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The method for calculation of the partition function of lattice model for the
magnet in the external field near critical point (CP) is proposed. The recur-
rence relations and their explicit solution near the critical point are founded.
It is shown that dependence on temperature of thermodynamic functions
near CP, when the field value comes down to zero, is in good agreement
with the previous results obtained using the collective variable method. The
phase transition temperature (when h = 0) is calculated and the depen-
dence on parameters of interaction potential is found.
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Introduction

A significant progress in the theoretical description of phase transitions on the
microscopical level has been achieved using the collective variables (CV) method [1].
This approach allows one to take into account the collective behavior which plays a
crucial role near the phase transition point. The effectiveness of the CV method was
demonstrated by applying a one-component three-dimensional spin model [2] to the
description of critical behavior. The critical temperature T, with explicit expressions
for thermodynamic functions near 7. have been obtained and their dependence on
microscopic parameters of the system was found. However, the influence of external
field on the above mentioned system is still unclear. The evaluation of expressions for
free energy and other thermodynamic functions (heat capacity and order parameter
in particular) near T in the vanishing external field is of great theoretical and
practical interest. The critical point for one-component spin system is defined at
the temperature equal to T, and in zero external field h. The critical behavior of
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this system at h = 0 has been studied quite well. In particular, the description of
such a system on the microscopical level is given in [2]. We also know some of the
characteristics for the one-component spin model at 7" = T, and with the external
field tending to zero. Still unclear are the details of critical behavior of the spin
system when T" — T, and h — 0, but T" # T, and h # 0. The solution of this
problem is rather non-trivial, for instance, there is no exact solution even for the
two-dimensional Ising model at non-zero external field.

In this study we develop an approximate method for the description of one-
component 3D spin model near the phase transition point. This method is based on
the microscopic theory of phase transitions developed in [2] which uses the collective
variables set. The introduction of external field leads to a more general description
of critical behavior, but the main ideas and calculation schemes of [1,2] are kept
intact.

Similar problems of phase transitions occurring in binary alloys were consid-
ered by Gurskii [3,4]. In particular, the first principles approach was developed to
calculate the partition function and order-disorder phase diagrams for the above
mentioned systems [5].

The behavior of uniaxial magnetic systems and some other objects studied by
statistical physics can be described quite well by the 3D Ising model. The Hamilto-
nian of this model takes the following form

1
H:—izq)(Tﬁ)Uﬁfj—hZUf, (1)
lj l

where <I>(rl—]~.) is the interaction potential between i-th and j-th lattice sites, iy =
|77 — 75| is an interparticle distance, h = p’H is the normalized external field. The
variable o takes two values &1. Let us consider a simple cubic lattice with the
spacing c. In the following calculations the exponentially decaying potential

D(rgy) = A - exp(—rg;/b) (2)

is used. Here A is a constant, b is an effective interaction radius. The partition
function of the system described via the Hamiltonian (1) can be written in the CV
pj representation in the following form [2]

z= [exp |53 80®pzr | hlo)e)". (3)

keB

The summation in (3) is performed over the wave-vectors k within the first Brillouine
zone

- T 2Ty

B=<k= kxakakz kz:__ __’Lv 121727aN17: ' Y . 4

{E= Gyl = =T+ 22 Y Al

Here N = N, - N, - N, is the total number of particles, § = 1/kgT is the inverse
temperature, ®(k) is the Fourier transform of the interaction potential, and J(p)
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is the transition Jacobian from the spin variables to the collective variables. If the
external field h is present it takes the following form

Jn(p) = Sp [ =] (p— p)] |

where the transition operator J(p — p) is expressed as [1]

Ho =)= [exp |2mi Y wrlog - )| (dw)” (5)
keB
The integration in equation (5) is performed over N variables wo, w, w2 (k > 0),
expressed as

!/
(dw)V = dwOH dwidws.
keB
Here the prime means that k£ > 0.
The operators p; are

The summation here is performed over the periodic volume (V = N - ¢?)
A= {f: (o, Ly, )|l =c-mysmy = 1,2, ..., Ny i = x,y,z} (6)

with periodic boundary conditions .

The explicit expression for transition Jacobian can be found as the result of sum-
mation Sp over eigenvalues oy = %1 and performing the integration over variables
wy in equation (5). In this way we obtain the known result

In(p) =[] [6(pr+ 1) exp(—Bh) + 6(py — 1) exp(Bh)] , (7)
leA
where the site collective variables are introduced as
.= — - 8
pl \/N ];EZB pk ( )

The volume element in the CV space p; and site variables p; are related via the
following expression

/
dpo [ [ dptdps = i~ [ der. 9)
keB leA

where the transition Jacobian j is

i=v2 (10)

475



M.P.Kozlovskii

The change of variables from wy to wy leads to

dwOH/dw%wz =7 H dwy, (11)

keB TeA

where

1 iR
Wi = —— wre 12
1= = 2w (12)

keB

The evaluation of partition function (3), free energy, and other thermodynamic
functions near the critical point demands some approximations. It is connected with
the fact that we can decompose expression (3) into two parts. The first, energetic
part,

1
exp | 3 > B(k)pro_i

is diagonal in terms of the variables pz, while an entropic part connected with
transition Jacobian (7) is diagonal in the space of the site CV p;.

At present, we do not have adequate mathematical equipment for an exact calcu-
lation of expression (3). Usually, the approximate methods of calculation have been
used. One of such approximations in studying the critical behavior of the statistical
systems consists in using the Gaussian distribution for the order parameter. In such
a way, for the scalar ¢! theory in d = 3 [6], the values of the critical exponents
have been obtained by means of resummation of the series of Gaussian perturbation
theory. At present these values are considered to be the most reliable. They are used
as the basis for investigation of other objects, for example, the weakly quenched
disorder Ising model [7].

Although the Gaussian distribution of fluctuation prooved to be beneficial in
calculating the critical exponents and other universal quantities, it does not per-
mit us to obtain non-universal parameters of the phase transition, for example, its
critical temperature T.. The calculation of the non-universal quantities is connect-
ed with the use of non-Gaussian distributions in calculating the free energy [8,9],
or with the use of some non-perturbative approach describing the critical proper-
ties of three-dimensional systems [10] accounting for the non-Gaussian fluctuations
of the order parameter. The use of non-Gaussian distribution of fluctuations is es-
pecially important near the critical point of the second order phase transition for
three-dimensional systems. The peculiarity of the method which uses non-Gaussian
distribution of fluctuations is the so-called intermediate integration [1] that allows
us to obtain an analytical expression for free energy near the critical point. In the
present paper we generalize the method of the works [1,2] to the case of non-zero
external field. In this case the system always has a non-zero order parameter. It
is interesting to describe the behavior of thermodynamic functions in the case of
non-zero external field.

476



Recurrence relations for the three-dimensional Ising-like model

1. Representation of the partition function

Let us write the functional representation for the partition function of the model
(1), which will be useful in our subsequent calculation of thermodynamic functions
near the critical point. We start with expression (3), for which (7) holds. Fourier
transform of the interaction potential (®(k)), appearing in (3), has, according to
(2), the following representation [1]

B(k) = D(0)(1 + b*k?) 2, (1.1)

where

D(0) = A-8m(b/e)’. (1.2)

We are interested in the long-wave limit of ®(k) because the critical behavior is
determined by the long-range correlations. Therefore, we use the approximation

01 —202k2), k€ By,
(k) = { Py = (0)d, keB\By, (1.3)

which corresponds to the parabolic approximation of (1.1) for small wave vectors
with subsequent averaging of the Fourier transform of (1.1) over the wave vectors
near the boundary of the Brillouine zone (4). In the investigation of universal pa-
rameters of the model (1) such as its critical exponents, the value ®, is unessential
and may be put to zero. But the value @, is essential in calculating non-universal
quantities, for example, the critical temperature [11]. The definition of “small” val-
ues of the wave vector is ambiguous and depends on the form of the interaction
potential. For the exponentially decreased potential (2) the region By, where the
parabolic approximation (1.3) holds, has the form

By = { = (ky, ky, k) |k; = —:—O + EN—m;ni =1,2,..., Noi, i :x,y,z}, (1.4)
where N, NoyNo. = No, Ng = N - 30 , and sg > 1. The parameter sy, determines the
period of some effective block lattice cg = ¢ sq.

The parameter sy is determined differently for different interaction potentials
(exchange interaction, nearest-neighbor interaction, etc.) provided that in the re-
gion k € B \ By, the dependence ®(k) on the wave vector should be the weakest.
In any case, we can consider that we investigate the critical behavior of the sys-
tem with interaction potential (1.3) representing the long-range type (in particular,
exponentially decreased) of the interparticle interaction.

In virtue of (1.3), the partition function (3) is presented in the form

7= / (dp)™ (dn)™ (dw)™ exp 52 I

kEBU

Y re e WETE . 1
x @XM X kesy UK oxp | —2rri Z wppy + §ﬁ<l>0 Z pip_i| Ju(p). (1.5)
keBo keB
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Similarly to the previous results (9), (11), we have

(A = dno [] dngdnz =jg* ] dny.

EGBO rEAo
/
(dw)™ = dwp [ dwtdw? = jo [] dwy (1.6)
EEBO TEAO

where jo = \/§N0_1. Here [ belongs to the volume of periodicity (V = Nycp)
Ao = {zl (s Ly L)l = conzmi = 1,2, ... Nogyi = x,y,z} (1.7)

with periodic boundary conditions.

Expression (1.5) for the partition function allows us to perform integration over
variables p; for k € B. To this end, we have a transit to the cite CV p; defined by
(8). Let us introduce variables w; for ke B:

_ W, E - Bo,
= ~ 1.8
k { 0, keB\B. (18)

Integrating (1.5) over the variables p; gives

7z = 2Ne§ﬁ%N/(d77)N°(dw )Mo exp ﬁ Z Nz
keBo
x exp | 27l Z nwy | Z(w), (1.9)
keBo
where
= [ [ eh(—2ric;+ 8h) (1.10)
leA

and wy is defined by (12). Now we use the cumulant series for ch(...). In virtue of
[1] we have

ch(—2mi@; + h') = exp Y~ Dy(@p), (1.11)

n=0
where h' = Bh. The quantities D, (w;) are given by
(=2ri)
n!

M (W&, (1.12)

where cumulants M,, (k') have the form

aMoy(h') = Inch(h'); My (h") = th(h') = z;
Mz(h') =1-a2"=y; M (h') = —2zy;
My(l') = =2¢% + 42?y; M;(h') = 162y° — 8zy;
Mg() = 16> — 88z%y* + 162y. (1.13)
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Making use of (12) and (1.13), we obtain an explicit form of the expression (1.10)
for the Z(w)

Z@)=expq Y | NTEMGR) Y @@ O g, | oo (114)

n>0 ’ E1yeekn

,,,,,

The summation over wave vectors in (1.14) is performed for k € B. But the variables
wg, in virtue of (1.8), are different from zero only for k € B. Therefore, the sums
in (1.14) must be calculated only for ke By. Then, we replace Kronecker symbol
Of 4y, With keB by a corresponding symbol concerning the set of wave vectors
k € B.

In accordance with the above mentioned simplifications, one may recast the
expression (1.9) for the partition function in the form

Z = Zy -jo/(dn )N exp 6 > (@ omgn_g| ] L) (1.15)

k‘EBo fGAo

where )
Zo = 2N exp {5 5¢0N1 N Mo,

We have the following expression for the I;(n;)

—00

(2m)? (2 ) —d/2 m)*
- TMgwlg Mg / l3 TM4SOdw§ . (116)
Here
—ikl
= Mge wr= § :wk
\/N \/
keBo 0 feno

The ngy determines the number of terms of the exponent in (1.14) and defines the
type of “model” — the order of approximation used for a concrete calculation. The
case ng = 2 corresponds to the Gaussian approximation. In this case, since My (h)
is positive for all values of the h, the integrals over wg-variables are finite for all
values of the field. When ng decreases (ng = 4,6,8,...), the type of the model p"
complicates. For an exact calculation we have put nyg — oo. However, in the real
calculation we use finite ng. It is important that for small h all My, (h) have such
signs which ensure finiteness of the wp-integrals in (1.16). When the field decreas-
es, the cumulants My, (h) with n > 2 change their signs (see Appendix 1). This
indicates the nonstability of the model p?*. For example, the model p* is stable for
R e (—h.,h.), where h, = 0.658. The value of magnetic field which corresponds to
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the h., is given by H. ~ h'T.. - 10* oersteds. Here T, is dimensionless number which
is equal to the value of absolute temperature of the phase transition 10? + 103. Then
H, =~ h'-(10%=107) oersteds. Comparing the value of H, with the field of saturation
magnetization for iron, Hg. = 1.99 - 10* oersteds, we obtain hf, &~ 0.01. Therefore,
the value R/ & 0.658 corresponds to very strong magnetic field and the model p?
can be applied to the description of the critical properties for many real objects.
For convenience of presentation we perform in (1.16) the change of variables

B 1 B 2 1/2

Then

1
Li(np) = gusz(nr),

where

Jl(nf) = / eiuznfyreXp(—ia,l/f—i— ib’z/? — iC/I/? 4+ ... )

X exp(—ylz - gylf‘ - fl/l(j + -+ )dyy, (1.17)
and the following denotations have been used
d = sy Mo = 5P M ()36
d = sa3d/2M5(h')ug/120, .

oMy o Mg
= —s;¢ = 552 1.18
9= 7% sm3 0 90 M3’ (1.18)
For compact writing (1.17) we define
v, Jd
gp(z/f) = a/Uf<1— EVI—»—FEVZ"F"') ) (1'19>

Ul = v - g = i),
where 3
V/d ~ —(2/3)s5, d/ad = 1—5552‘1(1—/\/{%/2./\/12).

Next we write (1.17) in the form

no a,
PR o

where the coefficients a,, have to be calculated by means of the formulas [12]

e’ = L07
a)p = —ie_ao,ung,
2 | _—ao,?
ag = aj +e “u;Lo,
as = 3ayay — aj +ie”"p3 Ls,
=4 3a3 — 6a; 1— e usl 1.21
ay = 4ayas + 3a; — 6ajas +a; —e “CpsLy, . .. (1.21)
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with -

L, = / dvv™ (cos p(vy) — isin (1)) e V), (1.22)
In calculating the quantities L,,, some approximation will be used since the expres-
sions for ¢(vy) and U(v;) are actually infinite series. These series may be considered
formally as expansions in some small parameter s 4 (59> 2).

It is known from the previous publications [1,2,11] that every term in the function
U(vy) leads to a concrete approximation. So, the choice g = f = --- = 0 gives us the
Gaussian approximation with classical critical exponents. The condition g # 0 and
f = --- = 0 corresponds to the model “p?”, g # 0 and f # 0 leads to the model
“o8” ete.

We may expect that the similar situation takes place for the function ¢(z;). In
virtue of (1.19), its simplest approximation is as follows:

o(vp) = d'vp. (1.23)

Hereinafter this approximation will be called first odd cumulant approximation since
the coefficient o’ is proportional to the cumulant M, (h’). The expression

2
os(vp) = d'vp (1 + gsodulg) (1.24)

will be called second odd cumulant approzimation etc.

Now we will perform an approximate calculation of the coefficients a,, from (1.21).
It should be noted that all a,, are real numbers. Hereinafter for the quantity ng from
(1.20) we put ng = 4. It means that our subsequent results will correspond to the
model “p*”. The generalization to the case of “©5”-model etc. one may perform by
means of the results [11,13]. Concerning the function ¢(v;) for simplicity we will use
the first odd cumulant approximation, for which (1.23) holds. In this case we obtain

, , 3
eao = e—a 2/4ﬁ |:]. — Z‘g(:l - a'/2):| )
a - —
dh = —Fa(1—39) ~ 55" M [1 = 56° + MI(1+ 5]

12

1 a
dy = 515 (1—39 (1—7» 1 — syt M2+ s59);

3 _
dh = —2pida'y =~ 25, M
3 _
a, = §,ugg ~ 2557 (1.25)

The method for calculating the coefficients a], is given in [13]. The prime in the
denotation of the coefficients a/, indicates the use of the first odd cumulant approxi-
mation'. We note that coefficients a} and a} are proportional to the external field '

!The coefficients a! in the second odd cumulant approximation are given in Appendix 2.
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The partition function of the model is written in the form

- 1
Z = Zyjoe Mo /(dn)N0 exp | — 3 > d(k)ngn_j; — a1/ Nomo

keBy
1 as 1 ay
S Mt~ ST e g | (126
3' \/ﬁo . . nk;l 77]{:5 ki+-+k3 4! NO ; g nkl /r/kf4 ki+-tka | 0 ( )
1oees 3 1o 4
E; €8 k;€Bg

where

2m
d(k) = ay— BP(0) + 26P(0)b*k?, (1.27)

_ , / 3
el — H2ah (27 M) e /A {1 — 19(1 — aﬂ)} ;

while for the coefficient a, we have
&2 = as + 6(1)0 (128)

Expression (1.26) is our starting point in step-by-step calculation of the free ener-
gy for the Ising model with potential (1.3) near the critical point. In contrast to the
works [1,2,11-13] here the external field appears explicitly and leads to the appear-
ance of odd powers of the variables 7; in the exponent. The coefficients (a1, as, .. .)
near odd powers of 7;: tend to zero in the limit 2 — 0. In the subsequent calculation,
especially in obtaining recurrence relations, the approximation used for initial coeffi-
cients a,, is unessential. However, the fact of the appearance of even and odd powers
of nz in the exponent (1.26) is important. Initial values of the coefficients a,, and
their relation with the field A become significant only in calculating the observable
quantities.

2. Method of calculating the partition function

We perform a step-by-step calculation of partition function (1.26), beginning
with integration over the variables n; with wave vectors k near their maximum
value By and ending with integration over n; with |l¥| — 0. We use the method
which has been proposed in [1].

Let us introduce Brillouine zone

T 2T

B, = {E: (kg by, k)i = —— 4+ ——n,=1,2,...,Ny;,i = x,y,z} . (2.1)

where ¢; = ¢ps, s = 1, NipNiylNi. = Ny, Ny = Nys~?. Here N is number of sites

of the block lattice, and N; = Nys~. In the same way we define the block lattices

with periods c; = cps?, c3 = cos°,..., ¢, = cps", which contain Ny = Nys—2¢,
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N3 = Nys™34,. .. N, = Nys~3" sites, respectively. The parameter s controls the
growth of the block structures with periodicity volumes

A, = {f: (Lo by, Ul = ¢ - mismy = 1,2, 00 Ny i = x,y,z} , (2.2)

where N, = Npy Ny Ny
Accordingly to [2] we select in (1.26) the variables n; with k e By \ By and
average the quantity ®(k) over such values of wave vectors. Then

B (kymgn_z =8> ®(k)mgn_g + B2(Bo, B) Y mp_i-

EEBO E€B1 E€80\81

Here ®(By, B ) denotes the mean value of the potential ®(k) in the region k € By\B.
For the mean-arithmetical averaging we have

®(By, B1) = 5 [®(Bo) + ©(B1)] - (2.3)

DN | —

After such transformations the partition function takes the form

. 1
Z = Zojoe™ [ (@) exp | =5 37 (k) ~ d(BuB) pep_i
keB,

X /(dl/)Nl exp | —2mi Z VipPp — a1 Nopo /(dn)No

EGBl

Ty Vg 1
x 62 2 ken, VR exp | — 5 Z d(Bm Bl)nl}’n—ﬁ
keBo

1 as 1 ay
- _Q \/VO ;;Z nEl o '7]1;36E1+-"+E3_EF0 ;;Z nEl o -77]}'45E1+...+E4 : (2'4)

Lreees Ed Lreees kg
k; €Bg E'LGBO
Here
d(By, B1) = ay — B®(By, B,) = d(0) + q, (2.5)
where
= - 2772 —2 -2
¢=qs2(0),  G=b"Fs (1+s7). (2.6)

The set of N; variables vy (I/O,V]%, 1/]%) determines intermediate integration which

allows one to perform the integration in (2.4) over N, variables ;. To this end, we
transit to the site variables
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with transition Jacobian equal to j; ', which cancels the corresponding factor in
(2.4), and introduce the quantity

_ 1 _ ikl
vp= vpe ", (2.7)
VN
OEGBO

where

_ Vi, EeBl,
Vs = —
0, keBy\B.

The result of integration of (2.4) can be written as

N 1
Z = Zye"M / (dp)™ exp ) > [d(k) — d(Bo, By)] pp_;
EGBl
% e~@VNopo /(dy)Nle—%iZzeBl VPR H J(7) (2.8)
TEAO
where J(7p) is given by
_ °° - 1 as ay

Hereinafter we shall use approximate expressions (1.25) for the coefficients a,.
For the subsequent calculations it is convenient to perform in (2.9) the change

of variables [11]
24 1/4

Then we obtain for the J(v;)

J(op) = (2—?)1/4 T (o), (2.10)
where
T(vp) = / BT e (2.11)
v d(B B? (24)3/4
hy = x/é%; hy = hgoﬁ, hay = ~——. (2.12)

Now reexpress the quantity 7'(7;) into the form

T,(77) = exp (— > n—’;ln> : (2.13)
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The coefficients .S,, may be calculated in much the same way as the coefficients a,,

from (1.20). We have a system of equations

o1 (vy)
8I7f

_OTL(7p)

N o

=0 =0

The left side of the equation (2.14) has the form

T (- 24\ ™A
(91_/(fl) = (271’1)” (—) Kn(hg, hg),

where

K (ha, hs) = /d$x"eh2x2h3x3x4dx.
The derivatives of the right side of (2.14) are

T ()

i = e %(=51),
822;”1”) (=S, 4 S2),
33?;%@ = e %0(=83 4+ 35,8, — S}),
a%;”f) — (=8 + 45,95 + 352 — 6528, + 51,

where

6730 = Ko(hg, h,g)

The coefficients S, from (2.13) may be obtained from the relations

24 1/4
ST = —2mi (—) eS°K1(h2, hs),

Qy

1/2
SQ = 512 + (277')2 <%) GSOKQ(hg hg)
ay ) ;

Qy

24\ **
83 = 35152 - S% + (271’)31 (—) eSOKg(hQ, hg),

24
Sy = 45153 + 352 — 6525, + St — (2m)* e K4(ha, h3).

Qaq

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Approximate explicit expressions for the coefficients S,, may be obtained assuming
small values for the quantities hs, h3, which are arguments of the functions K, (hs, h3)
from (2.16). That hs is small in the critical region has been proven in [2,13], while
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hs is proportional to the field and tends to zero near the critical point. Taking this
into account we obtain an approximate expression for (2.18)

—So __ 71'\/§ (
¢ T Or3/4)

where v = (F (%))2 / /2 = 0.337989. Here and henceforth we do not consider the
terms which are proportional to hj with n > 2, and to A% with [ > 3, since they are
inessential near the critical point.

In the approximation when hs and hg are small we have:

24\ V4 1
Sl = 2m (—) Zhg(l + ")/h,g),

1 —hy + gvh:?) : (2.20)

ayq

e ()1 (- 1))

3/4 A2
Sy = —(2m)% (%> 73(1 kil )h2h37

ay 16
Sy = (27r)4§4 (129 = 1) (1 + 72ho + 73h3), (2.21)
where 62 1 3,
Yo = 47m ~ —1.1468, 3= 1 —2.7342.

To simplify the calculation we will use the linear approximation of (2.21) neglecting
the terms which are proportional to k3 and hohs.
After integration (2.8) over the variables n; the partition function takes the form

1
Z = ZoQo(dP)Nl exXp D) Z [d(k) — d(Bo, Bl)]ﬂk’ﬂ,g — a1/ Nopo

keBy
X /(dy)N1 exp { — 2mwi Z vepr — S1v/ No Z vidg
];;661 EGBl
1 1 1
_552 Z VEV_ ik — ES4FO Z Vi - VE45121+~-+E4 ’ <2'22)
ReB, RioF4

k; €81

where use is made of (2.7) and the definitions

] N 94\ 1/4
a=[e@)™. Q@ =(2) Kwn). @2
An approximate expression for Q(d) is
g\ /4
o= (2) " -, (2.24)
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where Y
™2
= ——— ~ 1.8128. 2.25
The final step of the calculation consists in integrating over the N; variables v;.
To perform this we transit to the site variables

1 —ikm
VUp = — Ve
N keB,
in (2.22) and integrate. The result is
1
7 = Z()Q()Jl /(dp)NleXp —5 Z [d(l{?) - d(BO, Bl)] pk‘pik‘ — ap Nopo ﬂ]‘EIA Lm<,0),
keBy meny

(2.26)
where

27)? 27)4
L(p) = /dyﬁl exp <—27riy,ﬁpm — 2miP vy — ( ;T) Py, — ( 2') P4l/fﬁ> . (2.27)

For the coefficients P, we have the following expressions
1 /24\"* 24\ '/
P1 = Sd/2— (—) hg, PQ :’7(—> (1+t2h2),
4 ay aq
6
P, = s_da—(1272 —1)(1 + 12hs), (2.28)
4

where

1
h=7-1 = —0.4017.

1 9 1/2
Up = — | = xZ.
2w P2

in (2.28) allows one to obtain the expressions for L,,(p)

The change of variables

1 /9a\V2 _
L =— | = 2.2
o) =5 (7)) Al (2.20)
where
_ o0 2 1/2
R,.(p) = / dx exp [—ixpm (F) —iGpr — 2 — Gx4] (2.30)
—00 2
and e
1P 2
G=-—; Ghn=P | = . 2.31
S G R ( P2) (2:31)
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Making use of (2.28), one has

—d cl/21 2 12
G=s Go(l + Gghz), Gh =S Z 5 hg, (2.32)

where
1292 -1

24~2
We put (2.29) into the form

4
1
Lin(p) = exp (— > gaﬁf)p@ , (2.33)

1
Go = ~ 0.1353; Gy =7 — 27+ ﬂ ~ —0.3435.

n=0
where
9 1/2 2
ai = i e’ (F) Ry, aél)—(agl))zﬂL@aél)—R%
) 2
9\ 3/2
ay) = 3a§)a§)—(a§1))3—1e“8) (—) Rs,
2
2
ail) _ 4ag)a3 +3(al) —6(a(1))2agl) (agl))él (F) “ Ry. (2.34)
2
Here
9 (21+1)/2 o] 2 4
Ry = —i (F) (_1)(2l+1)/2/ dez®* ! sin(G - x)e ™
2 —00
9 l . 00 o 2 (gt
Ry = (F) (—1)/ dra™ cos(Gp - x)e ™ 7", (2.35)
2 —00

Similarly to our calculation of the approximate expressions for the coefficients a,,
(see (1.21)—(1.25)), we can write approximate expressions for a$’. The following
correspondence should be noted:

5\ 1/2
a — Gy, g— G, g — <—) :
Py

Moreover, the difference consists in the change of sign near the cross term x - p,, in
the expression (2.30) and near the corresponding term nyvyin (1.17).
Approximate expressions for R, are:

i 2 1 1 e 1
R, = —iGhe’Gh“ﬁ (1 — —50) Ry = —e*Gh/‘*\/% (1 — —50>

Ry — @Geggﬂf( _35 ) R — i G2/4f( _35 )
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Inserting the obtained expressions into (2.34), we find approximate formulae for the

coefficients ag) :

1/2
o = e Gilt/m (1 — EG) : agl) = 1Gh (3) (1-3G),

2 P
h 1 n 3 2\**
ag)ZE(l—SG), ag)ziGGh(Fz> 5

= 6G (P2)2 <1 — %Gi) : (2.36)

Here the quantities G and G}, are defined in (2.32) while P, is given in (2.28).
Making use of (2.29) and (2.33) one may write the following expression for the
partition function (2.26):

Z = 20u@P)" I [(@9)% e =5 37 dubipge_ i~ Vg
kEBl
(1) (1)
1 aj 1 ay
_g\/ﬁl _Z_ Pk, - pks(skﬁ- +k3 IFI*ZQ Py - ‘pE46E1+~--+E4 ’(237)
F1yekg Fpronky
k; By EZEBl
where 1o
1 2 (1)
P=_—(= A " 2.
ar-5(5) (2.38)
The coefficients d; (k) and aﬁ” have the form
di(k) = a5~ Bo(k);
ay) = ay) + BP(Bo, By);
al’ = oV 4 ¥, (2.39)

Comparing (2.37) with (1.26) we can see that the functional form of the partition
function did not change. The number of integration variables decreases (from Nj to
N; = Nys~9) and the coefficients d(k) and a,, change their values.

3. Recurrence relations

Now we shall write an explicit form of the recurrence relations (2.36) express-
ing the coefficients a'! in the term of their initial values a, from (1.21) or from

approximate results (1.25). Making use of (2.32) and (2.28) we obtain from (2.36)

e = Gi/‘*f( dGO) (1 — t1hs), (3.1)
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where

§$—d GOGZ
47 1- 35746,

and

ag\ /4
agl) = Sd/QCYOl (—4> h3(1+041h2),

24
as! = foo (a2)"? (1 + ashy),
aél) = s_d/2f01a3(1 + Oéghg),
Clz(ll) = s_df01a4(1 + Oé4h2). (32)
Here we denote:
ap1 = (1 — 3S_dG0)/4’}/, foo = (1 — 38_dG0)/’7\/ﬁ; f01 = G0/4’}/2 ~ 02960,
— GOGQ 1 _ GOG2
=352 4 = 3sd 024
WTT g, 2 ™ 1—3s-dG, ¥
3
3 = GQ — §t2 ~ 02590, oy = GQ — 2t2 ~ 0.4599. (33)

Taking into account (2.12), we obtain from (3.2)

at? = 572 fyy [a3(a4)—1/2 +V6ad(By, Bl)ag/a“] ’
agl) = foo [aéll/Q + V6aad(By, Bl)] ’
a;(al) = s f, [Gs + \/604361(307 Bl)a?)/a‘;l/z} ’

al) = s, [a4 + V6a,d(By, By )ay 2] . (3.4)

Let us perform in (2.37) the change of variables
Pr = 5P - (3.5)

As aresult, the E—dependent part of the Fourier transform of the interaction potential
in (2.37) will change from k2 to (sk)2. Taking into account that k € By, we can see
that sk belong to the set By, as it was for the initial expression (1.26). Therefore
now we may compare other coefficients before and after the integration.
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The change of variables (3.5) leads (2.37) to the form

Z = ZOQO(Q(P))NlJlle/(dP)NleXP — w1y Nipo

_ % S (r + 20000 (k) D)opn ;- = — 3 .

keB, Frof
k;€By
1 U1
X PO aBs T N, R N R (3.6)
Ri...fq
keBy

where the coefficients are given by
w, = S- dgl) = s[agl) + Sd/2a1],
ro= Sdi0) = s’[ay) - 52(0)],
vy = s3a§1); Uy = s4a$).

Taking into account (3.4), we obtain an explicit form of the recurrence relations
wy = sH/2 [w + foovu™ % — fooar V6(r + q)v/u] :
ro=s [7’ — (r+q) + foou'”* + fooaxV6(r + Q)} )
vy = sOD2 fyy [U +asV6(r + Q)UU_I/Q} ;
u = sy, [u + a4\/6(7" + q)ul/ﬂ , (3.7)

where
w=a, r=a;—PFP0), v=az, u=ay.

The quantity q is given by
q = 23%(0)b*(k*) ,,5,
while a mean value of k% over interval k € [By, By is equal to
(k%) Bo,51 = Bg%(l +577).
Now we find the fixed point of the RR (3.7) from the conditions

* *

Wy =w=uw", r=r=r,

v=v=0v",  u=u=u" (3.8)
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The last equation of (3.7) gives
(sfor) ' =1+ ashs,
where h} = v/6(r* + ¢)(u*)"/2. Since fo; < 1, there always exists such s = s*,

96~

s = fo' = 271 (3.9)

for which h} vanishes. As s is near s*, the quantity h} is small®. Calculating the
partition function under

s=s" = 3.3783,

we achieve an essential simplification since we need only a few terms in the series
expansion on the powers of he. By virtue of third equation (3.7) we find for (3.8)

v*(1 = %% fo1) = 0. (3.10)

-1

If s = s*, we have fy; = (s*)~' and, therefore, equation (3.10) can hold only if

v = 0.

The quantity h% = hsov*/(u*)?/? is proportional to v*. Hence, at the fixed point with
s = s* we have

hy=0, h=0. (3.11)

Using the second equation (3.7) we obtain

(W) = q- f'(1—s7%) = 5@(0)&(1 —s72),

where the quantity g is defined in (2.6). First equation (3.7) leads to the condition
w* = 0.
Therefore, we have the following coordinates of the fixed point of RR (3.7):
w'=0, r*=-—q v'=0, (u)?2=qf'(1-s2). (3.12)
Here ¢ = ®(0) - g and § = 72(b/c)?s5 % (1 4 572).

Now we return to the expression (2.37). In much the same way as (1.26) it may
be integrated over the variables p;; with indices from the domain

E c 81/82, (313)

2In the case s = 3 we have
h* =0.1124.
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where B; is given by

T 2T n,

By = {E:(kw,k:y,kzﬂ -4 : —1,2,...,N2i,i:x,y,z}.

s Il
Co Co Ngi

Here NoyNoyNo, = No, Ny = N;s~¢. The calculation is analogous to the equations
(2.4)-(2.39). Now the coefficients a,, have to be replaced by a', for instance:

ay — ai") = alV + s,
as — APy — dy = @) + BO(B,y, By),
0 — ol (M

3 CL3 3 CL4 — CL4 .

After performing (n + 1)-th step of integration (1.26) we obtain

Z = ZyQoQ1. --Qn[Q(P(n))]N"+1Jn+1/(dP)N”+1 exp § — dgnﬂ) Nug1po

1 p " 1 aén-i—l) 5
-3 Z nt1(k)pgp_z — 3NN o PRy - Py Opg +op,
’;EBn+1 n El ,,,,, E3
ki€Bp41
1 ain—i—l)
U N, #Zﬁ Piy - - PEOog +otog, (- (3.14)
Ei,k
EiIEBn:l

The sums in (3.14) are taken over k € B,;1, where

T 2 n;

Bn+1 = {E = (k?;mkiy,k?z”kl = — yn; = 1,2, Ce 7Nn+1,i} s

)
Cn+1 Cn+1 Nn+1,i

with Cpt1 = CSn_Ha Nn+17an+l7yNn+l,z = {Vp+1, and Nn+1 = NOS_d(n—H)' The partial
partition functions @), are of the form

Qo= [ Q@™,  Qu=[Q(P" Q)™ (3.15)

QPUY) = (2P D) exp | (G V)4 (1‘26?(””(1—02”‘”2))’

1/4

24 n 93 n

Qd,) = (ﬂ) o [1—7h§)+§7(h§ ’)2]. (3.16)
ay
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Here
hyY = V6d, (B, Buir) (@) 1% GO = 579G, (1 + Gohy V),
n n n)\ — n— 1 2 n—
hSY = hyal” (af”) G = sd/QZq)l/zhz(a Yy
04 1/2
n—1 n—1
POy = (—(n1)> (1 + tahS ). (3.17)
y
The quantity d,,41(k) has the following form
duia(k) = 35" — 59 (k),
where
= BB, B), A = 4 )
The coefficients aﬁ{”l) are given by
al"t = 200, | 2 A1+ ayhi™),
24
as™™ = foo (ai )> (1+ azh$Y),
CLgH_I) = S_d/2f01(lén)(1 + Olgh(zn)),
al"™™ = 570l (1 + ayh{™). (3.18)

Using s = s*, we obtain:
Qo1 = 07319, foo = 05976,

a; = 0.2045,
The quantity d,,(B,, B,11) has the form

e = 0.4053.

dp(Bp, Bpy1) = d,,(0) + gs™2".

Now we write RR for the coefficients of (n + 1)-th and n-th block structures.
Let us perform in (3.14) the scaling transformation of type (3.5) and introduce the
denotation:

Wy = s = gt [aﬁ”“) 142 aﬁ”)] ’
Tyl = 52(n+1)dn+1(0) _ 82(n+1) |:C~L§n+1) o 5@(0)} ,
Upir = 83(n+1)a§n+1)7 U1 = 84("+1)a51n+1)-
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Then we obtain the following recurrence relations
Wp+1 = 5(d+2)/2 |:wn + fOOU'rLur_Ll/2 - fOOal\/6<Tn + Q)Un/uni| )
T'n+1 = 32 [q + fOOur}l/Q + f00a2\/6(rn + Q)] )

Uppr = sOTD2fy, [vn + asV6(r, + q)vn/u;”?} :

Unp1 = 57 fo [Un + 044\/6(7% + Q)U}/Q] 5 (3.19)
where the quantities foo and fy; are given in (3.3),
w, = s"a™, o, = s*d,(0),
Uy = 33"a§n), U, = s4nain). (3.20)

In the case of absence of the external field (h = 0) RR (3.19) contain only second
and fourth equations. This case has been investigated by us in detail in [2,13].

4. Solution to the recurrence relation near critical point

Comparing RR (3.19) with (3.7), we note that they both have the same fixed
point (3.12). Next we put s = s*, where s* is given by (3.9). It is convenient to write
(3.19) in a matrix form

Wpy1 — W* w, — w*
Tpel — TF rp —1F
=R L | (4.1)
Upt1 — U Uy — U
Upy1 — U U, — u*

The matrix R has the following entities, R;;,

Ry = SL?"LQ), Ry =0, Rz = S(d+2)/2f00(U*)7%, R4 = 0;
1
Ry = 0; Rop = s fooaa V6, Ry =0, Ryy = 32f00§(U*)_%;
Rz =0, R3y = 0; R33 = 3d/2f01> R34 = 0;
Ry = 0; Ry = 3f01044\/6(U*)%; Ry3 = 0; Ry = s for. (4.2)
The matrix R possesses four different real eigenvalues:
E, = Ry= S(d+2)/2; Ey = Ras = Sd/2f01 _ S(d72)/2’
1
Eyy = 3 {Rzz + Ry £ [(322 — Ru)” + 4R24R42] 1/2} . (4.3)

We note that eigenvalues F; and FE3 are connected with the presence of the
external field. Both these eigenvalues are greater than unity3, since s > 1. The
quantities Fy and Ej are real, positive, and inequalities Fy > 1, F4 < 1 hold.

3In paper [14] it has been assumed that only one eigenvalue connected with the appearance of
the field is greater than unity.
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For s = s* we obtain:

E, = 20.9768,  E;=1.8380,
E, = 7.3740,  E,=0.3974. (4.4)

In the case h = 0 recurrence relations (3.19) simplify so that F; and Ej5 vanish
and a saddle fixed point appears. We obtain the following value for the critical
exponent of the correlation length

v = 0.609.

It is slightly lower than the result of numerical estimate of this exponent for the
Ising model, v. = 0.630 (see, e.g., [6,15]). The difference in the values of v and v,
is considered to be rather our limitation of the p*-model than the approximation
during its calculation. Indeed, the Ising model may be really described by the model
p*™ with m — oo [2]. To achieve a real correspondence between v and v, we have
to use at least the model pS.

Eigenvectors W;; of the matrix R are determined by the system of equations

> R;Wi, = EyW.

J

Using (4.2) gives

- 0 Was 0 WysToy
T=ul = 0 Wias 0 ’ (4:5)
O W22T42 0 W44
where
T3 = &; Ty = Ea— Rus i )
Es — Ry Ryo E; — Ry
Es — R R
Ty — 2 22 _ 492 ( n 6)

It is known from the matrix theory [16], that the nonsymmetric matrix R with
different eigenvalues can be expressed in the form

R =TAT, (4.7)

where the raws of the matrix T are eigenvectors of the matrix R, 7! is matrix
inverse to T', so that
Tt-T=1, (4.8)

where [ is a unit matrix, and A is diagonal matrix with eigenvalues of the R on the
main diagonal.
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The n-th power of the matrix R is given by
R" =TA"T, (4.9)

where the matrix A" is also diagonal with the n-th powers of the eigenvalues of R
on the main diagonal. Making use of (4.7)-(4.9) allows us to rewrite (4.1) in the
form

T, = R" Ty, (4.10)
where the raw z,, has the form
wy, — W*
Tp —1T°
Ty = v — V" (4.11)
U, — u*

To determine 7y we have put n = 0 in (4.11) . Taking into account (4.9) and (4.10)
yields

T, = TA"T'Z,. (4.12)
The latter expression allows us to obtain an expression for coefficients w,,, r,, v, and
u, (as well as al"™ and d,) from (3.20) in terms of the initial values ay, d(0), a3 and
ay given by (1.26). To this end we have obtained an inverse matrix 7. Tt is built
with eigenvectors of the matrix transposed to the matrix R which are determined
by the equations

> ViR = EViy. (4.13)
Therefore we obtain
Vin 0 —ViiTis 0
-1 1 0 Voo 0 —VaoT5y
—=Wyl=| , 0 Vis 0 : (4.14)
0 —ViuTy 0 Via

where the quantities 7;; are the same as in (4.5). The normalization conditions

Z ViiWiit = 0w (4.15)
J
lead to

Es — Ry)?\
i = Vullu=1 VZ:V22W22:<1+M> - D
RoyRyo

Vi = VWa =1, Vi=ViuWi=D. (4.16)
Now, using (4.12) we find an explicit form of the vector #,. Noting that

Vll(wo - T13UO)

V22[7”0 — 7= T24(U0 - U*)]
Va3ug

V44[Uo —u* — T42(7"0 - 7‘*)]
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and performing other calculations from (4.12) allows us to find

w, = qul(’u)o — T13/U0) + T13E§007
ro =1 = Vo((T)Eg + Co(T)TouEY),

Upn = EgLU()?
U —u* = Va(CL(T) T ER + Co(T)ED), (4.17)
where the denotations
Cl(T) = To—T*—Tg4(UO—U*),
CQ(T) = Uy — u* — T42(T0 - 7”*> (418)

have been used. The quantity V5 is given by (4.16). It is easy to verify that in the
case n = 0 equations (4.17) hold identically.

0.2351

0.231

0.22584

0.221

02151

0.214

026 025 03 032034 036 038 04 042 0.44
hc

Figure 1. The dependence of the 3.2(0)/6 on the ratio of the range of interaction
b to the lattice constant ¢ under s = 2 and ® = 0.092.

When h = 0, the system of equations (4.17) reduces to two equations (w, =
v, = 0). Since E, < 1, the E} rapidly decreases as n grows. The values of r,, and u,
will tend to their fixed values under the condition

To —7’* —T24(U0—U*) = 0,

which determines the temperature 7, of the phase transition. An explicit form of
this equation is given by

R44 - E4

ﬁccb(omgm(a‘* — #0(B:2(0))%) =0, (4.19)
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where

iy = as+ BP(0)P, q=m(b/c)’sg (1 +s72),

1-3s79G
— 221 — *—22; _ 07
SOO q fOO ( S ) fOO f}/\/ﬂ
Go = (129 —1)/24~ (4.20)

Therefore we obtain an equation for the temperature of phase transition:

Z%44 - 124 .
0
RY)

Ry — Ey4
47 500)
Ry VA4l

Figure 1 shows the dependence of inverse temperature 5.®(0) on the parameter
b/c. For convenience a scaling factor has been used since ®(0) = 2d.J, where J
corresponds to the constant of nearest-neighbor interaction. For the Ising model
with nearest-neighbor interaction it has been obtained [17,18] that

[6:©(0)]? (1 -G+ /o <I>o> — a5.8(0) — @ — 0.

BeJ = 0.2217. (4.21)

This value can be recovered by means of direct calculations with some set of pa-
rameters ®, b/c, and sq. Figure 2 shows the dependence of the 3.(0)/6 on the
parameter P.

0.244

0.231

0.221

0.214

0 002 004 006 005 01 012 014 0.16 0.1 02

ficer

Figure 2. The dependence of the inverse temperature 3.®(0)/6 on the parameter
¢ (sop=2,b/c=0.3).

It is easy to see that the value (4.21) is approached at b/c ~ 0.3. Figure 3 gives
the dependence 3.®(0)/6 versus sy at b/c = 0.3 and ® = 0.092.

Our calculation of the values T, was not intended to obtain an “exact” tempera-
ture of phase transition. Rather, it was necessary for determining the coordinates of
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0.224

0.2151

0.214

0.2054

b 3 i 5 B
50

Figure 3. The dependence of inverse temperature of phase transition on the
parameter sg.

critical point (7' = T., h = 0), near which we wish to investigate the thermodynamic
functions of the system with the appearance of the external field.
Now we introduce the denotations

Voer(T) = cpa, Voca(T) = cpa,
where 7 is relative temperature,
r = (T-T)/T.
= Va[l— fo— T g, 2(5:0(0)) 2 — Y i/?|
e = Va{uo— (800 = Ty 62(0)[ro + fo52(0)]}

Then the solutions to RR (4.17) take the form

~1
Wy = —emMy(B)E® — cpaMy (B)TY (¢3/25¢(0)) Er,
-1
e = 1A BOO)TEL + ol (¢*52(0))  BL,
vy = —cMi(W)E3,
up = u* + VTV 02 (BD(0))2ER + oY (4.22)

For brevity, here the denotations

cn = 53 Mg/ Ma(R'),  Mag =139 —6gT5 (2 58(0) "/ Ma(I),
Cho = 6gsg/2//\/l%(h’), Ck1 = c,(col)ﬁq)(()) (4.23)

have been introduced.
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5. Conclusions

The paper gives the expression (3.14) for the partition function of the one-
component magnet in the external field near the critical point. Explicit expressions
for the partial partition functions @, (3.15)—(3.17) are obtained. This allows us to
calculate the free energy and other thermodynamic functions of the system near
critical point by means of the methods of [2,8,9] . They will depend on the tem-
perature and field and the form of these dependences as well as the corresponding
critical exponents will be determined by the recurrence relations (3.19) and their
solutions (4.22) near the fixed point (3.12).

Appendix 1

Let us consider the dependence of the cumulants M,,(8h) from (1.12) on the
value h' = [Bh. We rewrite the expression (1.15) for the partition function in the
form:

7 = 2Vexp (%5@@\/) N Mo / (dn)™®(dw)™ exp %ﬁ > [®(k) — Polngn_i

EEBO

2 2
+ 27i Z Npwr ¢ €Xp & — 2miNG 2 M (B )wo — ( ;T) M (R) Z Wpw_f

keBy keBo
2m)% 12 (2m)"
~S N MR Y w0, T\l TIM(W)
’ B s
(27T)5 —3/2 0 41 /1N
X Z wE1" wk45k1+ +ky 51 NO /M5(h )1 Z ngl-‘ wk55k1+ ks
. i
2m)° o
— TNO 2M6(h) QZA wEl . 'wEGCSEl"F""'FEG s (Al.l)
T
where
Mi(R) = s> My (1), My(I') = Ma(R),
M) = 53 (= Ma(1)), M(R) = sy (= Ma(h')),
M) = 55" M5 (1), My(R') = sy Me(h) (A1.2)

The parameter sp > 1 determines the form of potential (1.3), which is used in
calculations. To any value of sq there is a corresponding model system with its own
values of parameters. The curves of dependence of M! (h) on the field h are shown
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in the figures 4 to 10 at the value sy = 2. For brevity the primes near M,, and h are
omitted.

The convergence of the integrals in (A1.1) is determined by the signs of the even
cumulants My (h'). The cumulant M (k') is positive for all values of the h’. The
M (R') is positive for h € (—0.658;0.658) and negative for |h| > 0.658. The quantity
M is positive everywere except the values |h| € (0.421; 1.575).

@

4 2 2 4
h
14
2
h
T T
2 4 3
Figure 4. Dependence of the coefficient Figure 5. Dependence of the first odd
M on the field h. cumulant M on the field h.
02
o
00
T T I
2 4 h
h
: i
4 2 4
Figure 6. Dependence of the second Figure 7. The cumulant MY versus the
cumulant Mo on the field h. field h.
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D
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0,15+

0104

04
T

Figure 8. Dependence of the fourth cu- Figure 9. Dependence of the Mf on

mulant Mﬁl on the field A. The cumu- the field hA.
lant M/, is positive for |h| < 0.658.

Figure 10. Dependence of the My on
the field h. The value of My is positive
in the regions |h| < 0.421 and |h| >
1.572.

Appendix 2
Now we obtain the expression for the coefficients a,, from (1.21) in the second odd
cumulant approximation when equation (1.24) holds for the function ¢(v5). Within

the frame of the “p*’-model we have

Ji(m) = / 2T exp [—ia’uﬂ— ib’ylz’] e”’?’g”fldl/f, (A2.1)

o0

503



M.P.Kozlovskii

where the coefficients a/, b, and g are given by (1.18). Our goal is in finding the
coefficients a,, from (1.21), which we will denote as a!’. We recall that the first odd
cumulant approximation corresponds to the condition " = 0. Now we perform in
(A2.1) the change of variables

Vp=Xp— 54,

2

which leads to the cubic term vanishing in the exponent of (A2.1)

!/ o] . .
Ji(np) = exp (Mz%ﬁfr Eo) / el b Berpmgry (A2.2)
where
1 1
Ey = —Za’Q ~ —53(‘%/\/1%;
2 4
E, = Vad?®= —gsada'g’ ~ —ga’/\/lf;
3
E, = 1- Za’b’ =1+ Mj~=M;" (A2.3)

Then we perform in (A2.2) the change of variables

dop=&dy;, &= My?

and obtain
Ji(np) = e / dype ™~ exp(ipimyy), (A2.4)
where
g =gMa~ goMs; g0 = %30d§
' = EiM,? =V(d)? ~ —233/2\/5/\4?;
[y = po& = V2. (A2.5)

Integrand in (A2.4) coincides with the expression
Jl(l) (771) _ / efl/lz7g1/l47ia’ul-'eil1«277fyfdylﬂ’ (A26>

which corresponds to the first odd cumulant approximation where the coefficients
g, a’, and po in (A2.6) are replaced by ¢, a”, and ), respectively. Then equations
(1.25) still hold in the second odd cumulant approximation. We write (A2.4) in the

form
" 4 a//
Ji(np) = €% exp | — E ] (A2.7)
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Then the expressions for the coefficients a! take the form

14 1
€“°=M§/26E°\/%(1—Zg’)~\F(1——s MQ( +§—sod)];

1 1
o =~ — a1 = 39') ~ —si P My [1 - M+ sodM?] |

ay =1—3¢ ~1— 557 +4s5 M2,

3 8 _d
" (M/2>3a//g/N3 0 /2M

a = 6g ~ 255 — 8s5 M2, (A2.8)

Therefore, the calculation of the coefficient a,, in the second odd cumulant approx-
imation leads to the statement that a4 is proportional to h® while the first odd
cumulant approximation gives aj ~ h.

It is easy to see that the third odd cumulant approximation (M; # 0, M3 # 0,
M5 # 0) leads to such dependences af’ ~ I, a§ ~ h', which are typical for the first
odd cumulant approximation.
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PekypeHTHi cniBBiAHOLWEHHS TPUBUMIPHOro MarHeTuka
npuv HaAssBHOCTi 30BHILLUHbLOIO NMOns

M.IM.Ko3snoBcbkun

IHCTUTYT @i3nkn koHaeHcoBaHMx cuctem HAH Ykpainn,
79011 JibBiB, ByNn. CBEHLUjUBLKOrO, 1

OTpumaHo 29 6epesHsa 2004 p.

3anponoHOBaHMI METOA PO3pPaxyHKy CTaTUCTUYHOI CyMM FpaTKOBOI
Moaeni MarHeTuka B 30BHILLHbOMY MOAi MOGAN3Y KPUTUYHOT TOYKMW.
3HalaeHi peKypeHTHI CMiBBIAHOLIEHHS Ta iXHi SBHUIA PO3B’A30K N06M3y
¢ikcoBaHOi ToYkM. [MokazaHo, WO B rpaHuvLi, KoM BENNYMHY Nons cnp-
AMYBaTWU 00 HyJd, NPUXOAMMO OO0 pe3ysnbTartiB, OTPUMAaHMX paHiwe B
MeTOoAj KONEKTUBHUX 3MIHHNX Y BUNAAKy BiACYTHOCTI 30BHILUHLOIO NOJIS.
Po3paxoBaHa Temnepartypa ¢asoBoro nepexogy (Npy h = 0) Ta
3HanaeHa ii 3anexHicTb Big, napameTpiB NoTeHuiany B3aeMO/ji.

Kniwo4voBi cnoBa: i3auHronoaibHa cuctema, KoaekTuBHI 3MiHHI, BiflbHa
eHepris JlaHgay, napameTp rnopsaky

PACS: 05.50.+q, 64.60.Fr, 75.10.Hk
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