ω − Ek−p1,σ)(~ω − Ek−p1−p2,σ)(~ω − Ek−p2,σ)(~ω − Ek,σ)

+
1

N2

∑

p1,p3∈Λ

|w̃p1,σ|2|w̃p3,σ|2S2(p1)S2(p3)

(~ω − Ek−p1,σ)(~ω − Ek,σ)(~ω − Ek−p3,σ)(~ω − Ek,σ)

+
1

N2

∑

p1,p2∈Λ

|w̃p1,σ|2|w̃p2,σ|2S2(p1)S2(p2)

(~ω − Ek−p1,σ)(~ω − Ek−p1−p2,σ)(~ω − Ek−p1,σ)(~ω − Ek,σ)
+ . . .

}
.

(31)
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We can see, that Green function is represented in the form of infinite series, each
following term of which contains an additional factor |w̃|2 S2/N(~ω−ε)(~ω−ε) with
suitable combination indexes. The issue of convergence of such series remains open,
because in our problem small parameters are absent.

Such series in field theory are very well known. Especially it is frequently met
in the problems concerning the interaction of electrons with bosonic field (electron-
phonon interaction). But in the field models, the S2(q|ω) and w̃I,σ values have got
another sense. Therefore we can use the results known from the field theory for
presenting the self-energy part of one-electron Green function

Σ(k|ω) = 1

N

∑

p∈Λ

S2(p)|w̃p,σ|2
~ω − Ek−p,σ − Σ(k− p|ω) . (32)

The absence of a small parameter in our problem does not permit to estimate
a correct approximation for self-energy part. The detailed numerical computations
and studies are necessary.

For self-consistent computation of the dispersion law it is necessary to find equa-
tions for calculation magnetization M of system localized spins and electron spin
polarizationm. Such equations were obtained in the approach of self-consistent field
and their form is written in [6]

M = Bs

(
S

T

[
µh+ c S M J0 +m

V

N
I0

])
,

8

3

(
EF

T

)3/2

m = F1/2

(
µ+ ξ

T

)
− F1/2

(
µ− ξ

T

)
,

4

3

(
EF

T

)3/2

= F1/2

(
µ+ ξ

T

)
+ F1/2

(
µ− ξ

T

)
. (33)

Here F1/2(α) is the Fermi-Dirak integral. Values I0 = lim
k→0

Ik, J0 = lim
k→0

Jk and µ

is the chemical potential, and variable ξ = µh + 1

2
c I0 SM . In the first equation of

the system we employed the notation Bs(x) for Brillouin function. A solution of the
system (33) makes it possible to build the dependence M and m on temperature at
different parameters values J0, I0, n, S, EF.

From equations (33) at T = 0, the value of electron spin polarizationm is smaller
than maximal possible value which is equal to 1. It is valid for S|I 0|/2EF parameter
considerably smaller for unit. Condition S|I0|/2EF ≪ 1 is also valid for all ferro-
magnetic metals and semiconductors. It is so that EF due to real electrons densities
is a big value: EF ∼ 104K. In this case, using the asymptotic for Fermi-Dirak func-
tion Fn(α) = αn+1/(n+ 1), the analytic expression for electron magnetization at
temperature T = 0 was obtained

m =
1

2

[(
1 +

cSI0M

2EF

)3/2

−
(
1− cSI0M

2EF

)3/2
]
. (34)
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4. Conclusions

In this paper firstly the equations for spectrum and electron states density of
structurally disordered s-d model are obtained. The dispersion law of both Stonner
subbands is investigated. The electron effective mass in the first Born approximation
is found. The integral equation for self-energy part is obtained for special structure
type. It is valid in long-wavelength region.

The system of self-consistent equations for the model of magnet states calcula-
tion is obtained. If I0 > 0 (ferromagnetic spin-electron interaction) then m in (34)
will be positive and if I0 < 0 (non-ferromagnetic spin-electron interaction) then m
is negative. In the first case, spin and electron magnetization will be co-directed
and in the second case controversially directed and partly compensate one another.
Particularly, when parameter SI0/2EF is close to a unit, m also approaches a unit.
In case SI0/2EF > 1 value m is identically equal to unit. The last two cases may be
realized in magnetic semiconductors with small density of conductivity electrons.
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Спектр та густина електронних станів

невпорядкованої s -d моделі

Ю.Рудавський, Г.Понеділок, Л.Дорош

Національний університет “Львівська політехніка”

79013 Львів, вул. С.Бандери, 12

Отримано 23 серпня 2000 р., в остаточному вигляді –

1 листопада 2000 р.

Досліджується структурно невпорядкована s-d модель магнетизму

металiв. Запропонована спрощена модель структури бiнарної су-

мiшi, порахованi структурні кореляційні функції. Отриманi рівняння

для самоузгодженого розрахунку спектра, густини одноелектронних

станiв, намагнiченостi, електронної спінової поляризацiї i температу-

ри фазового переходу

Ключові слова: аморфнi системи, намагніченість, поляризація

PACS: 75.30.Ds, 75.50.K

148


