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Here two methods for calculating the density of states of electrons in con-
duction band of disordered metals are investigated. The first one is based
on the usage of one-parameter trial electron wave function. The equation
for density of states gotten within this method is more general as compared
to the results of perturbation theory. Electron-ion interaction is applied in
the form of electron-ion structure factor, which makes it possible to use this
method for a series of systems where potential form factor is not a small
value and the perturbation theory fails. It also gives us well-known results
of Relel-Schrodinger and Brilliuen-Vigner perturbation theory in case of
small potential. Basically, the second approach is a common perturbation
theory for pseudo-potential and Green'’s function method. It considers the
contributions up to the third order. The results of computation for density of
states in some non-transition metals are presented. The deviation of den-
sity of states causing the appearance of pseudo-gap is clearly recognized.
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Introduction

Disorder metallic systems, including liquid, amorphous metals and metallic glass-
es are still investigated intensively due to the prospects of their industrial use. Some
unique properties of such systems cannot be explained within crystalline physics
methods. The problem of disorder remains to be one of the most urgent and has not
been ultimately solved in condensed matter physics. Disordered state differs from
crystalline one by the absence of long range ordering and makes it impossible to
use the translation symmetry methods [1]. Nonequilibrium of the structure makes
us apply the configuration averaging over all accidentally occupied ion locations [2].

Accented features of disordered metals bring about a number of anomalous char-
acteristics for many thermodynamic properties. One of the most interesting problems
of disordered condensed matter physics for quantum systems is the description of the
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formation of pseudo-gap in the density of electron state. Two methods of calculating
these characteristics are presented below.

1. Variation approach

Another method for calculation of density of states is the variation one. The
calculation scheme for this method was proposed in [3]. Setting the wave function
and energy of the ground state of an electron in disordered metal media, where Ry
is the i*" ion coordinate, as the known values ¢y and Ej respectively, we assume the
wave function of the excited state

Vi = Xito (1.1)
where
Xk = —Leikr 1+ L Zuk(q)p eI (1.2)
C \/N q#0 ’
and
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It corresponds to an eigenstate of both full impulse operator for eigenvalue Ak and
Hamiltonian — Fj. Obviously, we have the one parameter trial function for Ritz’s
condition of the variation problem for energy spectrum of an electron in the con-
duction band. We use the following condition to define CY

Now, the variation problem transforms into the next functional equation

2|V xr|?
By = B+ VG (1.4)
2m
Calculating the energy spectrum of the electrons in the conduction band, we consider
the one-sum contributions and neglect many-particle correlations. In this case, we

get minimum magnitude of Ritz’s functional in case

~ Sal@{B — £k(k+q)}
ur(q) = S Er — %(k—kq)Z} . (1.5)

Here S, = (pqp_q) — is a structure factor of disordered metal and S;(k, ) = (pge™*)
— electron-ion structure factor of the system. The latter can be presented in Born

approximation in case of small potential [4] as

 25,(k + qlwlq)

Sei(ka q) = h2q2/2m

(1.6)
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Applying this result to equations (1.1)—(1.4) and substituting Ey = h?/2m(k? +
Ay) we define

Qo o0 Sei(k, q)* qt — |? — Ag + 2kq|
Ay = dg?2in ) 3 2 by
k 8121}, /0 9 Sq g 4kq lg? — Ay — 2kq|
A"+ A (1.7)
(@ — A — 4R |
Here
)2 q2+Ak |q2 —Ak+2/€q|
L, = 14+ — -3 |
¢ "8 / T kg = Bk - 2kl
q +Ak)
1.8
E- A - g } (18)

This result can be easily transformed into Relel-Schrodinger theory expression [6]
for energy spectrum by assuming Ap = 0 and [ = 1. Moreover, it can also be
transformed by the same assumption, but saving Ay # 0 in logarithm, to Brilliuen-
Vigner theory result [6]. Thus, for density of states reduced by its free-electron
approximation Ny(E) = Qok/m? we have

N(E> QO /OO QSei<k7 Q)2
E) = = (14+ — s\ )
9E) = E) ( T o ), Y99 g,

(@4 A 1= A+ 2ke] (0= A APV
2kq lg? — Ay — 2kq| (@2 — Ay)? — 4k2¢2 -

X

This expression consequently follows the expression (1.7)—(1.8) if density of states
is assumed
Qok? dk

72 dE’

The calculations of density of states within this theory were presented in [7].
The pseudo-gap deviation of density of states in close range of Ferme level calculat-
ed in Relel-Schrodinger and Brilliuen-Vigner approximation of perturbation theory
was obvious and similar. Both were in good correlation with Zaiman’s and Mott’s
predictions for distribution of electrons in disordered metals. Variation approach
used in [7] gives a better agreement than the results of second order of perturbation
theory in terms of electron-ionic potential.

N(E) =

2. Perturbation theory

The well-known fact is that configuration averaging must be used in disordered
systems [1]. So, when expressing the electron Green’s function averaged over confi-

gurations as
1

E - h;nkj - 2(Evk)conf

G(E, k)eont = (2.1)
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we achieve the following form for the mass operator in the third order of perturbation
theory [5]

(klwlk + q)(k + q|w|k)
S(E, K)eont = (K|W|k) + Sq
(£ E)eont kI Wike) NZ E - 72/2m(k + q)2
(klw|k +q')(k + d'|w|k + q) (k + q|w k)
32 > Sua

\/_#0##0 B — 12 /2m(k + o 2][E — h2/2m(k + q)?]

kIW!k +q)(k+qlwlk)
Sq k k 2.2
SRS Z e o iy e alwlk + @) (2:2)
and this can be easily shown by factoring the Green’s function into a row for pseudo-
potential. Here we take the following designations: W (r) = > w(r — R;) — electron-
ion potential.
Picking out imaginary and real parts of Green’s function we get for real contri-
bution of the first and second order
Qo m oo
w2 ), dqq/kSq|(k|lwlk + q)g,|*
|E — h?/2m(k + q)2|
|E = 12/2m(k — q)?|

El(z)(Ev k)conf = <k|W|k>9,<P_

X In

(2.3)

and for the imaginary one

Qo m [~
E” (E k)conf = 4—7:2ﬁ 0 dQQ/kSq|<k|w|k+q>9ﬁ@’2

1
X / dzd {E — B*/2m(k* + ¢* + 2kqz) }

Qg m [ETV2mE/R \
= dqq/kS,|(klwlk + q)o .| 2.4
Pl R AL P Y

Now, consider the third order correction. We set the convolution approximation
for three-particle structure factor Sg ¢ q—¢ = S4S¢S|q—q| [1]. The third order con-
tribution takes the form of 2 last items in (1.2); then for real part of this correction
we have

Q2 m? [ -
E,(g)(Ea k)COIlf - (27]'0)4 ﬁ 0 (ti/k/Ov dq,q,/kSqulSIq_q/l

E — h?/2m(k + q)?
X (klwlk + q')g .k + d'|wlk+ q)e,.(k + g/w|k)g,In | /2m( q) 1

|E —1?/2m(k — q)?

|E —R2)2m(k +¢)?]  2Qom

|E—R2/2m(k — ¢)?|  4x® h2
|[(k|wlk + q)o |

|E — h2/2m(k + q)?||E — h*/2m(k — q)?|

X In

dgq/kS,(k + qlwlk + q)g.,
0

(2.5)
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Finding an imaginary part, we had better consider those two items separately and
using the calculation method similar to the second order calculation for imaginary
contribution and taking into account the following equation for transformation of
the divisor

1 1 1 1
(B — h2/2mq®)(E — h2/2mq?)  h2/2m(q? — ¢) {E —m2/2mg®  E— h2/2mq’2}
we get for the first item

Q m k+v2mE/h 00 . )
Z (E k)conf 47_‘_2 h2 dqq/k/ dq q /kSqu/S‘Q*q/|<k|W|k + q >0,ap
k—v2mE/h 0

[E - 1?/2m(k + q')*

k +q'|lwlk k kg1 | 2.
X < +q |W‘ + q>9790< + q’W’ >9750 n |E — h2/2m(k —_ q,)2| ( 6)
and the following expression for the second item
SO (B Reont = 22 [ 400 kS, (K k k|wk 2
11 (B k)cont = 12 2 ; qq/kSy(k + a|wlk + @), |(kIw[k + q)s |
x {6(E —h*/2m(k + q)%) — 0(E — h*/2m(k — ¢)*)}
Q v2mE — k
= 0TSkt gl wlk ) X
4Am? h kv2mE o x_y2mE|
Qo m v2mE + k
Stk alwlk + @), x e (2.7)

A2 b2 kv2mE g xi/2mE '

Density of states of electrons in conduction band is defined as the imaginary part of
the electron Green’s function averaged over all possible configurations

1
N(E) = - SpIm G(E — ie, k) cont

1 E/I(E k)conf
= - Z thZ (28)
™ —Y(E, k)eont]? + X(E, k)2

conf

Here

Z/(Ea k)conf = 2/ @ (E k)conf + E/(3)<E k)conf7
E”(Ea k)conf = z// (E k)conf + E// (E k)conf + E//( " (E> k)conf .

Proceeding to integral over impulse k and taking into account spin degeneracy fac-
tor 2, we finally get the following expression for density of states.

(2.9)

Q [ S (E, k) contk?dk
N(E) == / - (
E— — Y(E, k)cont]? + X" (E, k)?

3
& 2m conf
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Some computation results are presented below. Form factor of electron-ion in-
teraction is calculated for the following non-local model potential

A (7
w@%ﬁ:—;+§:em(;+Aqu (2.10)
l

here A;, R; — are model parameters of potential, P, — is the projecting operator.
Screened form factor of this potential takes the following form [5]

A7/
*Qe(q)

w(q) = + fk,q) — (1 - f@) L (k. q) 1n"‘C — ;Z‘ kdk.

e*(q) ) m¢*e(q) Jo k +
(2.11)

Here

lo

A (20 + 1 ~ ., (7 -

ko) =Y TG pcose) [ (L) )i (4 21)
=0

(2.12)
is non-local part of form factor and

€(q)* =1—(1—p(q))(e(q) — 1) (2.13)

is a dielectric permittivity accounting for the processes of electron exchange and
correlation. Here we used Hartry approximation for permittivity €(¢q) and Heldart-
Vosko approximation for local field correction ¢(q).

Figure 1. Density of states Cd-II.
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Figure 2. Density of states Zn-II.
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Figure 3. Density of states AI-III.
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Figure 4. Density of states In-III.

Figure 5. Density of states Pb-IV.
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So, in figures 1-6 we indicate the perturbation theory result with solid line and
free electron approximation result with dash line. We use Ashkroft-Lekner result of
Percus-Yevik approximation for structure factor in our calculations.

Evidently, electron density of states has a pseudo-gap behavior near Ferme level
range. In approximation not responsive to the imaginary part of mass operator the
second order gap takes place and in case of this theory the imaginary part of mass
operator spreads this gap and transforms it into the pseudo-gap deviation of density
of states. This happens due to the extinction of electron spectrum on structure
fluctuations.

We have also investigated the effects of the order of perturbation theory duri-
ng these calculations. For some metals (Cd,In,Pb) the third order contribution is
the most determinant and for the others (Zn,Al) the second order is already good
approximation for density of states.

The calculations within the non-local pseudopotential theory are more accurate
than the calculations within its local approximation (i. e., Ferme sphere approxima-
tion)and makes it possible to exactly define the shape and position of pseudo-gap
minimum on density of states distribution.

3. Conclusion

Our results show that in order to increase the accuracy of data on density of states
of disordered metals we must provide the non-local properties of pseudopotential and
the higher orders of perturbation theory in our calculations.
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EnekTpoHHa CTpyKTypa TOMNOJIOri4yHO
HeBMoOpPsSAKOBaHUX MeTanis

M.9ki64uyk

JlbBiBCbKUI HauioHanbHMIA yHiBEPCUTET iMeHi IBaHa dPpaHka

OTpumaHo 29 6epesHsa 2005 p., B OCTaTOYHOMY BUMSAj —
16 yepsHs 2005 p.

B paHin poboTi po3rnapaloTbCs ABa PiSHUX MigxoOauM OO0 BU3HAYEHHS
FYCTUHWN CTaHIB Ta €HEPreTUYHOro CrekTpy €NEeKTPOHIB NPOBIgHOCTI Y
HEBMOPSAKOBaHMX MeTanax. lNepwuin 3 HUX FPYHTYETBCS Ha BapiaLii-
HOMY MPUHLUMMI 3 BUKOPUCTAHHAM OAHOMapamMeTpuyHoOi NpoBHOi XBuK-
NbOBOI YHKLUIT eNeKTPOoHIB NpoBigHOCTI. [Nna eHepreTM4Horo crnekTpy
OTPUMaHO PIBHSAHHS, IKe Ma€ BinbLU 3aranbHUA BUMNSAL, Y NOPIBHAHHI 3
pe3ynbratammn Teopii 30ypeHb. EnekTpoH-ioHHa B3aemogis BXoauTb B
TEeOopilo Yepe3 eNeKTPOH-IOHHUI CTPYKTYPHUA akTop, WO AAaE 3MOry
3acTocyBaTu TEOpIlo i B TUX BMNaakax, koam ¢dopmdakTop noTeHuiany
HE € MaJsiol BEIMYNHOLO i Teopis 30ypeHb He MOoXe ByTM 3aCTOCOBaHa.
Akwo dopmpakTopm ekpaHOBaAHOro noTeHuiany € Manmmu, TO i3
BMBELEHOIO BapiaLiiHOro BMpasy B HaCTKOBUX BMNagKax OTPUMYIOTbCS
BilOMI pe3ynbraTn Teopii 36ypeHb Penes-LpeniHrepa Ta BpinntoeHa-
BirHepa. dpyruin nigxig, noB’a3aHnin 3 BUKOPUCTaAHHAM MeTOoay YHKLIN
piHa Ta cTaHmapTHOI Teopii 30ypeHb 3a nceBOonoTeHUianoM 3 ypa-
XYBaHHSIM YNEHIB A0 TPEeTbOro nopsaaky BKIOYHO. OAng pagy metanis
BUKOHAHIi YMCEJbHI PO3PaxyHKM N'YCTUHU €1eKTPOHHMX CTaHiB. BuasneHo
NOMITHE BIOXMNIEHHS BiQHOCHO BiNIbHOENEKTPOHHOIO HABGIMXKEHHS Ha
3aIeXXHOCTAX TYCTUHWM CTaHiB Big, eHeprii, wWo O0O0yMOBMIOE MOSBY
rnceBOOLLITMHN.

Knio4oBi cnoBa: ryctmHa crtaHiB, MacoBui orneparop, popmeakTop,
CTPYKTYPHUI pakTop, ncesaoLLiIMHa

PACS: 43.38.Kw
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