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The method for calculation of the partition function of lattice model for the
magnet in the external field near critical point (CP) is proposed. The recur-
rence relations and their explicit solution near the critical point are founded.
It is shown that dependence on temperature of thermodynamic functions
near CP, when the field value comes down to zero, is in good agreement
with the previous results obtained using the collective variable method. The
phase transition temperature (when h = 0) is calculated and the depen-
dence on parameters of interaction potential is found.
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Introduction

A significant progress in the theoretical description of phase transitions on the
microscopical level has been achieved using the collective variables (CV) method [1].
This approach allows one to take into account the collective behavior which plays a
crucial role near the phase transition point. The effectiveness of the CV method was
demonstrated by applying a one-component three-dimensional spin model [2] to the
description of critical behavior. The critical temperature Tc with explicit expressions
for thermodynamic functions near Tc have been obtained and their dependence on
microscopic parameters of the system was found. However, the influence of external
field on the above mentioned system is still unclear. The evaluation of expressions for
free energy and other thermodynamic functions (heat capacity and order parameter
in particular) near Tc in the vanishing external field is of great theoretical and
practical interest. The critical point for one-component spin system is defined at
the temperature equal to Tc and in zero external field h. The critical behavior of
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this system at h = 0 has been studied quite well. In particular, the description of
such a system on the microscopical level is given in [2]. We also know some of the
characteristics for the one-component spin model at T = Tc and with the external
field tending to zero. Still unclear are the details of critical behavior of the spin
system when T → Tc and h → 0, but T 6= Tc and h 6= 0. The solution of this
problem is rather non-trivial, for instance, there is no exact solution even for the
two-dimensional Ising model at non-zero external field.

In this study we develop an approximate method for the description of one-
component 3D spin model near the phase transition point. This method is based on
the microscopic theory of phase transitions developed in [2] which uses the collective
variables set. The introduction of external field leads to a more general description
of critical behavior, but the main ideas and calculation schemes of [1,2] are kept
intact.

Similar problems of phase transitions occurring in binary alloys were consid-
ered by Gurskii [3,4]. In particular, the first principles approach was developed to
calculate the partition function and order-disorder phase diagrams for the above
mentioned systems [5].

The behavior of uniaxial magnetic systems and some other objects studied by
statistical physics can be described quite well by the 3D Ising model. The Hamilto-
nian of this model takes the following form

H = −1

2

∑

~l~j

Φ(r~l~j)σ~lσ~j − h
∑

~l

σ~l , (1)

where Φ(r~l~j) is the interaction potential between ~l-th and ~j-th lattice sites, r~l~j =
|~r~l − ~r~j| is an interparticle distance, h = µH is the normalized external field. The
variable σ~l takes two values ±1. Let us consider a simple cubic lattice with the
spacing c. In the following calculations the exponentially decaying potential

Φ(r~l~j) = A · exp(−r~l~j/b) (2)

is used. Here A is a constant, b is an effective interaction radius. The partition
function of the system described via the Hamiltonian (1) can be written in the CV
ρ~k representation in the following form [2]

Z =

∫

exp





1

2

∑

~k∈B

βΦ(k)ρ~kρ−~k



 Jh(ρ)(dρ)N . (3)

The summation in (3) is performed over the wave-vectors ~k within the first Brillouine
zone

B =

{

~k = (kx, ky, kz)|ki = −π

c
+

2π

c

ni

Ni

; ni = 1, 2, . . . , Ni; i = x, y, z

}

. (4)

Here N = Nx · Ny · Nz is the total number of particles, β = 1/kBT is the inverse
temperature, Φ(k) is the Fourier transform of the interaction potential, and J(ρ)
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is the transition Jacobian from the spin variables to the collective variables. If the
external field h is present it takes the following form

Jh(ρ) = Sp
[

eβh
∑

~l
σ~lJ(ρ − ρ̂)

]

,

where the transition operator J(ρ − ρ̂) is expressed as [1]

J(ρ − ρ̂) =

∫

exp



2πi
∑

~k∈B

ω~k(ρ~k − ρ̂~k)



 (dω)N . (5)

The integration in equation (5) is performed over N variables ω0, ωc
~k
, ωs

~k
(k > 0),

expressed as

(dω)N = dω0

∏

~k∈B

′
dωc

~k
dωs

~k
.

Here the prime means that k > 0.
The operators ρ̂~k are

ρ̂~k =
1√
N

∑

~l∈Λ

σ~le
−i~k~l.

The summation here is performed over the periodic volume (V = N · c3)

Λ =
{

~l = (lx, ly, lz)|li = c · ni; ni = 1, 2, . . . , Ni; i = x, y, z
}

(6)

with periodic boundary conditions .
The explicit expression for transition Jacobian can be found as the result of sum-

mation Sp over eigenvalues σ~l = ±1 and performing the integration over variables
ω~k in equation (5). In this way we obtain the known result

Jh(ρ) =
∏

~l∈Λ

[

δ(ρ~l + 1) exp(−βh) + δ(ρ~l − 1) exp(βh)
]

, (7)

where the site collective variables are introduced as

ρ~l =
1√
N

∑

~k∈B

ρ~ke
i~k~l. (8)

The volume element in the CV space ρ~k and site variables ρ~l are related via the
following expression

dρ0

∏

~k∈B

′
dρc

~k
dρs

~k
= j−1

∏

~l∈Λ

dρ~l , (9)

where the transition Jacobian j is

j =
√

2
N−1

. (10)
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The change of variables from ω~k to ω~l leads to

dω0

∏

~k∈B

′
dωc

~k
ωs

~k
= j

∏

~l∈Λ

dω~l , (11)

where

ω~l =
1√
N

∑

~k∈B

ω~ke
−i~k~l . (12)

The evaluation of partition function (3), free energy, and other thermodynamic
functions near the critical point demands some approximations. It is connected with
the fact that we can decompose expression (3) into two parts. The first, energetic
part,

exp





1

2

∑

~k∈B

βΦ(k)ρ~kρ−~k





is diagonal in terms of the variables ρ~k, while an entropic part connected with
transition Jacobian (7) is diagonal in the space of the site CV ρ~l.

At present, we do not have adequate mathematical equipment for an exact calcu-
lation of expression (3). Usually, the approximate methods of calculation have been
used. One of such approximations in studying the critical behavior of the statistical
systems consists in using the Gaussian distribution for the order parameter. In such
a way, for the scalar ϕ4 theory in d = 3 [6], the values of the critical exponents
have been obtained by means of resummation of the series of Gaussian perturbation
theory. At present these values are considered to be the most reliable. They are used
as the basis for investigation of other objects, for example, the weakly quenched
disorder Ising model [7].

Although the Gaussian distribution of fluctuation prooved to be beneficial in
calculating the critical exponents and other universal quantities, it does not per-
mit us to obtain non-universal parameters of the phase transition, for example, its
critical temperature Tc. The calculation of the non-universal quantities is connect-
ed with the use of non-Gaussian distributions in calculating the free energy [8,9],
or with the use of some non-perturbative approach describing the critical proper-
ties of three-dimensional systems [10] accounting for the non-Gaussian fluctuations
of the order parameter. The use of non-Gaussian distribution of fluctuations is es-
pecially important near the critical point of the second order phase transition for
three-dimensional systems. The peculiarity of the method which uses non-Gaussian
distribution of fluctuations is the so-called intermediate integration [1] that allows
us to obtain an analytical expression for free energy near the critical point. In the
present paper we generalize the method of the works [1,2] to the case of non-zero
external field. In this case the system always has a non-zero order parameter. It
is interesting to describe the behavior of thermodynamic functions in the case of
non-zero external field.
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1. Representation of the partition function

Let us write the functional representation for the partition function of the model
(1), which will be useful in our subsequent calculation of thermodynamic functions
near the critical point. We start with expression (3), for which (7) holds. Fourier
transform of the interaction potential (Φ(k)), appearing in (3), has, according to
(2), the following representation [1]

Φ(k) = Φ(0)(1 + b2k2)−2, (1.1)

where
Φ(0) = A · 8π(b/c)3. (1.2)

We are interested in the long-wave limit of Φ(k) because the critical behavior is
determined by the long-range correlations. Therefore, we use the approximation

Φ(k) =

{

Φ(0)(1 − 2b2k2), ~k ∈ B0 ,

Φ0 = Φ(0)Φ̄, ~k ∈ B \ B0 ,
(1.3)

which corresponds to the parabolic approximation of (1.1) for small wave vectors
with subsequent averaging of the Fourier transform of (1.1) over the wave vectors
near the boundary of the Brillouine zone (4). In the investigation of universal pa-
rameters of the model (1) such as its critical exponents, the value Φ0 is unessential
and may be put to zero. But the value Φ0 is essential in calculating non-universal
quantities, for example, the critical temperature [11]. The definition of “small” val-
ues of the wave vector is ambiguous and depends on the form of the interaction
potential. For the exponentially decreased potential (2) the region B0, where the
parabolic approximation (1.3) holds, has the form

B0 =

{

~k = (kx, ky, kz)|ki = − π

c0

+
2π

c0

ni

N0i

; ni = 1, 2, . . . , N0i, i = x, y, z

}

, (1.4)

where N0xN0yN0z = N0, N0 = N · s−d
0 , and s0 > 1. The parameter s0 determines the

period of some effective block lattice c0 = c · s0 .
The parameter s0 is determined differently for different interaction potentials

(exchange interaction, nearest-neighbor interaction, etc.) provided that in the re-

gion ~k ∈ B \ B0, the dependence Φ(k) on the wave vector should be the weakest.
In any case, we can consider that we investigate the critical behavior of the sys-
tem with interaction potential (1.3) representing the long-range type (in particular,
exponentially decreased) of the interparticle interaction.

In virtue of (1.3), the partition function (3) is presented in the form

Z =

∫

(dρ)N(dη)N0(dω)N0 exp





1

2
β

∑

~k∈B0

(Φ(k) − Φ0)η~kη−~k





× e
2πi

∑

~k∈B0
ω~k

η~k exp



−2πi
∑

~k∈B0

ω~kρ~k +
1

2
βΦ0

∑

~k∈B

ρ~kρ−~k



 Jh(ρ). (1.5)
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Similarly to the previous results (9), (11), we have

(dη)N0 = dη0

∏

~k∈B0

′
dηc

~k
dηs

~k
= j−1

0

∏

~l∈Λ0

dη~l ,

(dω)N0 = dω0

∏

~k∈B0

′
dωc

~k
dωs

~k
= j0

∏

~l∈Λ0

dω~l, (1.6)

where j0 =
√

2
N0−1

. Here ~l belongs to the volume of periodicity (V = N0c
3
0)

Λ0 =
{

~l = (lx, ly, lz)|li = c0ni; ni = 1, 2, . . . , N0i; i = x, y, z
}

(1.7)

with periodic boundary conditions.
Expression (1.5) for the partition function allows us to perform integration over

variables ρ~k for ~k ∈ B. To this end, we have a transit to the cite CV ρ~l defined by

(8). Let us introduce variables ω̄~k for ~k ∈ B:

ω̄k =

{

ω~k,
~k ∈ B0 ,

0, ~k ∈ B \ B0.
(1.8)

Integrating (1.5) over the variables ρ~l gives

Z = 2Ne
1
2
βΦ0N

∫

(dη)N0(dω)N0 exp





1

2
β

∑

~k∈B0

(Φ(k) − Φ0)η~kη−~k





× exp



2πi
∑

~k∈B0

η~kω~k



Z(ω̄), (1.9)

where
Z(ω̄) =

∏

~l∈Λ

ch(−2πiω̄~l + βh) (1.10)

and ω̄~l is defined by (12). Now we use the cumulant series for ch(. . . ). In virtue of
[1] we have

ch(−2πiω̄l + h′) = exp
∑

n>0

Dn(ω̄~l), (1.11)

where h′ = βh. The quantities Dn(ω̄~l) are given by

Dn(ω̄~l) =
(−2πi)n

n!
Mn(h′)ω̄n

~l
, (1.12)

where cumulants Mn(h′) have the form

aM0(h
′) = ln ch(h′); M1(h

′) = th(h′) ≡ x;

M2(h
′) = 1 − x2 ≡ y; M3(h

′) = −2xy;

M4(h
′) = −2y2 + 4x2y; M5(h

′) = 16xy2 − 8x3y;

M6(h
′) = 16y3 − 88x2y2 + 16x4y. (1.13)
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Making use of (12) and (1.13), we obtain an explicit form of the expression (1.10)
for the Z(ω̄)

Z(ω̄) = exp















∑

n>0









(−2πi)n

n!
N1−n/2Mn(h′)

∑

~k1,...,~kn
~ki∈B

ω̄~k1
. . . ω̄~kn

δ~k1+···+~kn























. (1.14)

The summation over wave vectors in (1.14) is performed for ~k ∈ B. But the variables

ω̄~k, in virtue of (1.8), are different from zero only for ~k ∈ B0. Therefore, the sums

in (1.14) must be calculated only for ~k ∈ B0. Then, we replace Kronecker symbol

δ~k1+···+~kn
with ~k ∈ B by a corresponding symbol concerning the set of wave vectors

~k ∈ B0.
In accordance with the above mentioned simplifications, one may recast the

expression (1.9) for the partition function in the form

Z = Z0 · j0

∫

(dη)N0 exp





1

2
β

∑

~k∈B0

(Φ(k) − Φ0)η~kη−~k





∏

~l∈Λ0

Il(η~l), (1.15)

where

Z0 = 2N exp

[

1

2
βΦ0N

]

eNM0 .

We have the following expression for the Il(η~l)

Il(η~l) =

∫ ∞

−∞
dω~le

2πiη~l
ω~l exp

[

−2πiM1s
d/2
0 ω~l

− (2π)2

2
M2ω

2
~l

+
(2π)3

3!
iM3s

−d/2
0 ω3

~l
+

(2π)4

4!
M4s

−d
0 ω4

~l

]

. (1.16)

Here

η~l =
1√
N0

∑

~k∈B0

η~ke
−i~k~l, ω~l =

1√
N0

∑

~k∈B0

ω~ke
i~k~l.

The n0 determines the number of terms of the exponent in (1.14) and defines the
type of “model” – the order of approximation used for a concrete calculation. The
case n0 = 2 corresponds to the Gaussian approximation. In this case, since M2(h

′)
is positive for all values of the h, the integrals over ω~k-variables are finite for all
values of the field. When n0 decreases (n0 = 4, 6, 8, . . . ), the type of the model ρn0

complicates. For an exact calculation we have put n0 → ∞. However, in the real
calculation we use finite n0. It is important that for small h all M2n(h) have such
signs which ensure finiteness of the ω~k-integrals in (1.16). When the field decreas-
es, the cumulants M2n(h) with n > 2 change their signs (see Appendix 1). This
indicates the nonstability of the model ρ2n. For example, the model ρ4 is stable for
h′ ∈ (−h′

c, h
′
c), where h′

c = 0.658. The value of magnetic field which corresponds to
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the h′
c, is given by Hc ≈ h′Tc · 104 oersteds. Here Tc is dimensionless number which

is equal to the value of absolute temperature of the phase transition 102÷103. Then
Hc ≈ h′ · (106÷107) oersteds. Comparing the value of Hc with the field of saturation
magnetization for iron, HFe = 1.99 · 104 oersteds, we obtain h′

Fe ≈ 0.01. Therefore,
the value h′

c ≈ 0.658 corresponds to very strong magnetic field and the model ρ4

can be applied to the description of the critical properties for many real objects.
For convenience of presentation we perform in (1.16) the change of variables

ω~l =
1

2π
µ2ν~l , µ2 =

(

2

M2(h′)

)1/2

.

Then

Il(η~l) =
1

2π
µ2Jl(η~l),

where

Jl(η~l) =

∫ ∞

−∞
eiµ2η~l

ν~l exp(−ia′ν~l + ib′ν3
~l
− ic′ν5

~l
+ · · · )

× exp(−ν2
~l
− gν4

~l
− fν6

~l
+ · · · )dν~l , (1.17)

and the following denotations have been used

a′ = s
d/2
0 M1(h

′)µ2; b′ = s
−d/2
0 M3(h

′)µ3
2/6;

c′ = s
−3d/2
0 M5(h

′)µ5
2/120, . . .

g = −s−d
0

M4

6M2
2

; f = s−2d
0

M6

90M3
2

; . . . (1.18)

For compact writing (1.17) we define

ϕ(ν~l) = a′ν~l

(

1 − b′

a′ν
2
~l

+
c′

a′ν
4
~l

+ · · ·
)

, (1.19)

U(ν~l) = ν2
~l
(1 − gν2

~l
− fν4

~l
+ · · · ),

where

b′/a′ ≈ −(2/3)s−d
0 , c′/a′ =

8

15
s−2d
0 (1 −M2

1/2M2) .

Next we write (1.17) in the form

Jl(η~l) = ea0 exp

(

−
n0

∑

n=1

an

n!
ηn
~l

)

, (1.20)

where the coefficients an have to be calculated by means of the formulas [12]

ea0 = L0,

a1 = −ie−a0µ2L1,

a2 = a2
1 + e−a0µ2

2L2,

a3 = 3a1a2 − a3
1 + ie−a0µ3

2L3,

a4 = 4a1a3 + 3a2
2 − 6a2

1a2 + a4
1 − e−a0µ4

2L4, . . . (1.21)
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with

Ln =

∫ ∞

−∞
dννn

(

cos ϕ(ν~l) − i sin ϕ(νl)
)

e−U(νl). (1.22)

In calculating the quantities Ln, some approximation will be used since the expres-
sions for ϕ(ν~l) and U(ν~l) are actually infinite series. These series may be considered
formally as expansions in some small parameter s−d

0 (s0 > 2).
It is known from the previous publications [1,2,11] that every term in the function

U(ν~l) leads to a concrete approximation. So, the choice g = f = · · · = 0 gives us the
Gaussian approximation with classical critical exponents. The condition g 6= 0 and
f = · · · = 0 corresponds to the model “ϕ4”, g 6= 0 and f 6= 0 leads to the model
“ϕ6” etc.

We may expect that the similar situation takes place for the function ϕ(ν~l). In
virtue of (1.19), its simplest approximation is as follows:

ϕ(ν~l) = a′ν~l . (1.23)

Hereinafter this approximation will be called first odd cumulant approximation since
the coefficient a′ is proportional to the cumulant M1(h

′). The expression

ϕ3(ν~l) = a′ν~l

(

1 +
2

3
s−d
0 ν2

~l

)

(1.24)

will be called second odd cumulant approximation etc.
Now we will perform an approximate calculation of the coefficients an from (1.21).

It should be noted that all an are real numbers. Hereinafter for the quantity n0 from
(1.20) we put n0 = 4. It means that our subsequent results will correspond to the
model “ϕ4”. The generalization to the case of “ϕ6”-model etc. one may perform by
means of the results [11,13]. Concerning the function ϕ(ν~l) for simplicity we will use
the first odd cumulant approximation, for which (1.23) holds. In this case we obtain

ea′
0 = e−a′2/4

√
π

[

1 − 3

4
g(1 − a′2)

]

,

a′
1 = −a′

2
µ2(1 − 3g) ≈ s

d/2
0 M1

[

1 − s−3
0 + M2

1(1 + s−d
0 )

]

;

a′
2 =

1

2
µ2

2

(

1 − 3g

(

1 − a′2

2

))

≈ 1 − s−d
0 + M2

1(2 + s−d
0 );

a′
3 = −3

2
µ3

2a
′g =≈ −2s

−d/2
0 M1;

a′
4 =

3

2
µ4

2g ≈ 2s−d
0 . (1.25)

The method for calculating the coefficients a′
n is given in [13]. The prime in the

denotation of the coefficients a′
n indicates the use of the first odd cumulant approxi-

mation1. We note that coefficients a′
1 and a′

3 are proportional to the external field h′.

1The coefficients a′′

n
in the second odd cumulant approximation are given in Appendix 2.
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The partition function of the model is written in the form

Z = Z0j0e
ã0N0

∫

(dη)N0 exp









− 1

2

∑

~k∈B0

d(k)η~kη−~k − a1

√

N0η0

− 1

3!

a3√
N0

∑

~k1,...,~k3
~ki∈B0

η~k1
. . . η~k3

δ~k1+···+~k3
− 1

4!

a4

N0

∑

~k1,...,~k4
~ki∈B0

η~k1
. . . η~k4

δ~k1+···+~k4









, (1.26)

where

eã0 =
µ2

2π
ea′

0 = (2πM2)
−1/2e−a′2/4

[

1 − 3

4
g(1 − a′2)

]

,

d(k) = ã2 − βΦ(0) + 2βΦ(0)b2k2, (1.27)

while for the coefficient ã2 we have

ã2 = a2 + βΦ0. (1.28)

Expression (1.26) is our starting point in step-by-step calculation of the free ener-
gy for the Ising model with potential (1.3) near the critical point. In contrast to the
works [1,2,11–13] here the external field appears explicitly and leads to the appear-
ance of odd powers of the variables η~k in the exponent. The coefficients (a1, a3, . . . )
near odd powers of η~k tend to zero in the limit h → 0. In the subsequent calculation,
especially in obtaining recurrence relations, the approximation used for initial coeffi-
cients an is unessential. However, the fact of the appearance of even and odd powers
of η~k in the exponent (1.26) is important. Initial values of the coefficients an and
their relation with the field h become significant only in calculating the observable
quantities.

2. Method of calculating the partition function

We perform a step-by-step calculation of partition function (1.26), beginning

with integration over the variables η~k with wave vectors ~k near their maximum

value B0 and ending with integration over η~k with |~k| → 0. We use the method
which has been proposed in [1].

Let us introduce Brillouine zone

B1 =

{

~k = (kx, ky, kz)|ki = − π

c1

+
2π

c1

ni

N1i

; ni = 1, 2, . . . , N1i, i = x, y, z

}

, (2.1)

where c1 = c0s, s > 1, N1xN1yN1z = N1, N1 = N0s
−d. Here N1 is number of sites

of the block lattice, and N1 = N0s
−d. In the same way we define the block lattices

with periods c2 = c0s
2, c3 = c0s

3, . . . , cn = c0s
n, which contain N2 = N0s

−2d,
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N3 = N0s
−3d,. . . , Nn = N0s

−3n sites, respectively. The parameter s controls the
growth of the block structures with periodicity volumes

Λn =
{

~l = (lx, ly, lz)|li = cn · ni; ni = 1, 2, . . . , Nni, i = x, y, z
}

, (2.2)

where Nn = NnxNnyNnz.

Accordingly to [2] we select in (1.26) the variables η~k with ~k ∈ B0 \ B1 and
average the quantity Φ(k) over such values of wave vectors. Then

β
∑

~k∈B0

Φ(k)η~kη−~k = β
∑

~k∈B1

Φ(k)η~kη−~k + βΦ(B0, B1)
∑

~k∈B0\B1

η~kη−~k .

Here Φ(B0, B1) denotes the mean value of the potential Φ(k) in the region ~k ∈ B0\B1.
For the mean-arithmetical averaging we have

Φ(B0, B1) =
1

2
[Φ(B0) + Φ(B1)] . (2.3)

After such transformations the partition function takes the form

Z = Z0j0e
ã0N0

∫

(dρ)N1 exp



−1

2

∑

~k∈B1

(d(k) − d(B0B1)) ρ~kρ−~k−





×
∫

(dν)N1 exp



−2πi
∑

~k∈B1

ν~kρ~k − a1

√

N0ρ0





∫

(dη)N0

× e
2πi

∑

~k∈B1
ν~k

η~k exp









− 1

2

∑

~k∈B0

d(B0, B1)η~kη−~k

− − 1

3!

a3√
N0

∑

~k1,...,~k3
~ki∈B0

η~k1
. . . η~k3

δ~k1+···+~k3
− 1

4!

a4

N0

∑

~k1,...,~k4
~ki∈B0

η~k1
. . . η~k4

δ~k1+···+~k4









. (2.4)

Here
d(B0, B1) = ã2 − βΦ(B0, B1) = d(0) + q, (2.5)

where

q = q̄βΦ(0), q̄ = b2π2

c2
s−2
0 (1 + s−2). (2.6)

The set of N1 variables ν~k (ν0, ν
c
~k
, νs

~k
) determines intermediate integration which

allows one to perform the integration in (2.4) over N0 variables η~k. To this end, we
transit to the site variables

η~l =
1√
N0

∑

~k∈B0

η~ke
i~k~l

483



M.P.Kozlovskii

with transition Jacobian equal to j−1
0 , which cancels the corresponding factor in

(2.4), and introduce the quantity

ν̄~l =
1√
N0

∑

~k∈B0

ν̄~ke
−i~k~l, (2.7)

where

ν̄~k =

{

ν~k,
~k ∈ B1 ,

0, ~k ∈ B0 \ B1 .

The result of integration of (2.4) can be written as

Z = Z0e
ã0N0

∫

(dρ)N1 exp







−1

2

∑

~k∈B1

[d(k) − d(B0, B1)] ρ~kρ−~k







× e−a1
√

N0ρ0

∫

(dν)N1e
−2πi

∑

~k∈B1
ν~k

ρ~k

∏

~l∈Λ0

J(ν̄~l) , (2.8)

where J(ν̄~l) is given by

J(ν̄~l) =

∫ ∞

−∞
dη~le

2πiν̄~l
η~l exp

[

−1

2
d(B0, B1)η

2
~l
− a3

3!
η3
~l
− a4

4!
η4
~l

]

. (2.9)

Hereinafter we shall use approximate expressions (1.25) for the coefficients an.
For the subsequent calculations it is convenient to perform in (2.9) the change

of variables [11]

η~l =

(

24

a4

)1/4

x.

Then we obtain for the J(ν~l)

J(ν̄~l) =

(

24

a4

)1/4

T (ν̄~l), (2.10)

where

T (ν̄~l) =

∫ −∞

∞
dxe2πiν̄~l

x(24/a4)1/4

e−h2x2−h3x3−x4

(2.11)

with

h2 =
√

6
d(B0, B1)√

a4

; h3 = h30
a3

(a4)3/4
, h30 =

(24)3/4

6
. (2.12)

Now reexpress the quantity T (ν̄~l) into the form

Ts(ν̄~l) = exp

(

−
4

∑

n=0

Sn

n!
ν̄n
~l

)

. (2.13)
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The coefficients Sn may be calculated in much the same way as the coefficients an

from (1.20). We have a system of equations

∂nT (ν̄~l)

∂ν̄~l

∣

∣

∣

∣

∣

ν̄~l
=0

=
∂nTs(ν̄~l)

∂ν̄n
~l

∣

∣

∣

∣

∣

ν̄~l=0

. (2.14)

The left side of the equation (2.14) has the form

∂nT (ν̄~l)

∂ν̄~l

= (2πi)n

(

24

a4

)n/4

Kn(h2, h3), (2.15)

where

Kn(h2, h3) =

∫

dxxne−h2x2−h3x3−x4

dx. (2.16)

The derivatives of the right side of (2.14) are

∂Ts(ν̄~l)

∂ν̄~l

= e−S0(−S1),

∂2Ts(ν̄~l)

∂ν̄2
~l

= e−S0(−S2 + S2
1),

∂3Ts(ν̄~l)

∂ν̄3
~l

= e−S0(−S3 + 3S1S2 − S3
1),

∂4Ts(ν̄~l)

∂ν̄4
~l

= e−S0(−S4 + 4S1S3 + 3S2
2 − 6S2

1S2 + S4
1), (2.17)

where

e−S0 = K0(h2, h3). (2.18)

The coefficients Sn from (2.13) may be obtained from the relations

S1 = −2πi

(

24

a4

)1/4

eS0K1(h2, h3),

S2 = S2
1 + (2π)2

(

24

a4

)1/2

eS0K2(h2, h3),

S3 = 3S1S2 − S3
1 + (2π)3i

(

24

a4

)3/4

eS0K3(h2, h3),

S4 = 4S1S3 + 3S2
2 − 6S2

1S2 + S4
1 − (2π)4 24

a4

eS0K4(h2, h3). (2.19)

Approximate explicit expressions for the coefficients Sn may be obtained assuming
small values for the quantities h2, h3, which are arguments of the functions Kn(h2, h3)
from (2.16). That h2 is small in the critical region has been proven in [2,13], while
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h3 is proportional to the field and tends to zero near the critical point. Taking this
into account we obtain an approximate expression for (2.18)

e−S0 =
π
√

2

2Γ(3/4)

(

1 − γh2 +
3

8
γh2

3

)

, (2.20)

where γ =
(

Γ
(

3
4

))2
/π

√
2 ≈ 0.337989. Here and henceforth we do not consider the

terms which are proportional to hn
2 with n > 2, and to hn

3 with l > 3, since they are
inessential near the critical point.

In the approximation when h2 and h3 are small we have:

S1 = 2πi

(

24

a4

)1/4
1

4
h3(1 + γh2),

S2 = (2π)2γ

(

24

a4

)1/2 (

1 +

(

γ − 1

4γ

)

h2

)

,

S3 = −(2π)3i

(

24

a4

)3/4
3(1 − 4γ2)

16
h2h3,

S4 = (2π)4 6

a4

(

12γ2 − 1
)

(1 + γ2h2 + γ3h
2
3), (2.21)

where

γ2 = 4γ
6γ2 − 1

12γ2 − 1
≈ −1.1468, γ3 = − 3γ

12γ2 − 1
= −2.7342.

To simplify the calculation we will use the linear approximation of (2.21) neglecting
the terms which are proportional to h2

3 and h2h3.
After integration (2.8) over the variables η~k the partition function takes the form

Z = Z0Q0(dρ)N1 exp







−1

2

∑

~k∈B1

[d(k) − d(B0, B1)]ρ~kρ−~k − a1

√

N0ρ0







×
∫

(dν)N1 exp











− 2πi
∑

~k∈B1

ν~kρ~k − S1

√

N0

∑

~k∈B1

ν~kδ~k

−1

2
S2

∑

~k∈B1

ν~kν−~k −
1

4!
S4

1

N0

∑

~k1...~k4
ki∈B1

ν~k1
. . . ν~k4

δ~k1+···+~k4











, (2.22)

where use is made of (2.7) and the definitions

Q0 =
[

eã0Q(d)
]N0

, Q(d) =

(

24

a4

)1/4

K0(h2, h3). (2.23)

An approximate expression for Q(d) is

Q(d) =

(

24

a4

)1/4

γ1 (1 − γh2) , (2.24)
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where

γ1 =
π
√

2

2Γ(3/4)
≈ 1.8128. (2.25)

The final step of the calculation consists in integrating over the N1 variables ν~k.
To perform this we transit to the site variables

ν~m =
1√
N1

∑

~k∈B1

νke
−i~k~m

in (2.22) and integrate. The result is

Z = Z0Q0J1

∫

(dρ)N1exp







−1

2

∑

~k∈B1

[d(k) − d(B0, B1)] ρ~kρ−~k − a1

√

N0ρ0







∏

~m∈Λ1

Lm(ρ),

(2.26)
where

Lm(ρ) =

∫

dν~m exp

(

−2πiν~mρ~m − 2πiP1ν~m − (2π)2

2
P2ν

2
m − (2π)4

4!
P4ν

4
~m

)

. (2.27)

For the coefficients Pn we have the following expressions

P1 = sd/2 1

4

(

24

a4

)1/4

h3, P2 = γ

(

24

a4

)1/2

(1 + t2h2) ,

P4 = s−d 6

a4

(12γ2 − 1)(1 + γ2h2), (2.28)

where

t2 = γ − 1

4γ
= −0.4017.

The change of variables

ν~m =
1

2π

(

2

P2

)1/2

x.

in (2.28) allows one to obtain the expressions for Lm(ρ)

Lm(ρ) =
1

2π

(

2

P2

)1/2

R̃m(ρ), (2.29)

where

R̃m(ρ) =

∫ ∞

−∞
dx exp

[

−ixρm

(

2

P2

)1/2

− iGhx − x2 − Gx4

]

(2.30)

and

G =
1

6

P4

P 2
2

; Gh = P1

(

2

P2

)1/2

. (2.31)
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Making use of (2.28), one has

G = s−dG0(1 + G2h2), Gh = sd/2 1

4

(

2

γ

)1/2

h3 , (2.32)

where

G0 =
12γ2 − 1

24γ2
≈ 0.1353; G2 = γ2 − 2γ +

1

2γ
≈ −0.3435.

We put (2.29) into the form

Lm(ρ) = exp

(

−
4

∑

n=0

1

n!
a(1)

n ρn
~m

)

, (2.33)

where

a
(1)
1 = i · ea

(1)
0

(

2

P2

)1/2

R1, a
(1)
2 = (a

(1)
1 )2 + ea

(1)
0

2

P2

R2,

a
(1)
3 = 3a

(1)
1 a

(1)
2 − (a

(1)
1 )3 − iea

(1)
0

(

2

P2

)3/2

R3,

a
(1)
4 = 4a

(1)
1 a

(1)
3 + 3(a

(1)
2 )2 − 6(a

(1)
1 )2a

(1)
2 − (a

(1)
1 )4 −

(

2

P2

)2

ea
(1)
0 R4 . (2.34)

Here

R2l+1 = −i

(

2

P2

)(2l+1)/2

(−1)(2l+1)/2

∫ ∞

−∞
dxx2l+1 sin(Gh · x)e−x2−Gx4

R2l =

(

2

P2

)l

(−1)l

∫ ∞

−∞
dxx2l cos(Gh · x)e−x2−Gx4

. (2.35)

Similarly to our calculation of the approximate expressions for the coefficients an

(see (1.21)–(1.25)), we can write approximate expressions for a
(1)
n . The following

correspondence should be noted:

a′ → Gh, g → G, µ2 →
(

2

P2

)1/2

.

Moreover, the difference consists in the change of sign near the cross term x · ρm in
the expression (2.30) and near the corresponding term η~l ν~l in (1.17).

Approximate expressions for Rn are:

R1 = − i

2
Ghe

−G2
h/4

√
π

(

1 − 15

4
G

)

, R2 =
1

2
e−G2

h/4
√

π

(

1 − 15

4
G

)

,

R3 =
3i

4
Ghe

−G2
h/4

√
π

(

1 − 35

4
G

)

, R4 =
3

4
e−G2

h/4
√

π

(

1 − 35

4
G

)

.
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Inserting the obtained expressions into (2.34), we find approximate formulae for the

coefficients a
(1)
n :

e−a
(1)
0 = e−G2

h/4
√

π

(

1 − 3

4
G

)

, a
(1)
1 =

1

2
Gh

(

2

P2

)1/2

(1 − 3G),

a
(1)
2 =

1

P2

(1 − 3G), a
(1)
3 =

3

2
GGh

(

2

P2

)3/2

,

a
(1)
4 = 6G

(

1

P2

)2 (

1 − 3

4
G2

h

)

. (2.36)

Here the quantities G and Gh are defined in (2.32) while P2 is given in (2.28).
Making use of (2.29) and (2.33) one may write the following expression for the
partition function (2.26):

Z = Z0Q0(Q(P ))N1J1

∫

(dρ)N1 exp















− 1

2

∑

~k∈B1

d1(k)ρ~kρ−~k − ã
(1)
1

√

N1ρ0

− 1

3!

a
(1)
3√
N1

∑

~k1,...,~k3
ki∈B1

ρ~k1
. . . ρ~k3

δ~k1+···+~k3
− 1

4!

a
(1)
4

N1

∑

~k1,...,~k4
~ki∈B1

ρ~k1
. . . ρ~k4

δ~k1+···+~k4















, (2.37)

where

Q(P ) =
1

2π

(

2

P2

)1/2

e−a
(1)
0 . (2.38)

The coefficients d1(k) and ã
(1)
1 have the form

d1(k) = ã
(1)
2 − βΦ(k);

ã
(1)
2 = a

(1)
2 + βΦ(B0, B1);

ã
(1)
1 = a

(1)
1 + sd/2a1. (2.39)

Comparing (2.37) with (1.26) we can see that the functional form of the partition
function did not change. The number of integration variables decreases (from N0 to
N1 = N0s

−d) and the coefficients d(k) and an change their values.

3. Recurrence relations

Now we shall write an explicit form of the recurrence relations (2.36) express-

ing the coefficients a
(1)
n in the term of their initial values an from (1.21) or from

approximate results (1.25). Making use of (2.32) and (2.28) we obtain from (2.36)

e−a
(1)
0 = e−G2

h/4
√

π

(

1 − 3

4
s−dG0

)

(1 − t1h2), (3.1)
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where

t1 = −3

4
s−d G0G2

1 − 3
4
s−dG0

and

a
(1)
1 = sd/2α01

(a4

24

)1/4

h3(1 + α1h2),

a
(1)
2 = f00 (a4)

1/2 (1 + α2h2),

a
(1)
3 = s−d/2f01a3(1 + α3h2),

a
(1)
4 = s−df01a4(1 + α4h2). (3.2)

Here we denote:

α01 = (1 − 3s−dG0)/4γ, f00 = (1 − 3s−dG0)/γ
√

24; f01 = G0/4γ
2 ≈ 0.2960;

α1 =−3s−d G0G2

1 − 3s−dG0

− 1

2
t2; α2 = −3s−d G0G2

1 − 3s−dG0

−t2;

α3 = G2 −
3

2
t2 ≈ 0.2590; α4 = G2 − 2t2 ≈ 0.4599. (3.3)

Taking into account (2.12), we obtain from (3.2)

a
(1)
1 = sd/2f00

[

a3(a4)
−1/2 +

√
6α1d(B0, B1)a3/a4

]

,

a
(1)
2 = f00

[

a
1/2
4 +

√
6α2d(B0, B1)

]

,

a
(1)
3 = s−d/2f01

[

a3 +
√

6α3d(B0, B1)a3/a
−1/2
4

]

,

a
(1)
4 = s−df01

[

a4 +
√

6α4d(B0, B1)a
1/2
4

]

. (3.4)

Let us perform in (2.37) the change of variables

ρ~k = sρ′
~k
. (3.5)

As a result, the ~k-dependent part of the Fourier transform of the interaction potential
in (2.37) will change from k2 to (sk)2. Taking into account that ~k ∈ B1, we can see

that s~k belong to the set B0, as it was for the initial expression (1.26). Therefore
now we may compare other coefficients before and after the integration.
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The change of variables (3.5) leads (2.37) to the form

Z = Z0Q0(Q(P ))N1J1s
N1

∫

(dρ)N1 exp















− w1

√

N1ρ0

− 1

2

∑

~k∈B1

(r1 + 2βΦ(0)b2(sk)2)ρ~kρ−~k −
1

3!

v1√
N1

∑

~k1,...,~k3
~ki∈B1

ρ~k1
. . .

× ρ~k3
δ~k1+···+~k3

− 1

4!

u1

N1

∑

~k1,...,~k4
~ki∈B1

ρ~k1
. . . ρ~k4

δ~k1+···+~k4















, (3.6)

where the coefficients are given by

w1 = s · ã(1)
1 = s[a

(1)
1 + sd/2a1],

r1 = s2d1(0) = s2[ã
(1)
2 − βΦ(0)],

v1 = s3a
(1)
3 ; u1 = s4a

(1)
4 .

Taking into account (3.4), we obtain an explicit form of the recurrence relations

w1 = s(d+2)/2
[

w + f00vu−1/2 − f00α1

√
6(r + q)v/u

]

,

r1 = s2
[

r − (r + q) + f00u
1/2 + f00α2

√
6(r + q)

]

,

v1 = s(6−d)/2f01

[

v + α3

√
6(r + q)vu−1/2

]

,

u1 = s4−df01

[

u + α4

√
6(r + q)u1/2

]

, (3.7)

where
w = a1, r = ã2 − βΦ(0), v = a3, u = a4.

The quantity q is given by

q = 2βΦ(0)b2〈k2〉B0,B1 ,

while a mean value of k2 over interval ~k ∈ [B1, B0] is equal to

〈k2〉B0,B1 = B2
0

1

2
(1 + s−2).

Now we find the fixed point of the RR (3.7) from the conditions

w1 = w = w∗, r1 = r = r∗,

v1 = v = v∗, u1 = u = u∗. (3.8)
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The last equation of (3.7) gives

(sf01)
−1 = 1 + α4h

∗
2,

where h∗
2 =

√
6(r∗ + q)(u∗)−1/2. Since f01 < 1, there always exists such s = s∗,

s∗ = f−1
01 =

96γ4

12γ2 − 1
, (3.9)

for which h∗
2 vanishes. As s is near s∗, the quantity h∗

2 is small2. Calculating the
partition function under

s = s∗ = 3.3783,

we achieve an essential simplification since we need only a few terms in the series
expansion on the powers of h2. By virtue of third equation (3.7) we find for (3.8)

v∗(1 − s3/2f01) = 0. (3.10)

If s = s∗, we have f01 = (s∗)−1 and, therefore, equation (3.10) can hold only if

v∗ = 0.

The quantity h∗
3 = h30v

∗/(u∗)3/2 is proportional to v∗. Hence, at the fixed point with
s = s∗ we have

h∗
2 = 0, h∗

3 = 0. (3.11)

Using the second equation (3.7) we obtain

(u∗)1/2 = q · f−1
00 (1 − s−2) = βΦ(0)

q̄

f00

(1 − s−2),

where the quantity q̄ is defined in (2.6). First equation (3.7) leads to the condition

w∗ = 0.

Therefore, we have the following coordinates of the fixed point of RR (3.7):

w∗ = 0, r∗ = −q, v∗ = 0, (u∗)1/2 = qf−1
00 (1 − s∗−2). (3.12)

Here q = βΦ(0) · q̄ and q̄ = π2(b/c)2s−2
0 (1 + s−2).

Now we return to the expression (2.37). In much the same way as (1.26) it may
be integrated over the variables ρ~k with indices from the domain

~k ∈ B1/B2, (3.13)

2In the case s = 3 we have

h∗ = 0.1124.
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where B2 is given by

B2 =

{

~k = (kx, ky, kz)| = − π

c2

+
2π

c2

ni

N2i

; ni = 1, 2, . . . , N2i, i = x, y, z

}

.

Here N2xN2yN2z = N2, N2 = N1s
−d. The calculation is analogous to the equations

(2.4)-(2.39). Now the coefficients an have to be replaced by a
(1)
n , for instance:

a1 → ã
(1)
1 = a

(1)
1 + sd/2a1,

a2 − βΦ0 → ã2 = ã
(1)
2 + βΦ(B0, B1),

a3 → a
(1)
3 ; a4 → a

(1)
4 .

After performing (n + 1)-th step of integration (1.26) we obtain

Z = Z0Q0Q1 . . . Qn[Q(P (n))]Nn+1Jn+1

∫

(dρ)Nn+1 exp















− ã
(n+1)
1

√

Nn+1ρ0

− 1

2

∑

~k∈Bn+1

dn+1(k)ρ~kρ−~k −
1

3!

a
(n+1)
3√
Nn+1

∑

~k1,...,~k3
~ki∈Bn+1

ρ~k1
. . . ρ~k3

δρ~k1
+···+ρ~k3

− 1

4!

a
(n+1)
4

Nn+1

∑

~k1,...,~k4
~ki∈Bn+1

ρ~k1
. . . ρ~k4

δρ~k1
+···+ρ~k4















. (3.14)

The sums in (3.14) are taken over ~k ∈ Bn+1, where

Bn+1 =

{

~k = (kx, ky, kz)|ki = − π

cn+1

+
2π

cn+1

ni

Nn+1,i

; ni = 1, 2, . . . , Nn+1,i

}

,

with cn+1 = csn+1, Nn+1,xNn+1,yNn+1,z = Nn+1, and Nn+1 = N0s
−d(n+1). The partial

partition functions Qn are of the form

Q0 = [eã0Q(d)]N0 , Qn = [Q(P n−1)Q(dn)]Nn , (3.15)

where

Q(P (n−1)) = (2πP
(n−1)
2 )−1/2 exp

[

−(G
(n−1)
h )2/4

]

(

1 − 3

4
G(n−1)(1 − G

(n−1)2
h )

)

,

Q(dn) =

(

24

a
(n)
4

)1/4

γ1

[

1 − γh
(n)
2 +

3

8
γ(h

(n)
3 )2

]

. (3.16)
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Here

h
(n)
2 =

√
6dn(Bn, Bn+1)(a

(n)
4 )−1/2; G(n−1) = s−dG0(1 + G2h

(n−1)
2 );

h
(n)
3 = h30a

(n)
3 (a

(n)
4 )−3/4; G

(n−1)
h = sd/2 1

4
(
2

γ
)1/2h

(n−1)
3 ;

P
(n−1)
2 =

(

24

a
(n−1)
4

)1/2

γ(1 + t2h
(n−1)
2 ). (3.17)

The quantity dn+1(k) has the following form

dn+1(k) = ã
(n+1)
2 − βΦ(k),

where

ã
(n+1)
2 = a

(n+1)
2 + βΦ(Bn, Bn+1), ã

(n+1)
1 = a

(n+1)
1 + sd/2ã

(n)
1 .

The coefficients a
(n+1)
n are given by

a
(n+1)
1 = sd/2α01

(

a
(n)
4

24

)1/4

h
(n)
3 (1 + α1h

(n)
2 ),

a
(n+1)
2 = f00

(

a
(n)
4

)1/2

(1 + α2h
(n)
2 ),

a
(n+1)
3 = s−d/2f01a

(n)
3 (1 + α3h

(n)
2 ),

a
(n+1)
4 = s−df01a

(n)
4 (1 + α4h

(n)
2 ). (3.18)

Using s = s∗, we obtain:

α01 = 0.7319, f00 = 0.5976;

α1 = 0.2045, α2 = 0.4053.

The quantity dn(Bn, Bn+1) has the form

dn(Bn, Bn+1) = dn(0) + qs−2n.

Now we write RR for the coefficients of (n + 1)-th and n-th block structures.
Let us perform in (3.14) the scaling transformation of type (3.5) and introduce the
denotation:

wn+1 = sn+1ã
(n+1)
1 = sn+1

[

a
(n+1)
1 + sd/2a

(n)
1

]

,

rn+1 = s2(n+1)dn+1(0) = s2(n+1)
[

ã
(n+1)
2 − βΦ(0)

]

,

vn+1 = s3(n+1)a
(n+1)
3 , un+1 = s4(n+1)a

(n+1)
4 .
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Then we obtain the following recurrence relations

wn+1 = s(d+2)/2
[

wn + f00vnu
−1/2
n − f00α1

√
6(rn + q)vn/un

]

,

rn+1 = s2
[

q + f00u
1/2
n + f00α2

√
6(rn + q)

]

,

vn+1 = s(6−d)/2f01

[

vn + α3

√
6(rn + q)vn/u

−1/2
n

]

,

un+1 = s4−df01

[

un + α4

√
6(rn + q)u1/2

n

]

, (3.19)

where the quantities f00 and f01 are given in (3.3),

wn = snã
(n)
1 , rn = s2ndn(0),

vn = s3na
(n)
3 , un = s4na

(n)
4 . (3.20)

In the case of absence of the external field (h = 0) RR (3.19) contain only second
and fourth equations. This case has been investigated by us in detail in [2,13].

4. Solution to the recurrence relation near critical point

Comparing RR (3.19) with (3.7), we note that they both have the same fixed
point (3.12). Next we put s = s∗, where s∗ is given by (3.9). It is convenient to write
(3.19) in a matrix form









wn+1 − w∗

rn+1 − r∗

vn+1 − v∗

un+1 − u∗









= R









wn − w∗

rn − r∗

vn − v∗

un − u∗









. (4.1)

The matrix R has the following entities, Rij,

R11 = s
(d+2)

2 , R12 = 0, R13 = s(d+2)/2f00(u
∗)−

1
2 , R14 = 0;

R21 = 0; R22 = s2f00α2

√
6, R23 = 0, R24 = s2f00

1

2
(u∗)−

1
2 ;

R31 = 0, R32 = 0; R33 = sd/2f01, R34 = 0;

R41 = 0; R42 = sf01α4

√
6(u∗)

1
2 ; R43 = 0; R44 = sf01. (4.2)

The matrix R possesses four different real eigenvalues:

E1 = R11 = s(d+2)/2; E3 = R33 = sd/2f01 = s(d−2)/2,

E2,4 =
1

2

{

R22 + R44 ±
[

(R22 − R44)
2 + 4R24R42

]1/2
}

. (4.3)

We note that eigenvalues E1 and E3 are connected with the presence of the
external field. Both these eigenvalues are greater than unity3, since s > 1. The
quantities E2 and E4 are real, positive, and inequalities E2 > 1, E4 < 1 hold.

3In paper [14] it has been assumed that only one eigenvalue connected with the appearance of
the field is greater than unity.
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For s = s∗ we obtain:

E1 = 20.9768, E3 = 1.8380,

E2 = 7.3740, E4 = 0.3974. (4.4)

In the case h = 0 recurrence relations (3.19) simplify so that E1 and E3 vanish
and a saddle fixed point appears. We obtain the following value for the critical
exponent of the correlation length

ν = 0.609.

It is slightly lower than the result of numerical estimate of this exponent for the
Ising model, νc = 0.630 (see, e.g., [6,15]). The difference in the values of ν and νc

is considered to be rather our limitation of the ρ4-model than the approximation
during its calculation. Indeed, the Ising model may be really described by the model
ρ2m with m → ∞ [2]. To achieve a real correspondence between ν and νc we have
to use at least the model ρ6.

Eigenvectors Wik of the matrix R are determined by the system of equations

∑

j

RijWjk = EkWik.

Using (4.2) gives

T = [Wik] =









W11 0 W33T13 0
0 W22 0 W44T24

0 0 W33 0
0 W22T42 0 W44









, (4.5)

where

T13 =
R13

E3 − R11

; T24 =
E4 − R44

R42

=
R24

E4 − R22

;

T42 =
E2 − R22

R24

=
R42

E2 − R44

. (4.6)

It is known from the matrix theory [16], that the nonsymmetric matrix R with
different eigenvalues can be expressed in the form

R = TΛT−1, (4.7)

where the raws of the matrix T are eigenvectors of the matrix R, T−1 is matrix
inverse to T , so that

T−1 · T = I, (4.8)

where I is a unit matrix, and Λ is diagonal matrix with eigenvalues of the R on the
main diagonal.
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The n-th power of the matrix R is given by

Rn = TΛnT−1, (4.9)

where the matrix Λn is also diagonal with the n-th powers of the eigenvalues of R
on the main diagonal. Making use of (4.7)–(4.9) allows us to rewrite (4.1) in the
form

~xn = Rn~x0, (4.10)

where the raw xn has the form

xn =









wn − w∗

rn − r∗

vn − v∗

un − u∗









. (4.11)

To determine ~x0 we have put n = 0 in (4.11) . Taking into account (4.9) and (4.10)
yields

~xn = TΛnT−1~x0. (4.12)

The latter expression allows us to obtain an expression for coefficients wn, rn, vn and
un (as well as a

(n+1)
n and dn) from (3.20) in terms of the initial values a1, d(0), a3 and

a4 given by (1.26). To this end we have obtained an inverse matrix T−1. It is built
with eigenvectors of the matrix transposed to the matrix R which are determined
by the equations

∑

i

VkiRij = EkVkj. (4.13)

Therefore we obtain

T−1 = [Vkj] =









V11 0 −V11T13 0
0 V22 0 −V22T24

0 0 V33 0
0 −V44T42 0 V44









, (4.14)

where the quantities Tij are the same as in (4.5). The normalization conditions
∑

j

VkjWjl = δkl (4.15)

lead to

V1 = V11W11 = 1, V2 = V22W22 =

(

1 +
(E2 − R22)

2

R24R42

)−1

= D

V3 = V33W33 = 1, V4 = V44W44 = D. (4.16)

Now, using (4.12) we find an explicit form of the vector ~xn. Noting that

T−1~x0 =









V11(w0 − T13v0)
V22[r0 − r∗ − T24(u0 − u∗)]
V33v0

V44[u0 − u∗ − T42(r0 − r∗)]








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and performing other calculations from (4.12) allows us to find

wn = En
1 (w0 − T13v0) + T13E

n
3 v0,

rn − r∗ = V2(1(T )En
2 + C2(T )T24E

n
4 ),

vn = En
3 v0,

un − u∗ = V2(C1(T )T42E
n
2 + C2(T )En

4 ), (4.17)

where the denotations

c1(T ) = r0 − r∗ − T24(u0 − u∗),

c2(T ) = u0 − u∗ − T42(r0 − r∗) (4.18)

have been used. The quantity V2 is given by (4.16). It is easy to verify that in the
case n = 0 equations (4.17) hold identically.

Figure 1. The dependence of the βcΦ(0)/6 on the ratio of the range of interaction
b to the lattice constant c under s = 2 and Φ̄ = 0.092.

When h = 0, the system of equations (4.17) reduces to two equations (wn =
vn = 0). Since E4 < 1, the En

4 rapidly decreases as n grows. The values of rn and un

will tend to their fixed values under the condition

r0 − r∗ − T24(u0 − u∗) = 0,

which determines the temperature Tc of the phase transition. An explicit form of
this equation is given by

ã2 − βcΦ(0) + q̄βcΦ(0) +
R44 − E4

βcΦ(0)R
(0)
42

√
ϕ0

(a4 − ϕ0(βcΦ(0))2) = 0, (4.19)
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where

ã2 = a2 + βΦ(0)Φ̄, q̄ = π2(b/c)2s−2
0 (1 + s−2),

ϕ0 = q̄2f−2
00 (1 − s∗−2)2; f00 =

1 − 3s−dG0

γ
√

24
,

G0 = (12γ2 − 1)/24γ2. (4.20)

Therefore we obtain an equation for the temperature of phase transition:

[βcΦ(0)]2

(

1 − q̄ +
√

ϕ0
R44 − E4

R
(0)
42

− Φ̄0

)

− a2βcΦ(0) − a4
R44 − E4

R
(0)
42

√
ϕ0

= 0.

Figure 1 shows the dependence of inverse temperature βcΦ(0) on the parameter
b/c. For convenience a scaling factor has been used since Φ(0) = 2dJ , where J
corresponds to the constant of nearest-neighbor interaction. For the Ising model
with nearest-neighbor interaction it has been obtained [17,18] that

βcJ = 0.2217. (4.21)

This value can be recovered by means of direct calculations with some set of pa-
rameters Φ̄, b/c, and s0. Figure 2 shows the dependence of the βcΦ(0)/6 on the
parameter Φ̄.

Figure 2. The dependence of the inverse temperature βcΦ(0)/6 on the parameter
Φ̄ (s0 = 2, b/c = 0.3).

It is easy to see that the value (4.21) is approached at b/c ≈ 0.3. Figure 3 gives
the dependence βcΦ(0)/6 versus s0 at b/c = 0.3 and Φ̄ = 0.092.

Our calculation of the values Tc was not intended to obtain an “exact” tempera-
ture of phase transition. Rather, it was necessary for determining the coordinates of
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Figure 3. The dependence of inverse temperature of phase transition on the
parameter s0.

critical point (T = Tc, h = 0), near which we wish to investigate the thermodynamic
functions of the system with the appearance of the external field.

Now we introduce the denotations

V2c1(T ) = ck1τ, V2c2(T ) = ck2 ,

where τ is relative temperature,

τ = (T − Tc)/Tc,

ck1 = V2

[

1 − f0 − T
(0)
24 u0ϕ

−1/2
0 (βcΦ(0))−2 − T

(0)
24 ϕ

1/2
0

]

ck2 = V2

{

u0 − ϕ(βΦ(0))2 − T
(0)
42 ϕ

1/2
0 βΦ(0)[r0 + f0βΦ(0)]

}

.

Then the solutions to RR (4.17) take the form

wn = −ch1M1(h
′)En

1 − ch2M1(h
′)T

(0)
13

(

ϕ
1/2
0 βΦ(0)

)−1

En
3 ,

rn = r∗ + c
(0)
k1 βΦ(0)τEn

2 + ck2T
(0)
42

(

ϕ
1/2
0 βΦ(0)

)−1

En
4 ,

vn = −ch2M∗
1(h

′)En
3 ,

un = u∗ + c
(0)
k1 τT

(0)
42 ϕ

1/2
0 (βΦ(0))2En

2 + ck2E
n
4 . (4.22)

For brevity, here the denotations

ch1 = s
d/2
0 M20/M2(h

′), M20 = 1 − 3g − 6gT
(0)
13 (ϕ

1/2
0 βΦ(0))−1/M2(h

′),

ch2 = 6gs
d/2
0 /M2

2(h
′), ck1 = c

(0)
k1 βΦ(0) (4.23)

have been introduced.
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5. Conclusions

The paper gives the expression (3.14) for the partition function of the one-
component magnet in the external field near the critical point. Explicit expressions
for the partial partition functions Qn (3.15)–(3.17) are obtained. This allows us to
calculate the free energy and other thermodynamic functions of the system near
critical point by means of the methods of [2,8,9] . They will depend on the tem-
perature and field and the form of these dependences as well as the corresponding
critical exponents will be determined by the recurrence relations (3.19) and their
solutions (4.22) near the fixed point (3.12).

Appendix 1

Let us consider the dependence of the cumulants Mn(βh) from (1.12) on the
value h′ = βh. We rewrite the expression (1.15) for the partition function in the
form:

Z = 2N exp

(

1

2
βΦ0N

)

eNM0

∫

(dη)N0(dω)N0 exp







1

2
β

∑

~k∈B0

[Φ(k) − Φ0]η~kη−~k

+ 2πi
∑

~k∈B0

η~kω~k







exp















− 2πiN
d/2
0 M′

1(h
′)ω0 −

(2π)2

2
M′

2(h
′)

∑

~k∈B0

ω~kω−~k

−(2π)3

3!
N

−1/2
0 M′

3(h
′)i

∑

~k1,...,~k3
~ki∈B0

ω~k1
. . . ω~k3

δ~k1+···+~k3
− (2π)4

4!
N−1

0 M′
4(h

′)

×
∑

~k1,...,~k4
~ki∈B0

ω~k1
. . . ω~k4

δ~k1+···+~k4
− (2π)5

5!
N

−3/2
0 M′

5(h
′)i

∑

~k1,...,~k5
~ki∈B0

ω~k1
. . . ω~k5

δ~k1+···+~k5

− (2π)6

6!
N−2

0 M′
6(h

′)
∑

~k1,...,~k6
~ki∈B0

ω~k1
. . . ω~k6

δ~k1+···+~k6















, (A1.1)

where

M′
1(h

′) = s
d/2
0 M1(h

′), M′
2(h

′) = M2(h
′),

M′
3(h

′) = s
−d/2
0 (−M3(h

′)), M′
4(h

′) = s−d
0 (−M4(h

′)),

M′
5(h

′) = s
−3d/2
0 M5(h

′), M′
6(h

′) = s−2d
0 M6(h

′) (A1.2)

The parameter s0 > 1 determines the form of potential (1.3), which is used in
calculations. To any value of s0 there is a corresponding model system with its own
values of parameters. The curves of dependence of M′

n(h) on the field h are shown
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in the figures 4 to 10 at the value s0 = 2. For brevity the primes near Mn and h are
omitted.

The convergence of the integrals in (A1.1) is determined by the signs of the even
cumulants M2l(h

′). The cumulant M′
2(h

′) is positive for all values of the h′. The
M′

4(h
′) is positive for h ∈ (−0.658; 0.658) and negative for |h| > 0.658. The quantity

M6 is positive everywere except the values |h| ∈ (0.421; 1.575).
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Figure 4. Dependence of the coefficient
M0 on the field h.

Figure 5. Dependence of the first odd
cumulant M′

1 on the field h.
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Figure 6. Dependence of the second
cumulant M2 on the field h.

Figure 7. The cumulant M′
3 versus the

field h.
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Figure 8. Dependence of the fourth cu-
mulant M′

4 on the field h. The cumu-
lant M′

4 is positive for |h| < 0.658.

Figure 9. Dependence of the M′
5 on

the field h.
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Figure 10. Dependence of the M′
6 on

the field h. The value of M′
6 is positive

in the regions |h| < 0.421 and |h| >
1.572.

Appendix 2

Now we obtain the expression for the coefficients an from (1.21) in the second odd
cumulant approximation when equation (1.24) holds for the function ϕ(ν~l). Within
the frame of the “ϕ4”-model we have

Jl(ηl) =

∫ ∞

−∞
eiµ2η~l

ν~l exp
[

−ia′ν~l + ib′ν3
~l

]

e−ν2
l −gν4

l dν~l , (A2.1)
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where the coefficients a′, b, and g are given by (1.18). Our goal is in finding the
coefficients an from (1.21), which we will denote as a′′

n. We recall that the first odd
cumulant approximation corresponds to the condition b′ = 0. Now we perform in
(A2.1) the change of variables

ν~l = x~l −
i

2
a′,

which leads to the cubic term vanishing in the exponent of (A2.1)

Jl(η~l) = exp

(

µ2
a′

2
η~l + E0

) ∫ ∞

−∞
dx~le

iµ2η~l
x~l
−iE1x~l

−E2x2
~l
−gx4

~l , (A2.2)

where

E0 = −1

4
a′2 ≈ −1

2
sd
0M2

1;

E1 = b′a′2 = −2

3
s−d
0 a′3 ≈ −4

3
a′M2

1;

E2 = 1 − 3

4
a′b′ = 1 + M2

1 ≈ M−1
2 . (A2.3)

Then we perform in (A2.2) the change of variables

dx~l = ξdy~l, ξ = M1/2
2

and obtain

Jl(η~l) = ξeE0e
1
2
a′η~l

µ2

∫

dy~le
−y2

~l
−g′y4

~l
−ia′′y~l exp(iµ′

2η~ly~l), (A2.4)

where

g′ = gM2 ≈ g0M4
2; g0 =

1

3
s−d
0 ;

a′′ = E1M1/2
2 = b′(a′)2 ≈ −4

3
s

d/2
0

√
2M3

1;

µ′
2 = µ2ξ =

√
2. (A2.5)

Integrand in (A2.4) coincides with the expression

J
(I)
l (ηl) =

∫ ∞

−∞
e−ν2

l −gν4
l −ia′ν~leiµ2η~l

ν~ldν~l , (A2.6)

which corresponds to the first odd cumulant approximation where the coefficients
g, a′, and µ2 in (A2.6) are replaced by g′, a′′, and µ′

2, respectively. Then equations
(1.25) still hold in the second odd cumulant approximation. We write (A2.4) in the
form

Jl(η~l) = ea′′
0 exp

(

−
4

∑

n=1

a′′
n

n!
ηn
~l

)

. (A2.7)
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Then the expressions for the coefficients a′′
n take the form

ea′′0 = M1/2
2 eE0

√
π

(

1 − 3

4
g′

)

≈
√

π

(

1 − 1

4
s−d
0 −M2

1

(

1

2
sd
0 +

1

2
− s−d

0

)]

;

a′′
1 = −1

2
a′µ2 −

1

2
a′′µ2(1 − 3g′) ≈ −s

d/2
0 M1

[

1 − 1

3
M2

1 +
4

3
s−d
0 M2

1

]

;

a′′
2 = 1 − 3g′ ≈ 1 − s−d

0 + 4s−d
0 M2

1;

a′′
3 = −3

2
(µ′

2)
3a′′g′ ≈ 8

3
s
−d/2
0 M3

1;

a′′
4 = 6g′ ≈ 2s−d

0 − 8s−d
0 M2

1. (A2.8)

Therefore, the calculation of the coefficient an in the second odd cumulant approx-
imation leads to the statement that a′′

3 is proportional to h3 while the first odd
cumulant approximation gives a′

3 ∼ h.
It is easy to see that the third odd cumulant approximation (M1 6= 0, M3 6= 0,

M5 6= 0) leads to such dependences a′′′
1 ∼ h′, a′′′

3 ∼ h′, which are typical for the first
odd cumulant approximation.
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Рекурентні співвідношення тривимірного магнетика

при наявності зовнішнього поля

М.П.Козловський

Iнститут фізики конденсованих систем НАН України,
79011 Львiв, вул. Свєнцiцького, 1

Отримано 29 березня 2004 р.

Запропонований метод розрахунку статистичної суми граткової

моделі магнетика в зовнішньому полі поблизу критичної точки.
Знайдені рекурентні співвідношення та їхній явний розв’язок поблизу

фіксованої точки. Показано, що в границі, коли величину поля спр-
ямувати до нуля, приходимо до результатів, отриманих раніше в

методі колективних змінних у випадку відсутності зовнішнього поля.
Розрахована температура фазового переходу (при h = 0) та

знайдена її залежність від параметрів потенціалу взаємодії.

Ключові слова: ізингоподібна система, колективні змінні, вільна

енергія Ландау, параметр порядку

PACS: 05.50.+q, 64.60.Fr, 75.10.Hk
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