
Condensed Matter Physics, 2005, Vol. 8, No. 3(43), pp. 547–564

Metallic ferromagnetism in the systems
with strongly correlated electrons

L.Didukh, O.Kramar∗

Ternopil State Technical University,
Department of Physics,
56 Ruska Str., 46001 Ternopil, Ukraine

Received May 7, 2004

The present paper considers the ground state ferromagnetic ordering in
narrow-band models with strongly correlated electrons, in particular, in a
single-band generalized Hubbard model with correlated hopping and in-
teratomic exchange interaction, as well as in a double orbitally degener-
ate Hubbard model with correlated hopping. The effective Hamiltonians of
these models are treated by means of variants of generalized Hartree-Fock
approximations, in which the quasi-particle energy spectra are obtained.
The ground state energy, critical electron concentration and magnetization
are calculated for some types of density of states. The mechanisms of fer-
romagnetic ordering stability in the narrow-band materials are discussed.
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1. Introduction

The interest to the Hubbard model [1] and its generalizations has been resumed
lately due to the intensive studies of the electrical and the magnetic properties of
the materials with narrow energy bands.

The issue of the origin of ferromagnetism in the narrow-band materials still
remains open, despite a great number of papers devoted to it (for review see [2,3]).

The most favorable situation for ferromagnetism is observed in the Hubbard mod-
el with a partially filled band and intra-atomic Coulomb repulsion energy U → ∞.
The extension of Nagaoka’s result [4] to the case of finite number of holes (elec-
trons) in the framework of various approximations leads to the conclusion that
ferromagnetic solution in the Hubbard model is possible in some concentration regi-
on [5–10]. A considerable peculiarity of the results obtained in papers [6–8], similar
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in the ideology to the paper [5], is the presence in the single-particle energy spec-
trum of a spin-dependent shift of the band centers, which is responsible for the
ferromagnetism stabilization. In fact, this is the “only” distinction [11] of the cited
approximations from Hubbard-I approximation. The shape of the density of states
essentially effects the ferromagnetism stability. This fact is emphasized in [8], as well
as in papers [12,13].

At the same time, in a number of papers the question of ferromagnetic solution
in the Hubbard model is disputed. It is generally agreed that in the Hubbard model
the ferromagnetic ordering is not realized in the case of small electron concentration
n ¿ 1 (the gas limit) [14]. The extension of Nagaoka’s theorem to the case of a
system with a finite number of holes is not trivial whereas the thermodynamic limit
for half-filling does not exist. It should be also noted that approximations [1,5,16,17]
(and the above cited papers which follow the ideology of Roth) for the case of Mott-
Hubbard insulator do not provide the Curie law for magnetic susceptibility [18]. At
n = 1 and U → ∞ the electrons are localized on the lattice sites and the equation for
the magnetization should take the mean-field form, which can be obtained only if the
unrealistic condition w/zJ → 0 is satisfied. The absence of ferromagnetic solution
has been also indicated in [15], where the calculation of magnetic susceptibility in
the random phase approximation has been done.

Although there are arguments that corroborate the existence of ferromagnetism
in the Hubbard model, this problem requires further studies. In addition, it has been
repeatedly emphasized [19–24], that a consistent analysis of the correlation effects
in the narrow bands should be carried out in the framework of generalized Hubbard
model. Other matrix elements of electron-electron interactions, in particular, an
inter-atomic exchange interaction [19,12,25–27] and correlated hopping [28,29] have
to be taken into account at the investigation of ferromagnetic ordering in the narrow
band materials.

It can be noted that the extension of the narrow band model to the case of
a system with orbital degeneracy, which takes place in the transition metal com-
pounds, can provide the additional mechanisms of ferromagnetism stabilization. At
the same time, the majority of the results in the case of degenerated band (see for
example [30–35]) are devoted only to a “standard” generalization of the degener-
ate Hubbard model. Besides, taking into account the correlated hopping essentially
enriches the properties of the model (see [36–38]).

In this paper, the consideration of ferromagnetism in narrow bands in the case of
strong electron-electron correlations is based on the variants of generalized Hartree-
Fock approximation [24]. In the framework of this approach, in particular, the inves-
tigation of the metal-to-insulator transition at half-filling have been recently carried
out [39]. In this case the obtained energy spectrum reproduces exact atomic and
band limits, provides the correct behavior of the ground state energy, energy gap
and polar states concentration. At the basis of these results, some peculiarities of
narrow band materials have been interpreted.

The aim of this paper is to study the condition of ferromagnetism stabilization in
the case of strong Coulomb correlations in generalized narrow-band models, which
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reflect some properties of real systems. In particular, the peculiarities of the models
studied lie in accounting for the non-diagonal matrix elements of electron-electron
interaction (correlated hopping and interatomic exchange interaction), as well as for
the orbital degeneracy of the band.

2. Ferromagnetism in the single-band model

2.1. The effective Hamiltonian of generalized single-band model

In the case of strong Coulomb correlations we use a perturbation theory (in
accordance with the method described in [40,41]), that lead [42] to effective Hamil-
tonian (EH) of the Mott-Hubbard metallic magnet (in the representation of X-
operators [16]):

H = −µ
∑

i

(

X↑
i + X↓

i + 2X2
i

)

+
∑

ijσ

′

tij(n)Xσ0
i X0σ

j +
∑

ijσ

′

t̃ij(n)X2σ
i Xσ2

j

+ U
∑

i

X2
i −

∑

ijσ

′J(ij)

2

(

(Xσ
i + X2

i )(Xσ
j + X2

j ) + Xσσ̄
i X σ̄σ

j

)

−
∑

ijσ

′ J̃(ij)

2

(

Xσ
i X σ̄

j − Xσσ̄
i X σ̄σ

j − 2X0
i X2

i

)

. (1)

Here, µ is the chemical potential, tij(n) = tij(1 − τ1n), t̃ij(n) = tij(1 − τ1n − 2τ2)
are the hopping integrals in the lower Hubbard subband (hole subband) and upper
Hubbard subband (doublon subband) respectively, J(ij) is the integral of direct
inter-atomic exchange, J̃(ij) = 2(t′ij(n))2/U is the integral of indirect (through the
polar states) exchange, t′ij(n) = tij(1− τ1n− τ2) is the hopping integral between the
lower and upper Hubbard subbands. For convenience, the parameters of correlated
hopping τ1 = T1(ij)/|tij| and τ2 = T2(ij)/|tij| are introduced. Here, tij is the band
hopping integral for the nearest neighbors i and j, T1(ij) and T2(ij) are the integrals
of correlated hopping of first type (it depends on the occupancy of the neighboring
sites which are not involved in the hopping process) and second type (in such a
hopping of electrons, doubly occupied lattice cites are involved) respectively.

It is worth-while to note that the small perturbation parameter at the obtain-
ing of EH (1) is t′ij(n)/U , which reduces the condition of transition to the EH in
comparison to the Hubbard model, where the parameter is tij/U . The distinctions
of the obtained EH (1) from generalized forms of t−J-models [17,40,43] are, firstly,
concentration dependence of hopping integrals in lower and upper Hubbard sub-
bands and non-equivalence of these integrals due to the correlated hopping being
taken into account (i.e., the absence of electron-hole asymmetry; this fact has been
also emphasized in [44]); secondly, unusual form (due to concentration dependence
of hopping integral) of the indirect exchange integral. Although the EH (1) is very
cumbersome, the mathematical treatment of the EH is essentially simplified and the
interpretation of the results is clear from the viewpoint of physics.
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2.2. The single-particle Green function and energy spectrum

We introduce the retarded Green function Gpp′(E) = 〈〈X0σ
p |Xσ0

p′ 〉〉 and write the
equation of motion in the case n < 1 when the processes with doublons can be
neglected:

(E+µ+zJeffnσ)Gpp′(E) =
δpp′

2π

〈

Xσ
p + X0

p

〉

+

〈〈[

X0σ
p ,

∑

ijσ′

′

tij(n)Xσ′0
i X0σ′

j

]∣

∣

∣

∣

∣

Xσ0
p′

〉〉

,

(2)
(in this case the exchange interaction is taken into account within the mean-field
approximation, z is the number of nearest neighbor sites, Jeff = J − J̃). Similarly
to [24,41], we apply the variant of generalized Hartree-Fock approach. To obtain a
self-consistent equation for the Green function in accordance with the projection
procedure we assume that

[

X0σ
p ,

∑

ijσ′

′

tij(n)Xσ′0
i X0σ′

j

]

=
∑

j

εσ(pj)X0σ
j , (3)

where εσ(pj) is non-operator expression. After anticommutation of equation (3) with
Xσ0

k we obtain:

εσ(pk)(Xσ
k + X0

k) = t(n)(Xσ
p + X0

p )(Xσ
k + X0

k) + t(n)Xσσ̄
k X σ̄σ

p − δpkt(n)
∑

j

X σ̄0
k X0σ̄

j .

(4)
Then, equation (2) can be rewritten in the form:

(E +µ+zJeffnσ)Gpp′(E) =
δpp′

2π
〈Xσ

p +X0
p 〉+

∑

j 6=p

εσ(pj)〈〈X0σ
k |Xσ0

p′ 〉〉+ εσ
p〈〈X0σ

p |Xσ0
p′ 〉〉,

(5)
The non-operator expressions εσ(pj), εσ

p can be obtained in the following way: the
averages with quasi-bose operators are replaced by c-numbers (in this connection see
our paper [42]), and to obtain the averages with quasi-fermi operators, the procedure
of self-consistent calculation (using corresponding Green functions) is applied.

Here, we introduce the notations

εσ(pj) = ασtpj(n), εσ
p = βσ(pi), (6)

and after Fourier transformation of equation (5) we obtain the equation for Green
function

Gσ
k
(E) =

1

2π

1 − nσ̄

E − Eσ
k

, (7)

where single-particle energy spectrum Eσ
k

has the form

Eσ
k

= −µ + ασtk(n) + βσ − zJeffnσ . (8)
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Here, the coefficient of correlation band-narrowing is

ασ = 1 − nσ̄ +
nσ̄nσ

1 − nσ̄

=
2 − n + ησm

2
+

n2 − m2

2(2 − n + ησm)
(9)

and the correlation shift of the band center is

βσ = − 1

1 − nσ̄

∑

k

tk(n)〈X σ̄0
i X0σ̄

j 〉k , (10)

nσ is the concentration of electrons with spin σ, and the expressions

tk(n) =
1

N

∑

ij

tij(n)eik(Ri−Rj) = t(n)γ(k), γ(k) =
∑

R

eikR

are used (the sum goes according to the nearest neighbors to a site). We note that
in distinction to the variant of projection method applied in [24], where in order to
obtain βσ the c-numbers representation has been used, in this work a spin-dependent
correlation shift of the band center will be calculated self-consistently. The shape of
bare density of states strongly effects the form of βσ, which may essentially modify
the condition of ferromagnetism stabilization in the model.

Analogously, in the case n > 1 for Green function G̃σ
pp′(E) = 〈〈Xσ2

p |X2σ
p′ 〉〉 we

obtain after Fourier transformation

G̃σ
k
(E) =

1

2π

nσ

E − Ẽσ
k

, (11)

where energy spectrum of the upper subband has the form

Ẽσ
k

= −µ + α̃σ t̃k(n) + U + β̃σ − zJeff(1 − nσ), (12)

here α̃ and β̃ are rewritten in the following way

α̃σ =
n + ησm

2
+

n2 − m2

2(n + ησm)
, (13)

β̃σ = − 1

nσ

∑

k

t̃k(n)
〈

X2σ
i Xσ2

j

〉

k
. (14)

The obtained energy spectra (8) and (12) possess considerable peculiarities. First-
ly, there is a correlation narrowing of the band, which is dependent on band-filling.
Besides, the widths of subbands are non-equivalent due to the correlated hopping
of electrons. Secondly, there is a spin-dependent correlation shift βσ of subband
center (the importance of similar subband shifts have also been emphasized in refer-
ences [11,45]), which leads (see below) to the stabilization of ferromagnetic ordering.
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2.3. The ground state energy and magnetization

Let us calculate the ground state energy of the system described by EH (1) in
the case of n < 1. Like in [5,6] we use the expression for the ground state energy
(per lattice site) in the form

E0

N
=

1

2N

∑

σk

∞
∫

−∞

(tk(n) + E) f(E)Sσ
k
(E)dE (15)

and concentration of electrons with spin σ

nσ =
1

N

∑

k

∞
∫

−∞

f(E)Sσ
k
(E)dE, (16)

here f(E) is the Fermi distribution function, Sσ
k
(E) = (1−nσ̄)δ(E −Eσ

k
) is spectral

density of the Green function.
In the case of simple forms of bare density of states (DOS), in particular, rect-

angular and semi-elliptical DOS, we have obtained an analytical expression for the
ground state energy and concentration of electrons with spin σ. The calculation re-
sults show that in the ground state of single-band Hubbard model at U → ∞ and
rectangular DOS there is a degeneracy of the paramagnetic and saturated ferro-
magnetic states. To attain ferromagnetic ordering, the effective exchange parameter
zJeff > 0 is necessary. Accordingly, in the case of rectangular DOS, the direct in-
teratomic exchange interaction J which provides the ferromagnetic character of the
effective exchange turns out to be a key parameter for ferromagnetism. Another sit-
uation is realized in the case of semi-elliptical DOS: at some critical concentration
the saturated ferromagnetic state is realized (even without the exchange interacti-
on). At the presence of zJeff/w > 0 the stability of ferromagnetic state rises (see
figure 1) forasmuch as the difference ∆EFM

0 /Nw between the energy of the param-
agnetic and ferromagnetic ground states increases. It is shown that the saturated
ferromagnetic state at n = 0.59 is realized while using semi-elliptical DOS in the
case of infinite-U Hubbard model. zJeff/w > 0 being taken into account leads to the
decrease of critical concentration at which ferromagnetism occurs.

The effect of correlated hopping on the stability of ferromagnetic ordering is
illustrated in figure 2 (for the case of semi-elliptical DOS). In the absence of effec-
tive exchange, ferromagnetic ordering is realized due to spin-dependent shifts of the
subband center but the correlated hopping leads to the narrowing of the band and
hereby suppresses the “translational” mechanism of ferromagnetism. The difference
between the energies of paramagnetic and ferromagnetic states is reduced. At the
same time, the reduction of ∆EFM

0 /Nw at the presence of an effective exchange
leads to the occurrence of spontaneous magnetization at a lower electron concentra-
tion in comparison to the case of the system without correlated hopping. Therefore,
at zJeff/w > 0 in the system where the correlated hopping is taken into account,
the region of electron concentration with ferromagnetic ordering is slightly extended

552



Metallic ferromagnetism in the systems with strongly correlated electrons

Figure 1. The effect of the effective ex-
change interaction on the concentrati-
on dependence of ∆EFM

0 /Nw in the
generalized Hubbard model at τ1 =
0. Solid curve: zJeff/w = 0.03; long-
dashed curve: zJeff/w = 0.02; short-
dashed curve: zJeff/w = 0 (semi-
elliptical DOS).

Figure 2. The effect of the correlated
hopping on the concentration depen-
dence of ∆EFM

0 /Nw in the generalized
Hubbard model at zJeff/w = 0.02. Sol-
id curve: τ1 = 0; long-dashed curve:
τ1 = 0.2; short-dashed curve: τ1 = 0.4
(semi-elliptical DOS).

(see figure 2). Besides, in the case n > 1, the second type of correlated hopping (due
to the occupancy of lattice sites involved in the hopping process) appears. This, first-
ly, destabilizes the “translational” tendency to the ferromagnetism yet more (this
fact may provide the absence of ferromagnetic ordering if there is no exchange inter-
action in the system). Secondly, in the presence of an effective exchange zJeff/w > 0
the magnetization curve is asymmetrical and the ferromagnetic region in the case
n > 1 is wider in comparison with the case n < 1 (figure 3).

Concentration dependence of magnetization at T = 0 obtained by the minimi-
zation of ground state energy is illustrated in figure 3. We note that the concentra-
tion region most favorable for ferromagnetism is located around half-filling. At the
same time, it is known that at n = 1 in the “standard” Hubbard model, the anti-
ferromagnetic ordering is realized. In the model studied the competition of various
types of magnetic ordering is described by the parameter of effective exchange Jeff .
In our article we investigate only ferromagnetic situation when Jeff > 0 (although if
2t2/U > J then in the system the indirect anti-ferromagnetic exchange dominates,
but this case is beyond the scope of this paper).

We note that the shape of non-interacting DOS (which corresponds to some
lattice structure) substantially effects the critical electron concentration at which
ferromagnetic ordering occurs as well as the electron concentration at which mag-
netic moment becomes saturated. By the numerical calculations of the ground state
energy at the base of expression (15) and the subsequent minimization we have
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Figure 3. Concentration dependence of
magnetization m (semi-elliptical DOS)
at zJeff/w = 0.1. Solid curve: τ1 = τ2 =
0; long-dashed curve: τ1 = τ2 = 0.1;
short-dashed curve: τ1 = 0.2; τ2 = 0.2.

Figure 4. Concentration dependence of
magnetization m in the infinite-U Hub-
bard model at various DOS (see ta-
ble 1).

investigated the condition of ferromagnetism stabilization for various DOS. In par-
ticular, the numerical analysis has been carried out for DOS that corresponds to the
simple cubic lattice [47]

ρ(ε) =

{

A
√

9 − ε2 − C(1 − ε2), |ε| 6 1,

A
√

9 − ε2 − B
√

1 − (|ε| − 2)2, 1 6 |ε| 6 3,
(17)

(here A = 0.10108, B = 0.12807, C = 0.02); for DOS that corresponds to the
body-centered cubic lattice [48]

ρ(ε) = 2
√

(1 − |ε|) ln2

(

5.845

|ε|

)

(

16.6791 + 3.6364|ε| + 2.4880|ε|2
)

, |ε| 6 1, (18)

as well as for the DOS with the peak near the band-edge [12]

ρ(ε) = c

√
w2 − E2

w + aE
, (19)

with free parameter c = (1 +
√

1 − a2)/(πw). Changing the asymmetry parameter
a, one can obtain both the semi-elliptical DOS (a = 0) and the DOS with the peak
near the band-edge (a → 1).

The results of numerical calculations (in the infinite-U Hubbard model in order
to compare with the results of other authors) of critical electron concentration are
presented in table 1. The obtained concentration dependencies of magnetization for
the above mentioned DOS are illustrated in figure 4. Our results agree with the well
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Table 1. The critical electron concentrations for ferromagnetic ordering (single-
band model).

Density of states Appearance Saturation
of magnetization of magnetization

simple cubic n1 = 0.36 n2 = 0.62
lattice, sc (curve 2, figure 4)

body centered cubic n1 = 0.55 n2 = 0.64
lattice, bcc (curve 3, figure 4)

asymmetrical DOS
a = 0.3 (curve 4, figure 4) n1 = 0.20 n2 = 0.31
a = 0.5 (curve 5, figure 4) n1 = 0.09 n2 = 0.15

known result for sc-lattice obtained by Roth [5]: at n1 = 0.36 the ferromagnetic
ordering occurs, and at n2 = 0.63 the magnetic moment saturates. Similarly to
the ideology of Roth the spectral density approximation (SDA) gives, in the case
of sc-lattice, the following results: spontaneous magnetization occurs at n1 = 0.34
and at n2 = 0.68, ferromagnetic ordering reaches the saturation. In the case of bcc-
lattice: the critical concentrations are n1 = 0.52 and n2 = 0.68, respectively. The
Gutzwiller variational function method [9] gives only the critical concentration of
saturated ferromagnetic state n2 = 0.68 for sc- and bcc-lattices. Our results also
agree with the results obtained using the expansion of one-particle Green functions
by the coordination number [10].

It is worth-while to note that in the case of strong electron correlation and half-
filled band (when the shifts of subband center vanish) the ferromagnetic ordering
is stabilized only due to the interatomic exchange interaction (independently of the
DOS used). Accordingly, the direct interatomic exchange in the single-band model
being taken into account is very important.

3. Ferromagnetism in the double orbitally degenerate band

3.1. The effective Hamiltonian of the generalized double orbitally degener-
ate narrow-band model

Let us obtain the EH of the generalized double orbitally degenerate model us-
ing the canonical transformation of general Hamiltonian in the Xkl

γi representation
(see [36]). In the case of strong Coulomb interaction (U À |tij|) and strong Hund’s
coupling (the energy of intra-atomic Coulomb interaction of electrons with different
spin projections at different orbitals U ′ and intra-atomic exchange interaction of
electrons with the same spin projection at different orbitals J0 have the same order,
U ′ À U ′ − J0) at n < 2 one can neglect the states with the number of electrons
greater than two and non-Hund’s doubly occupied states. Generalizing the approach
used in the previous section for the single-band model we use the perturbation ex-
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pansion in the parameter t′(n)/(U −J0). In this case, γσ− 0 and σσ− γσ-subbands
(here γ = α, β indicates the orbital) are separated by the energy gap and hence
the EH of generalized double orbitally degenerate Hubbard model with correlated
hopping has the form:

H = H0 + Htr + H̃ex + Htr−ex , (20)

where

H0 = −µ
∑

iσ

(

Xασ
i + Xβσ

i + 2Xσσ
i

)

+ (U ′ − J0)
∑

iσ

Xσσ
i ,

Htr =
∑

ijγσ

′

tij(n)Xγσ,0
i X0,γσ

j +
∑

ijγσ

′

t̃ij(n)Xσσ,γσ
i Xγσ,σσ

j ,

H̃ex = −
∑

ijγσ

J̃(ij)

2

(

Xγσ
i X γ̄σ

i − Xγσ,γ̄σ
i X γ̄σ,γσ

i − 2Xσσ
i X0

j

)

,

Htr−ex = −
∑

ijkγσ

Jtr−ex(ijk)

2
(Xγσ,0

i X γ̄σ
j X0,γσ

k − Xγσ,0
i X γ̄σ,γσ

j X0,γ̄σ
k

+ Xσσ,γσ
i Xγσ,γ̄σ

j X γ̄σ,σσ
k − Xσσ,γσ

i X γ̄σ
j Xγσ,σσ

k ).

In the Hamiltonian (20) besides the atomic and the hopping terms one can
distinguish the term H̃ex which describes the indirect exchange interaction (kinetic
super-exchange) as well as the term Htr−ex that describes the indirect hopping. Simi-
larly to the single-band case, the obtained EH has some peculiarities: the hopping
processes in the lower and upper bands are non-equivalent (due to the correlated
hopping being taken into account). At the same time, the effective exchange has the
ferromagnetic character (in distinction from non-degenerate band) and stabilizes
(see in the next section) the ferromagnetic ordering.

3.2. The single-particle Green function and energy spectrum

Let us write the model Hamiltonian of Mott-Hubbard narrow-band ferromagnet
with orbital degeneracy (without the processes of indirect hopping which play here
the secondary role). Such an approach makes it possible to investigate the effect
of electron and doublon hopping as well as of the effective exchange interaction of
electrons on the ferromagnetism stabilization.

In the case n < 1 one can consider only lower αγ − 0 and βγ − 0-subbands
(such a situation takes place in the compound Fe1−xCoxS2 while changing the cobalt
concentration). We write the equation of motion for the Green function Gγσ

pp′(E) =

〈〈X0,γσ
p |Xγσ,0

p′ 〉〉 (n < 1, the processes with double occupied states are neglected):

(E + µ + zJeff〈X γ̄σ̄
p 〉)Gγσ

pp′(E) =
δpp′

2π
〈Xγσ

p + X0
p 〉

+

〈〈[

X0,γσ
p ,

∑

ijγ′σ′

′

tij(n)Xγ′σ′,0
i X0,γ′σ′

j

]∣

∣

∣

∣

∣

Xγσ,0
p′

〉〉

, (21)
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(the exchange interaction is taken into account in the mean-field approximation).
Similarly to the case of single-band model for obtaining a self-consistent equation
we assume

[

X0,γσ
p ,

∑

ijγ′σ′

′

tij(n)Xγ′σ′,0
i X0,γ′σ′

j

]

=
∑

j

εσ
γ(pj)Xγ0,σ

j , (22)

here εσ
γ(pj) is the non-operator expression. After anticomutation of equation (22)

with Xγσ,0
k we have:

εσ
γ(pk)(Xγσ

k + X0
k) = tpk(n)(Xγσ

p + X0
p )(Xγσ

k + X0
k)

+ tpk(n)Xγσ̄,γσ
p Xγσ,γσ̄

k + tpk(n)X γ̄σ̄,γσ
p Xγσ,γ̄σ̄

k + tpk(n)X γ̄σ,γσ
p Xγσ,γ̄σ

k

− δpk

∑

j

tpj(n)
(

Xγσ̄,0
k X0,γσ̄

j + X γ̄σ̄,0
k X0,γ̄σ̄

j + X γ̄σ,0
k X0,γ̄σ

j

)

. (23)

According to (23) the equation (21) has the form:

(E + µ + zJeff〈X γ̄σ̄
p 〉)Gγσ

pp′(E) =
δpp′

2π
〈Xγσ

p + X0
p 〉

+
∑

j 6=p

εσ
γ(pj)

〈〈

X0,γσ
k |Xγσ,0

p′

〉〉

+ εσ
γ(p)

〈〈

X0,γσ
p |Xγσ,0

p′

〉〉

. (24)

In [36], the connection between the Hubbard operators and Shubin-Wonsovsky
configuration operators was established. For simplicity we assume that γ- and γ̄-
orbitals are equivalent (nγσ = nγ̄σ = nσ), and replace in expression (23) quasi-bose
averages by the c-numbers

Xγσ
i = nσ, X0

i = 1 − n,

Xγσ,γσ̄
i Xγσ̄,γσ

j = nσnσ̄, Xγσ,γ̄σ
i X γ̄σ,γσ

j = nσnσ, Xγσ,γ̄σ̄
i X γ̄σ̄,γσ

j = nσnσ̄, (25)

while the averages of quasi-fermi operators will be calculated self-consistently, hereby
postulating the non-operator character of εσ

γ(pj), εσ
γ(p). We use the notations

εσ
γ(pj) = αγσtpj(n), εσ

γ(p) = βγσ(pk), (26)

and after Fourier transformation (24) we have the Green function in the form

Gγσ
k

(E) =
1

2π
· 1 − n + nσ

E − Eγσ
k

, (27)

where the single-particle energy spectrum of (0 − γσ)–subband Eγσ
k

is

Eγσ
k

= −µ + αγσtk(n) + βγσ − zJeffnσ. (28)

Here, the band-narrowing due to electron correlation is

αγσ = 1 − n + nσ +
2nσ̄nσ + n2

σ

1 − n + nσ

, (29)
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and correlated spin-dependent shift of the subband center is

βγσ = − 1

1 − n + nσ

∑

k

tk(n)
(

〈Xγσ̄,0
i X0,γσ̄

j 〉k+〈X γ̄σ̄,0
i X0,γ̄σ̄

j 〉k+〈X γ̄σ,0
i X0,γ̄σ

j 〉k
)

, (30)

where nσ is the electron concentration with spin σ at γ orbital; we assume the
equality of orbitals, thus

n↑ =
n + m

4
, n↓ =

n − m

4
. (31)

Similarly to the case of non-degenerate band, the spin-dependent shift of the
subband center will be calculated self-consistently and its form is strongly effected
by the shape of non-interacting density of states.

In the case n > 1, the doublon Green function has the form

G̃γσ
k

(E) =
1

2π

nσ + nσσ

E − Ẽγσ
k

, (32)

where the single-particle energy spectrum is

Ẽγσ
k

= −µ + U − J0 + α̃γσ t̃k(n) + β̃γσ − zJeffnσ . (33)

Here, the narrowing of the upper (γσ − σσ)-subband is

α̃γσ = nσ + nσσ +
n2

σ

nσ + nσσ

, (34)

and the shift of the upper subband center is

β̃γσ =
1

nσ + nσσ

∑

k

t̃k(n)
〈

Xσσ,γ̄σ
i X γ̄σ,σσ

j

〉

k
, (35)

the concentration of electrons with spin σ and the concentration of Hund’s states
are as follows:

n↑ =
2 − n

4

(

1 +
m

n

)

, n↓ =
2 − n

4

(

1 − m

n

)

, (36)

n↑↑ =
n − 1

2

(

1 +
m

n

)

, n↓↓ =
n − 1

2

(

1 − m

n

)

.

The comparison of the expression for the band-narrowing coefficients and the
shifts of the subband centers in the cases n < 1 and n > 1 shows that even in the
“standard” degenerate Hubbard model (t(n) = t̃(n) = t) the electron-hole asym-
metry with respect to n = 1 is realized. The correlated hopping being taken into
account is another factor that enhances this tendency.
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3.3. The ground state energy and magnetization

To obtain of the ground state energy (per lattice site) we generalize the expres-
sions (15) and (16) to the case of orbitally degenerate model:

E0

N
=

1

2

∑

γσk

∞
∫

−∞

(tk(n) + E) Sγσ
k

(E)dE. (37)

The concentration of electrons with spin σ at the orbital γ is

nσ =
1

N

∑

k

∞
∫

−∞

f(E)Sγσ
k

(E)dE, (38)

Sγσ
k

(E) = (1 − n + nσ)δ(E − Eγσ
k

) is spectral density of the Green function.

Figure 5. The concentration depen-
dence of magnetization m at vari-
ous values of the effective exchange
parameter zJeff/w, τ1 = τ2 = 0 (semi-
elliptical DOS). Curve 1: zJeff/w =
0, curve 2: zJeff/w = 0.1 curve 3:
zJeff/w = 0.3. For convenience, the
curve 4 that corresponds the saturat-
ed ferromagnetic state is added.

Figure 6. The concentration depen-
dence of the difference between the en-
ergies of paramagnetic and ferromag-
netic states at some values of the corre-
lated hopping parameter τ1, zJeff/w =
0, (semi-elliptical DOS). Upper curve:
τ1 = 0; middle curve: τ1 = 0.2; lower
curve: τ1 = 0.5.

Using the rectangular and semi-elliptical DOS we analytically obtain the system
of expressions for the ground state energy (both for the case n < 1 and for n > 1).
The results of ground state energy calculations show that the ground state of the
double orbitally degenerate Hubbard model is ferromagnetic in the whole region of
electron concentration even in the case of rectangular DOS. The ferromagnetic type
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effective exchange interaction enforces the stability of ferromagnetism (its role is
most important in the case of n = 1), see figure 5 (for example the semi-elliptical
DOS is used). Similarly to the case of single-band model, the correlated hopping sup-
presses the “translational” mechanisms of the ferromagnetic ordering, thus reducing
the energy difference between the paramagnetic and ferromagnetic states (figure 6).

Figure 7. The concentration depen-
dence of the difference between the en-
ergies of paramagnetic and ferromag-
netic states for some types of DOS,
zJeff/w = 0, τ1 = 0. Upper curve:
rectangular DOS; middle curve: semi-
elliptical DOS; lower curve: the DOS
of a simple cubic lattice.

Figure 8. The concentration depen-
dencies of magnetization m in the or-
bitally degenerate Hubbard model (in
the case of strong Coulomb interacti-
on and Hund’s coupling) (see table 2).
Curve 1: rectangular DOS; curve 2: sc-
lattice; curve 3: bcc-lattice; curve 4:
semi-elliptical DOS; curve 5: the DOS
with asymmetry on the band-edge.

In the case of semi-elliptical DOS, the saturated ferromagnetic state is realized
only in some concentration region. Even if zJeff/w) = 0 at the electron concen-
tration n1 = 0.28, the transition from paramagnetic to ferromagnetic state with
non-saturated magnetic moment occurs. If the electron concentration reaches the
value n2 = 0.35 then the saturated ferromagnetic state is realized (see figure 5).
The increase of an effective exchange interaction extends the region with ferromag-
netic ordering. We emphasize that in the case of degenerate model the shape of
DOS essentially effects the critical concentration n at which the ferromagnetic or-
dering appears (figure 7). At the base of ground state energy calculation (37) and
its following minimization we have studied the effect of the DOS type on the ferro-
magnetism stability condition. In particular, numerical calculations were performed
in the case of rectangular, semi-elliptical DOS, the DOS with asymmetry on the
band edge [12] as well as the DOS of simple cubic [47] and body centered cubic [48]
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Table 2. The critical electron concentrations for ferromagnetic ordering (double
orbitally degenerate model).

Density of states Appearance Saturation
of magnetization of magnetization

semi-elliptical DOS n1 = 0.28 n2 = 0.35
(curve 4, figure 8)

simple cubic n1 = 0.39 n2 = 0.47
lattice, sc (curve 2, figure 8)

body centered cubic n1 = 0.47 n2 = 0.56
lattice, bcc (curve 3, figure 8)

asymmetrical DOS
a = 0.3 (curve 5, figure 8) n1 = 0.19 n2 = 0.23

lattices. The results of these calculations (for the “standard” degenerate Hubbard
model with strong correlations) are presented in table 2 and in figure 8 (note that
these results for such a model have been obtained for the first time).

4. Discussion and conclusions

In the present paper the single-particle energy spectra are obtained in the frame-
work of generalized Hartree-Fock approximation [24] by treating the effective Hamil-
tonians of generalized narrow-band models (in the case of strong electron correla-
tion). This approach has been recently approved while investigating the metal-to-
insulator transition at half-filling [39] (in this case the obtained energy spectrum re-
produces exact atomic and band limits, provides the correct behavior of the ground
state energy, energy gap and polar states concentration; at the basis of these results,
some peculiarities of narrow band materials have been interpreted).

The obtained results show that ferromagnetic ordering can be stabilized by
the “translational” mechanism, in particular, due to the peculiarities of the single-
particle energy spectrum (we can observe the correlation narrowing of the subband
and spin-dependent shifts of subband center). The ferromagnetic indirect exchange
can also stabilize the magnetic ordering and is essential at half-filling of the band.

In the case of single-band model and rectangular DOS the direct inter-atomic
exchange interaction is the key parameter for the saturated ferromagnetic ordering in
the systems with strong correlations. In the framework of the proposed approach we
have studied the effect of the shape of the DOS on the condition of ferromagnetism
stability. In particular, we have calculated the ground state energy, magnetization, as
well as the critical electron concentration at which the ferromagnetic ordering occurs
and the magnetic moment saturates. Our results are in agreement with the results
of other authors. Besides, our approach makes it possible to solve the problem of
correct transition to the case of half-filled Mott-Hubbard ferromagnet, which takes
place in some approximations [11].
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We emphasize that in the case of strong electron correlations and half-filled single
band, the ferromagnetic ordering is stabilized only via direct inter-atomic exchange
interaction at the arbitrary non-interacting DOS.

The correlated hopping leads to the narrowing of the band and hereby the “trans-
lational” mechanism of ferromagnetism stabilization is suppressed at n close to half-
filling. At the same time, if the zJeff/w > 0, the region of ferromagnetic ordering in
the systems with correlated hopping is wider (forasmuch as the difference between
the energies of paramagnetic and ferromagnetic states is reduced and the exchange
interaction effect is greater) than in the “standard” Hubbard model and magneti-
zation curve has an asymmetrical character (due to correlated hopping).

In the case of double orbitally degenerate model with strong Hund’s coupling it
is shown that already rectangular DOS provides the ferromagnetic ordering due to
correlation narrowing of the subband and spin-dependent shifts of subband center.
The effective exchange of ferromagnetic type enforces this ferromagnetic tendency.
In this paper we obtain critical concentrations for the degenerate system (for some
types of the DOS) at which the magnetic moment arises and reaches saturation.

We want to emphasize the essential peculiarities of the results for a degenerate
model. Firstly, the indirect (kinetic) exchange favors the ferromagnetism (at the
same time one can take into account the direct inter-atomic interaction which sta-
bilizes the ferromagnetism as well). Secondly, we can observe the above mentioned
“translational” stabilization of ferromagnetism which can dominate at small electron
concentrations. This last result is interesting in connection with the fact that in the
ferromagnetic compounds Fe1−xCoxS2 and Co1−xNixS2 [49], where the partially filled
double orbitally degenerate eg-band is realized, the magnetization remains at a small
doping (x ' 0.05), and the Curie temperature is considerably high. Forasmuch as
the effective exchange at a small electron concentration n is reduced, the fact of the
existence of a saturated magnetic moment may be interpreted based on the “trans-
lational” mechanism. Although in this paper we analyse only the case of ground
state, our calculation of the Curie temperature (in the case of rectangular DOS)
at a small electron concentration (n < 0.3) is in good agreement with experimental
results of Jarett et al. [49]. Moreover, the concentration dependence of the difference
between the energies of paramagnetic and ferromagnetic states (see figure 7) has a
peak near the band-fillings n = 0.7−0.8 (this fact indicates that a similar maximum
takes place in the concentration dependence of the Curie temperature). At the same
time, the magnetization increases linearly (see figure 8). This result qualitatively
describes the experimentally observed behavior of the concentration dependence of
Curie temperature for the above mentioned metallic ferromagnets. A more detailed
study of the non-zero temperature properties of the models and the comparison of
the results with the experimentally observed ones will be presented elsewhere.
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2. Vollhardt D., Blümer N., Held K., Kollar M., Schlipf J., Ulmke M., Wahle J.,

Advances in Solid State Physics, 1999, 38, 383–398; Cond-mat/9804112.
3. Baberschke K., Donath M., Nolting W. (Eds.) Band-ferromagnetism. Ground state

and finite-temperature phenomena. Springer, Berlin, 2001, 394 p.
4. Nagaoka Y., Phys. Rev., 1966, 147, No. 1, 392–405.
5. Roth L.M., Phys. Rev, 1969, 184, No. 2, 451–459.
6. Gaipel G., Nolting W., Phys. Rev. B, 1988, 38, No. 4, 2608–2622.
7. Hermann T., Nolting W., J. Magn. Magn. Mater, 1997, 170, No. 3, 253–276;

Cond-mat/9702022.
8. Hermann T., Nolting W., Solid State Commun, 1997, 103, 351–356;

Cond-mat/9705305.
9. Shastry B.S., Krishnamurthy H.R., Anderson P.W., Phys. Rev. B, 1990, 41, No. 4,

2375–2379.
10. Zarubin A.V., Irkhin V.Yu., Fiz. Tv. Tela, 1999, 41, No. 6, 1057–1063 (in Russian).
11. Nolting W., Potthoff M., Herrmann T., Wegner T. Band-ferromagnetism. Ground

state and finite-temperature phenomena. Springer, Berlin, 2001, 208–225.
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Металiчний феромагнетизм в системах сильно

скорельованих електронiв

Л.Дiдух, О.Крамар

Тернопiльський державний технiчний унiверситет iм. I.Пулюя,
кафедра фiзики, вул. Руська, 56 , Тернопiль, 46001

Отримано 7 травня 2004 р.

В статтi дослiджено феромагнiтне впорядкування в основному

станi у вузькозонних моделях з сильно скорельованими елек-
тронами, зокрема, в узагальненiй невиродженiй моделi Габбарда

з корельованим переносом та мiжатомною обмiнною взаємодi-
єю, та в узагальненiй двократно орбiтально виродженiй моделi
Габбарда з корельованим переносом. Для дослiдження ефективних

гамiльтонiанiв вказаних систем застосовано варiанти узагальненого

наближення Гартрi-Фока, на основi яких отримано одночастинковi
енергетичнi спектри моделей. Для деяких форм густин станiв, що

вiдповiдають певним типам ґраток, проведено розрахунок енергiї
основного стану, намагнiченостi та критичних концентрацiй елек-
тронiв, при яких магнiтний момент виникає та досягає свого

насичення. Обговорено можливi механiзми стабiлiзацiї феромагнiт-
ного впорядкування в реальних вузькозонних матерiалах.

Ключові слова: вузькi енергетичнi зони, феромагнетизм, енергiя
основного стану, намагнiченiсть

PACS: 71.20, 71.10.Fd, 75.10.b, 75.20.En
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