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Here we propose an accurate approach to the description of the electron
liquid model in the electron and plasmon terms. Our ideas in the present
paper are close to the conception of the collective variables which was de-
veloped in the papers of Bohm and Pines. However we use another body
of mathematics in the transition to the expanded space of variable parti-
cles and plasmons realized by the transition operator. It is evident that in
the Random Phase Approximation (RPA), the model which consists of two
interactive subsystems of electrons and plasmons is equivalent to the elec-
tron liquid model with Coulomb interaction.
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1. Introduction

Co-existence of the collective and individual motions is the characteristic feature
of the systems with the collective electrons (the metals, the superconductors, degen-
erate semiconductors) which conditioned the long-range character of the Coulomb
potential. This circumstance is the main basis for the formulation of a simple ap-
proach in the metal theory. This approach is based on the conception of collective
description of interelectron interactions. One of the variants of this approach was
developed in the papers [1–6] (see also [7]; almost all the papers in this field are indi-
cated). Since the plasmons are the well-determined excitations only at small values
of the wave vector q, in these papers there were introduced the collective variables
for the region 0 6 |q| 6 kc where kc has the order of magnitude kF = (3π2N)

1
3 V − 1

3 .
In order to conserve the number of degrees of freedom, subsidiary conditions are put
on the wave function of the system [5]. As a rule in the cited papers the ground state
system was examined. One of the main tasks was to investigate the spectrum of the
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plasmon oscillations. To this end, a series of canonical transformations was used.
As a result, the developed formalism has assumed an approximate character. In our
opinion, the approach of Bohm and Pines was displaced from the metal theory by
a more formal approach of the summation diagram series of the ordinary perturba-
tion theory which was started by the paper of Gell-Mann and Brueckner [8]. This
approach complemented by the local-field conception is considered to be general in
the modern metal theory. The results obtained by this approach are far better than
the results obtained within the framework of the collective description. For example,
let us examine the correlation energy being the characteristic of the electron liquid
model weakly sensitive to the standard approximations. The correlation energy that
was calculated in paper [6] differs from the results of Monte-Carlo method [9] (which
are considered to be standard) as well as from many analitical methods (see for ex-
ample [10–14]) developed within the framework of the ordinary perturbation theory.
Table 1 shows the dependence of correlation energy of the electron liquid model
(in the rydberg per electron) on the non-ideality parameter rs = a−1

0 (3V )
1
3 (4πN)−

1
3

where a0 is the Bohr radius.

Table 1. Correlation energy of the electron liquid model (−103ε(rs)).

rs 1 2 3 4 5 6 10
RPA 157.6 123.6 105.5 93.6 84.95 78.2 61.3
NP 115 94 81 72 65 60
TW 134 95 79 68 61
VS 112 89 75 65 58 52
EZ 122.0 90.4 73.8 63.4 56.0 50.5

STLS 124 92 75 64 56 50 36
IU 117.4 86.9 71.1 61.0 53.8 48.3 35.0
CA 121.1 90.8 74.96 64.7 57.4 51.8 38

[NP] – [6]; [TW] – [11]; [VS] – [12]; [EZ] – [13];

[STLS] – [10]; [IU] – [14]; [CA] – [9].

Evidently, the collective description of interelectron interactions has preference
to the methods of the ordinary perturbation theory, especially in the strong non-
ideality region. It is caused by the fact that in the collective description, the system of
free electrons and non-interaction plasmons is used in the role of zero approximation
rather than the ideal electron system. The conception of collective description has a
further prospective development. The variant which was developed in papers [1–6]
is one of the possible variants. There exists another variant of collective description
which was developed in the papers [15–18]. In this variant, together with introduc-
ing the expanded space of individual and collective coordinates, transformation of
displacements in the statistical operator is used. Thus we take the infinite system
of non-linear integro-differential equations. This makes this method an approximate
one. In the method of displacements and collective variables, the transition to ex-
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panded space is realized strictly by means of the transition function as opposed to
Bohm-Pines approach. Both approaches have much in common. The characteristic
feature of both approaches is the absence of divergent diagrams as opposed to the
standard methods of the perturbation theory.

In the present paper we propose the variant of collective description of interac-
tions in the electron liquid model which differs from Bohm-Pines variant as well as
from the variant of displacements and collective variables. We start with the sec-
ondary quantization representation. Then we transit to expanded space by means of
the transition operator which was first introduced in the paper [19]. The collective
variables are an intermediate element. They are used for introduction of operators of
the creation and destruction of plasmons. Partition function of the model in the elec-
tron and plasmon terms does not have any approximations. The perturbation theory
relatively to the electron-plasmon interaction is built in terms of the n-particles dy-
namic correlation function. The short-range interelectron interactions are taken into
account in the local-field approximation.

2. General relations

Let us consider Hamiltonian of the electron liquid model in the secondary quan-
tization representation on the plane wave base

Ĥ = Ĥ0 + V̂ , Ĥ0 =
∑

k,s

εka
+
k,sak,s ,

V̂ = (2V )−1
∑

q 6=0

Vq

∑

k1,k2

∑

s1,s2

a+
k1+q,s1

a+
k2−q,s2

ak2,s2
ak1,s1

, (1)

where εk = ~
2k2/2m, Vq = 4πe2q−2, V – volume system. The antisymmetric wave

function of the system Ψ depends not only on individual but also on collective
variables due to interaction between electrons. The wave functions of this type were
used in a number of papers (see [20–22]). In the secondary quantization the wave
function can be written as follows: Ψ ≡ Ψ(ak,s|ρ̂q), where ρ̂q =

∑
k,s a+

k+q,sak,s is
Fourier representation of the operator of the electron density. Here ak,s and ρ̂q are
not independent.

Let us transit individual and collective variables to the expanded space by means
of transition operator [19]

Ĵ(ρ, ρ̂) =
∏

Cq

δ (ρq − ρ̂q) =

∫
(dω)




2πi
∑

q∈Cq

ωq (ρq − ρ̂q)




 , (2)

where ωq is a variable, which is conjugated to ρq, (dω)=
∏

Cq
(dωq). The range of

wave vectors Cq includes one-half of all the vectors from the sphere at radius q0, for
example

0 < |q| 6 q0, qz > 0.
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The transition operator is a quantum analogue of the transition function of the
classical statistics [23,24]. Any operator f̂(ρ̂) represented in ρ̂q term has the following
representation in the collective variables:

f̂(ρ̂) =

∫
(dρ)Ĵ(ρ, ρ̂)F̂ (ρ), (dρ) ≡

∏

Cq

dρq. (3)

Relationships

Ĵ(ρ, ρ′)Ĵ(ρ′, ρ̂) = Ĵ(ρ, ρ̂)
∏

Cq

δ(ρ′
q − ρq),

Sp
{

Ĵ(ρ, ρ̂)Ĵ(ρ′, ρ̂)
}

=
∏

Cq

δ(ρq
′ − ρq)SpĴ(ρ, ρ̂) (4)

allow to find the representation of f̂(ρ̂) in the collective variables, namely

F̂ (ρ) =
{

SpĴ(ρ, ρ̂)
}−1

Sp
{

f̂(ρ̂)Ĵ(ρ, ρ̂)
}

. (5)

Similarly to the papers [1–6] the energy operator of the interelectron interections
is divided into long-range and short-range terms and is written in the following form

1

2V

∑

q∈Cq

Vq

(
ρ̂qρ̂−q − N̂

)
+

1

2V

∑

q/∈Cq

Vq

∑

k1,k2

∑

s1,s2

a+
k1+q,s1

a+
k2−q,s2

ak2,s2
ak1,s1

, (6)

where N̂ ≡ ∑
k,s a+

k,sak,s is the operator of the number particles. The second term
in the (6) describes the effective short-range interaction electrons with the potential

Vs(r) =
1

V

∑

q/∈Cq

Vq exp(iqr) =
e2

r

{
1 − 2

π
Si(q0r)

}
, (7)

(Si(x) is a sine integral [25]).
Correspondingly to formula (3) any wave function Ψ(ak|ρ̂) the reprezentation in

the expanded space Ψ(ak|ρ) can be compared,

Ψ(ak|ρ̂) =

∫
(dρ)Ĵ(ρ, ρ̂)Ψ(ak|ρ). (8)

Let us calculate the operation exp(−βĤ) to the wave function Ψ(ak|ρ̂):

exp(−βĤ)Ψ(ak|ρ̂) =

∫
(dρ)(dω) exp



−2πi
∑

q∈Cq

ωqρ̂q





× exp(−βĤω) exp



2πi
∑

q∈Cq

ωqρq



 Ψ(ak|ρ). (9)
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Here β = (kBT )−1 is the inverse temperature,

Ĥω = exp



2πi
∑

q∈Cq

ωqρ̂q



 Ĥ exp



−2πi
∑

q∈Cq

ωqρ̂q





= Ĥ − 2πi
∑

q∈Cq

ωq

[
Ĥ0, ρ̂q

]

−
+

(2πi)2

2!

∑

q1,q2∈Cq

ωq1
ωq2

[[
Ĥ0, ρ̂q1

]

−
, ρ̂q2

]

−

.(10)

Here is the explicit form of the commutators:

[
Ĥ0, ρ̂q

]

−
= εqρ̂q +

~
2

m
f̂q; f̂q ≡

∑

k,s

(k,q)a+
k+q,sak,s ;

1

2

[[
Ĥ0, ρ̂q1

]

−
, ρ̂q2

]

−

= −N̂εq1
δq1+q2,0 +

~
2

2m
(q1,q2)ρ̂q1+q2

. (11)

Let us apply the identity
{

2πiωq − ∂

∂ρq

}
exp(2πi

∑

q∈Cq

ωqρq) = 0 (12)

and integrating in parts over the variables ρq let us bring the equality (9) to the
following form:

exp(−βĤ)Ψ(ak|ρ̂) =

∫
(dρ)Ĵ(ρ, ρ̂) exp

(
−βĤ1(ak|ρ)

)
Ψ(ak|ρ),

Ĥ1(ak|ρ) = Ĥ +
∑

q∈Cq

(εqρ̂q +
~

2

m
f̂q)

∂

∂ρq

− N̂
∑

q∈Cq

εq

∂2

∂ρq∂ρ−q

+
~

2

2m

∑

q1,q2∈Cq

(q1,q2)ρ̂q1+q2

∂2

∂ρq1
∂ρq2

. (13)

Here Ĥ was defined by formula (1). According to (3), the substitution ρ̂q → ρq in

the operator Ĥ1(ak|ρ) can be realized. Therefore the partition function of the model
in the grand canonical ensemble has the following form

Z = Sp exp
{
−β (Ĥ − µN̂)

}
= Sp

∫
(dρ)Ĵ(ρ, ρ̂) exp

{
−β (Ĥ(a|ρ) − µN̂)

}
, (14)

where the µ is the chemical potential variable, N̂ is the operator of the complete
number of particles. The operator

Ĥ(a|ρ) = Ĥs +
∑

q∈Cq

{
(εqρq +

~
2

m
f̂q)

∂

∂ρq

− N̂εq

∂2

∂ρq∂ρ−q

+ (2V )−1Vq[ρqρ−q − N̂ ]

}

+
~

2

2m

∑

q1,q2∈Cq

(q1,q2)ρq1+q2

∂2

∂ρq1
∂ρq2

(15)
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is Hamiltonian of the system in the expanded space of individual and collective
variables, ak and ρq are independent. The transition operator regulates the correla-
tion between variables and provides the conservation of the number of the degree of
freedom. The operator

Ĥs = Ĥ0 + (2V )−1
∑

q/∈Cq

Vq

∑

k1,k2

∑

s1,s2

a+
k1+q,s1

a+
k2−q,s2

ak2,s2
ak1,s1

(16)

is the Hamiltonian of the electron system with the short-range interaction.
Let us further consider the improved variant of calculation of the partition func-

tion using its cyclic transformation by virtue of the operator

Ŵ (ρ̂) =
1

2

∑

q∈Cq

w(q)ρ̂qρ̂−q , (17)

where w(q) is the unknown function which will be found later. Since Ŵ (ρ̂) commu-

tates with the OPERATORS N̂ and V̂ , then in the renormalized partition function

Z = Sp
{

e−Ŵ (ρ̂) exp
(
−β

[
Ĥ − µN̂

])
eŴ (ρ̂)

}
= Sp

{
exp

[
−β(ĤW − µN̂)

]}
(18)

there appears renormalized Hamiltonian

ĤW = Ĥ0 + V̂ + K̂ + L̂;

K̂ =
[
Ĥ0, Ŵ

]

−
=

∑

q∈Cq

w(q)

{
εq[ρ̂qρ̂−q − N̂ ] +

~
2

m
ρ̂qf̂−q

}
;

L̂ =
1

2

[[
Ĥ0, Ŵ

]

−
, Ŵ

]

−

= −N̂
∑

q∈Cq

εqw
2(q)ρ̂qρ̂−q

+
~

2

2m

∑

q1,q2∈Cq

(q1,q2)w(q1)w(q2)ρ̂q1
ρ̂q2

ρ̂−q1−q2
. (19)

The operation of exp(−βĤW ) on function Ψ(ak|ρ̂) is calculated similarly to the

operation exp(−βĤ) (see expressions (9)–(14)). The analogue of the formula (14) is
the following expression:

Z = Sp

∫
(dρ)Ĵ(ρ, ρ̂) exp

{
−β(ĤW (a|ρ) − µN̂)

}
;

ĤW (a|ρ) = Ĥs − N̂
∑

q∈Cq

(
Vq

2V
+ w(q)εq)

+
∑

q∈Cq

{
1

2
ρqρ−q[

Vq

V
+ 2εqw(q)(1 − N̂w(q))] − N̂εq

∂2

∂ρq∂ρ−q

+
~

2

m
[w(q)ρ−q +

∂

∂ρq

]f̂q + [1 − 2N̂w(q)]εqρq

∂

∂ρq

}

+
~

2

2m

∑

q1,q2∈Cq

(q1,q2)ρq1+q2

{
∂

∂ρq1

+ ρ−q1
w(q1)

}{
∂

∂ρq2

+ ρ−q2
w(q2)

}
. (20)
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In order to eliminate the collective term in the ĤW (a|ρ) we introduce one more
collective variable N which corresponds to the operator of the complete number of
particles N̂ by the delta-function δ(N − N̂). The simplest choice of the function
w(q) from the condition

1 − 2Nw(q) = 0 (21)

leads to the following representation of the partition function:

Z = Spa

∫
(dρ)dN δ

(
N − N̂

)
Ĵ (ρ, ρ̂) exp

{
−β

[
Ĥ(a) + Ĥ(ρ) + Ĥint(a|ρ)

]}
;

Ĥ(ρ) =
1

2

∑

q∈Cq

{[
Vq

V
+

εq

2N

]
ρqρ−q − 2N εq

∂2

∂ρq∂ρ−q

}

+
~

2

2m

∑

q1,q2∈Cq

(q1,q2)ρq1+q2

{
∂

∂ρq1

+
ρ−q1

2N

} {
∂

∂ρq2

+
ρ−q2

2N

}
;

Ĥint(a|ρ) =
~

2

m

∑

q∈Cq

(
ρ−q

2N +
∂

∂ρq

)
f̂q ;

Ĥ(a) ≡ Ĥ0 + V̂s; Ĥ0 =
∑

k,s

εka
+
k,sak,s ; (22)

where

εk = εk − 1

2V

∑

q∈Cq

[
Vq +

(N
V

)−1

εq

]

is renormalized one-particle energy. The symbol Spa denominates the calculation of
the operation of the trace over the individual variables.

Let us introduce, instead of variables ρq, the Bose operators of creation and
destruction of plasmons b+

q , bq using the rule:

bq =
1√
2

{
αqρ̃q +

1

αq

∂

∂ρ̃−q

}
, b+

−q =
1√
2

{
αqρ̃q − 1

αq

∂

∂ρ̃−q

}
;

ρ̃q ≡ N− 1
2 ρq; αq =

{
~ωq

2εq

} 1
2

; ~ωq =

{
2
Vq

V
N εq + ε2

q

} 1
2

. (23)

The transition from the variables ρq to the operators b+
q , bq is realized by means of

the transition operator

Ĵ(ρ̂(b), ρ) =
∏

Cq

δ(ρ̂(b), ρ), ρ̂(b)
q = (2N )−

1
2 α−1

q

{
bq + b+

−q

}
. (24)

According to formula (5)

exp
{
−β

[
Ĥ(a) + Ĥ(ρ) + Ĥint(a|ρ)

]}

= Spb

{
Ĵ

(
ρ̂(b), ρ

)
exp

[
−β

(
Ĥ(a) + Ĥp + Ĥep

)]} {
SpbĴ

(
ρ̂ (b), ρ

)}−1

. (25)
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The operators Ĥp and Ĥep can be taken from the operators Ĥ(ρ) and Ĥint(a|ρ)
due to the transition from ρ̃q, ∂/∂ρ̃q to b+

q and bq correspondingly to the expressi-
ons (23):

Ĥp = Ĥp + Ĥpp; Ĥp =
∑

q∈Cq

~ωq −
(

b+
q bq +

1

2

)
;

Ĥpp = − ~
2

16m
√

2N
∑

q1,q2∈Cq

(q1,q2)α
−1
q1

α−1
q2

α−1
q1+q2

(
b+
q1+q2

+ b−q1−q2

)
B̂q1

B̂q2
,

Ĥep =
~

2

2m
√

2N
∑

q∈Cq

α−1
q f̂qB̂q,

B̂q =

[
~ωq

εq

+ 1

]
bq −

[
~ωq

εq

− 1

]
b+
−q . (26)

Let us insert the expression (25) into formula (22) and integrate over the variables
ρq using the rule
∫

(dρ)Ĵ
(
ρ̂, ρ(a)

)
Ĵ

(
ρ̂ (b) − ρ

) {
SpbĴ(ρ̂ (b), ρ)

}−1

= Ĵ(b, a) =
∏

q∈Cq

δ
(
ρ̂ (b)
q − ρ̂ (a)

q

)
, (27)

where ρ̂
(a)
q ≡ ρ̂q =

∑
k,s a+

k+q,sak,s. As a result of this procedure we obtain the
partition function in the following form:

Z = Sp

{∫
dN δ

(
N − N̂

)
Ĵ(b, a) exp

[
−β

(
Ĥ(a) + Ĥp + Ĥep

)]}
. (28)

Formally, Ĥ(a)+Ĥp+Ĥep describes two different subsystems of the objects: electrons

and plasmons. The operator Ĵ(b, a) represents the subsidiary conditions which are
necessary for this description.

The following calculation of the partition function is done within the framework
of the perturbation theory. To this end, let us use the interaction representation in
the statistical operator

exp
[
−β

(
Ĥ(a) + Ĥp + Ĥep

)]
= exp

{
−β

(
Ĥ0 + Ĥp

)}
T Ŝ, (29)

where T is the chronological ordering symbol and Ŝ-matrix is determined by the
operators of interactions:

Ŝ = exp




−
β∫

0

dβ′
[
V̂s(β

′) + Ĥpp(β
′) + Ĥep(β

′)
]



 . (30)

Moving the operator exp
{
−β

[
Ĥ0 + Ĥp

]}
through the transition operator Ĵ(b, a)

we can translate the latter in the interaction representation:

Z = Spa,b






∫
dN δ

(
N − N̂

)
exp

[
−β

(
Ĥ0 + Ĥp

)]
T




∏

Cq

δ
(
ρ̂(b)
q (β) − ρ̂(a)

q (β)
)
Ŝ








 ,
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ρ̂(a)
q (β) ≡

∑

k,s

a+
k+q,s(β)ak,s(β); ρ̂(b)

q (β) ≡ 2−
1
2 N

1
2 α−1

q [bq(β) + b+
−q(β)]. (31)

Let us transit to the so-called “frequency” representation [26,27] in the following
calculation of the perturbation theory diagrams introducing the combinations of the
operators ak,s(β

′) and bq(β
′):

ak,s(ν
∗) =

β∫

0

ak,s(β
′)Ψν∗(β′)dβ′, bq(ν) =

β∫

0

bq(β
′)Ψν(β

′)dβ′, (32)

where Ψν(β
′) = β− 1

2 exp(iνβ′), ν∗ = (2n + 1)πβ−1, ν = 2πnβ−1, n = 0;±1;±2; . . . .
In the new representation

Ŝ ≡ Ŝ(ν) = exp
{
−V̂s(ν) − Ĥpp(ν) − Ĥep(ν)

}
,

V̂s(ν) =
1

2βV

∑

q∈Cq

∑

ν

Vq

∑

k1,k2

∑

s1,s2

∑

ν∗

1 ,ν∗

2

a+
k1+q,s1

(ν∗
1 + ν)

× a+
k2−q,s2

(ν∗
2 − ν)ak2,s2

(ν∗
2)ak1,s1

(ν∗
1);

Ĥep(ν) =
~

2

2m
√

2Nβ

∑

q∈Cq

∑

ν

α−1
q f̂q,νB̂q,ν ;

B̂q,ν =

{(
~ωq

εq

+ 1

)
bq,ν −

(
~ωq

εq

− 1

)
b+
−q,−ν

}
;

f̂q,ν =
∑

k,s

∑

ν∗

(kq)a+
k+q,s(ν

∗ + ν)ak,s(ν
∗);

Ĥpp(ν) =
~

2

4m
√

2Nβ

∑

q1,q2∈Cq

(q1,q2)
∑

ν1,ν2

α−1
q1+q2

(bx1+x2
+ b+

−x1−x2
)

×
∏

j=1,2

{
αqj

(bxj
− b+

−xj
) +

1

2αqj

(b−xj
+ b+

xj
)

}
, (33)

where bx ≡ bq,ν . Since

ρ̂(a)
q (β) = β−1

∑

ν

ρ̂q,ν , ρ̂q,ν ≡ ρx =
∑

k,s

∑

ν∗

a+
k+q,s(ν

∗ + ν)ak,s(ν
∗),

ρ̂(b)
q (β) =

√
N
2β

α−1
q

∑

ν

(bq,ν + b+
−q,−ν), (34)

then using the integral representation of δ-function in the expression (31) we can
obtain such a working formula to calculate the partition function:

Z =

+∞∫

−∞

dNZ0

+∞∫

−∞

dω0 exp(2πiω0N )ξ(ω0)
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×
〈

T






∫
(dϕ) exp



iπ
∑

ν

∑

q∈Cq

ϕq

[√
N
2β

α−1
q (bx + b+

−x) −
1

β
ρ̂x

]



× exp[−V̂s(ν) − Ĥpp(ν) − Ĥep(ν)]






〉

0

; (dϕ) ≡
∏

Cq

dϕq . (35)

The statistical averaging is done over the states of free electrons and free plasmons,

Z0 = Sp
{

exp
[
−β

(
Ĥ0 + Ĥp

)]}
= exp(−βΩ0) (36)

is partition function of free electrons and free plasmons and Ω0 is the grand ther-
modynamic potential

Ω0 = − 1

β

∑

k,s

ln
{
1 + e−β(εk−µ)

}
+

1

β

∑

q∈Cq

ln
{
1 − e−β~ωq

}
+

1

2

∑

q∈Cq

~ωq. (37)

The factor ξ(ω0) is determined by the following correlation:

ξ(ω0) =
{

Spa exp
[
−β

(
Ĥ0 − µN̂

)]}−1

Spa exp
{
−β

[
Ĥ0 − µN̂

]
− 2πiω0N̂

}

=
∏

k,s

{1 − nk,s + nk,s exp(−2πiω0)} , (38)

where nk,s = {1 + exp[β(εk − µ)]}−1 is the distribution Fermi in the ideal system of
electrons. From the formula (38) we can see that in the limit of low temperatures at
the full degeneration (β → ∞) the ξ(ω0) → exp(−2πiω0N) where N is the number
of electrons in the system. In the general case

ξ(ω0) = exp

{
−2πiω0N +

∑

n>2

(−2πi)n ωn
0

n!
β1−nµ0

n(0)

}
, (39)

where µ0
n(0) is the statical long-wave limit of the n-particle dynamic correlation

functions of the ideal system [26]

µ0
n(x1, . . . , xn) =

1

β
〈ρ̂x1

ρ̂x2
· · · ρ̂xn

〉0 . (40)

For µ0
n(0) we have the following expression:

µ0
n(0) =

∑

k,s

dn−1

dµn−1
nk,s = (−1)n V

π2

µ
5
2
−n

2n−1
(
2m

~2
)

3
2

{
Rn − π2

24
(βµ)−2(2n − 3)!! + · · ·

}
,

(41)
where R2 = 1, R3 = 1 also at n > 4 we have Rn = −(2n − 7)!!.

The identity {
2πiω0 +

∂

∂N

}
exp(−2πiω0N) = 0 (42)
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makes it possible to integrate over variables ω0 and N and brings the calculation of
partition function to the following form:

Z = Λ̂(N)Z0

〈
T






∫
(dϕ) exp



iπ
∑

ν

∑

q∈Cq

ϕq

[√
N
2β

α−1
q (bx + b+

−x) −
1

β
ρ̂x

]



× exp
[
−V̂s(ν) − Ĥpp(ν) − Ĥep(ν)

]





〉

0

. (43)

Hence, in the Z0 as well as in the brackets 〈· · ·〉0 it is necessary to supply everywhere

the number of particles N in place of variables N . The operator Λ̂(N) appears at
the expense of the terms n > 2 in the formula (39) and takes into account the
temperature corrections:

Λ̂(N) = exp

{
∑

n>2

(n!)−1β1−nµ0
n(0)

∂n

∂Nn

}
. (44)

It is advisable to write the formula (43) to the equivalent form extracting the par-
tition function Zep of the model system which consists of interaction subsystems of
electrons and plasmons, but without taking into account the subsidiary conditions,
namely

Z = Λ̂(N)Zep

〈
Ĵ(b, a)

〉

ep
; Zep = Z0

〈
T Ŝ(ν)

〉

0
;

〈
Ĵ(b, a)

〉

ep
=

〈∫
(dϕ) exp




iπ
∑

q∈Cq

∑

ν

ϕq

[
N

1
2 (2β)−

1
2 α−1

q (bx + b+
−x) −

1

β
ρ̂x

]




〉

ep

;

〈
Â

〉

ep
≡

〈
T

{
ÂŜ(ν)

}〉

0

〈
T Ŝ(ν)

〉−1

0
. (45)

3. Equivalence of the electron liquid and electron-plasmon
models in the random phase approximation

In order to determine the correspondence of our approach to the traditional
approach of the perturbation theory over the powers of Coulomb potential let us

consider the simplest variant where q0 → ∞, the short-range interaction ̂̃V ee(ν) is
absent as well as the system is found in the ground state (T = 0 K).

First, let us calculate Zep in the RPA. It allows us to neglect the operator Ĥpp(ν)

and Ŝ-matrix can be transformed into the form exp(−Ĥep(ν)). Unlike the zero ones,
contributions arise only in the pair orders of the perturbation theory since the opera-
tor Ĥep(ν) is linear relatively to the plasmon operators bq,ν , b

+
q,ν . The other important

specific characteristic is the absence of divergent diagrams in any order of the per-
turbation theory. It is caused by the structure of the operator Ĥep(ν). For example,
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let us consider the contribution in the thermodynamic potential single diagram of
the second order of the perturbation theory:

∆Ω2 = − 1

2β

〈
TĤ2

ep(ν)
〉

0

= −
∑

q,ν

(
~

2

2m

)2

(4Nβ2α2
q)

−1
〈
T

{
f̂xf̂−x

}〉

0

〈
T

{
B̂xB̂−x

}〉

0
. (46)

Here, the average values are determinated per spectrum representation of the Green’s
functions of the electrons and plasmons [27]

−
〈
T

{
ak1,s1

(ν∗
1)a

+
k2,s2

(ν∗
2)

}〉
0

= Ge
k1,s1

(ν∗
1)δs1,s2

δk1,k2
δν∗

1 ,ν∗

2
;

Ge
k,s(ν

∗) = {iν∗ − εk + µ}−1 ;

−
〈
T

{
bxb

+
x

}〉
0

= Gp
q(ν) = {iν − ~ωq}−1 . (47)

According to the expressions (47),

〈
T

{
B̂xB̂−x

}〉

0
= −2~ωq

{(
~ωq

εq

)2

− 1

}
{
ν2 + (~ωq)

2
}−1

;

〈
T

{
f̂xf̂−x

}〉

0
=

∑

k,s

∑

ν∗

(k,q)(k + q,q)Ge
k,s(ν

∗)Ge
k+q,s(ν

∗ + ν). (48)

Performing the elementary transformation and using the summation rule over the
frequencies

β−1
∑

ν∗

Ge
k,s(ν

∗) = nk,s, (49)

we find

β−1

(
~

2

2m

)2 〈
T

{
f̂xf̂−x

}〉

0
= −1

2

{
Nεq − 1

2

(
ν2 + ε2

q

)
µ0

2(x,−x)

}
, (50)

where

µ0
2(x,−x) = β−1 〈T {ρ̂xρ̂−x}〉0 = −β−1

∑

k,s

∑

ν∗

Ge
k,s(ν

∗)Ge
k+q,s(ν

∗ + ν)

= 3N(2εF)−1I2,0(q, u) (51)

– is the spectrum representation of the two-particle correlation function of the elec-
tron system without interaction in the variables “wave vector – frequency Matsub-
ara”. Non-dimensional factor I2,0(q, u) at absolute zero temperature can be repre-
sented by this well-known expression [8]:

I2,0(q, u) =
1

2

{
1 +

1

2q

(
1 + u2 − q2

4

) ∑

σ=±1

σ ln

[(
1 + σ

q

2

)2

+ u2

]

− u
∑

σ=±1

arctg

[
1

u

(
1 + σ

q

2

)]}
;

q ≡ |q|k−1
F ; u ≡ ν(2εFq)−1; εF = ~

2k2
F(2m)−1. (52)
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Let us show the ground state energy of the model in the traditional form

E = Eid + EHF + Ecorr , (53)

where Eid is the energy of the ideal electron system, EHF is contribution in the
Hartree-Fock approximation, Ecorr is a contribution of the correlation caused by
interactions (the so-called, correlation energy).

In the zero approximation of operator Ĥep(ν) we can have the following expres-
sion for the correlation energy

E(0)
corr =

1

2

∑

q

{
~ωq − εq − N

V
Vq

[
1 − 1

N

∑

k,s

nk,snk+q,s

]}
. (54)

Summing over the frequency in the terms of formula (46) which does not have

µ0
2(x,−x) in the second order of the perturbation theory over operator Ĥep(ν) for

correlation energy, we obtain

E(2)
corr =

1

2

∑

q

{
~ωq − εq − N

V
Vq

εq

~ωq

}

− 1

2βV

∑

q,ν

Vqµ
0
2(x,−x)

{
(~ωq)

2 − ε2
q

}{
ν2 + (~ωq)

2
}−1

. (55)

The summation of infinite series of non-divergent ring diagrams constructed on
the operator Ĥep(ν) brings to the following representation of the ground state of the
energy of the model:

E = Eid +
1

2

∑

q

{
~ωq − εq − N

V
Vq

}
+

1

2β

∑

ν

∑

q

ln
{

1 −
〈
TĤ2

ep(ν)
〉q,ν

0

}
. (56)

Here,
〈
TĤ2

ep(ν)
〉q,ν

0
is (q, ν)-component of the average

〈
TĤ2

ep(ν)
〉

0
:

〈
TĤ2

ep(ν)
〉q,ν

0
= 2

{
Nεq − 1

2

(
ν2 + ε2

q

)
µ0

2(x,−x)

}
Vq

V

{
ν2 + (~ωq)

2
}−1

.

Taking into account the expressions (48), (50) after elementary transformations the
logarithm from the formula (56) has the following representation:

ln
[
1 −

〈
TĤ2

ep(ν)
〉q,ν

0

]
= ln

[
1 +

Vq

V
µ0

2(x,−x)

]
+ L(x),

L(x) = ln
{

1 −
[
(~ωq)

2 − ε2
q

] [
(~ωq)

2 + ν2
]−1

}
. (57)

Let us calculate the sum over the frequency ν from L(x),

β−1
∑

ν

L(x) = (2π)−1

+∞∫

−∞

L(x)dν = −(~ωq − εq). (58)
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Extracting the contribution EHF from the (56) we can obtain a familiar standard
expression for correlation energy in the RPA

ERPA
corr =

1

2β

∑

q,ν

{
ln

[
1 +

Vq

V
µ0

2(x,−x)

]
− Vq

V
µ0

2(x,−x)

}
, (59)

that adequately describes the model in the weak non-ideality range (rs 6 1). This
expression is the sum of the most divergent ordinary perturbation theory diagrams
which are constructed on the Coulomb potential [8]. It proves the total equivalence
of the electron-plasmon model and the ordinary model with Coulomb interaction in
RPA.

0 1 2 3 4 5 6 7 8 9 10

rs

-0.2

-0.1

0.0

0.1

0.2

εcorr(rs)

2

3

4

1 (a)

3 5 7 9 11 13 15

rs

-0.10

-0.08

-0.06

-0.04

-0.02

-0.00

εcorr(rs)

2

3

4

1

(b)

Figure 1. (a): The ground state correlation energy of electron liquid model (in
Ry per electron) in different approximations: curve 1 corresponds to (60), curve
2 is the expression of (61), curve 3 is the random phase approximation, curve 4
the results of the calculation by means of the Monte-Carlo method [9].
(b): The ground state correlation energy of electron liquid model in intermediate
and strong non-ideality region. Notations are similar to figure 1a.

The dependence of the ground state correlation energy of electron liquid model
in the Ry per electron (εcorr(rs) = [NRy]−1Ecorr) on the parameter non-ideality

rs =
( 3V

4πN

) 1
3 me2

~2

(the Brueckner parameter) in different approximations is shown in figures 1a, 1b.
Curve 1 corresponds to approximation (54) where

ε(0)
corr(rs) =

A0

rs

− B0

r
3/4
s

, (60)
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A0 =
3

2π
η =

3

2π

(
9π

4

) 1
3

= 0.91633 . . . ,

B0 =
32

5π
η

3
4 (3π)−

1
4

{
E

(
π

2
,

1√
2

)
− 1

2
F

(
π

2
,

1√
2

)}
= 0.80306 . . . .

(E(. . .), F (. . .) are the elliptic integrals [23]).
Approximation (55), where

ε(2)
corr(rs) =

B0

4r
3
4
s

− 32

π3

∞∫

0

dqq

∞∫

0

duI2,0(q, u)

{
q4 + 4q2u2 +

16rs

3πη

}−1

, (61)

corresponds to the curve 2. Curve 3 represents the correlation energy in the RPA
(see formula (54)) and curve 4 represents the calculation results of the correlation
energy by means of the Monte-Carlo method [9], which is basic.

The summation infinite series (non-divergent) diagrams constructed on the pow-

ers of the operator Ĥep(ν) is necessary only in the weak and medium non-ideality
region (rs 6 4), which is evident in the figures. Considering the second order of
the perturbation theory over the operator of the electron-plasmon interaction in the
strong non-ideality region we obtain the result which coincides with the result in
the RPA of the ordinary perturbation theory. Therefore, it is not necessary to do
the summation of a series of diagrams over the powers of operator Ĥep(ν). It is an
interesting and profitable characteristic of the electron-plasmon model.

Let us note that we use the approximation q0 → ∞ only for a clearer account.
In fact the result (59) does not depend on the value q0. At the finite value q0, in
place of the formula (56), we obtain

E = Eid +
1

2β

∑

ν

∑

q∈Cq

ln
{

1 −
〈
TĤ2

ep(ν)
〉q,ν

0

}
+

1

2

∑

q∈Cq

[
~ωq − εq − N

V
Vq

]

+
1

2β

∑

ν

∑

q/∈Cq

ln

{
1 +

Vq

V
µ0

2(x,−x)

}
. (62)

According to the expressions (57), (58) we obtain

E = Eid +
1

2β

∑

ν

∑

q

ln

{
1 +

Vq

V
µ0

2(x,−x)

}
. (63)

From the expression (63) we can obtain the formula (59).

Let us consider the factor
〈
Ĵ(a, b)

〉

ep
from the (45) and its contribution to the

grand thermodynamic potential in the RPA. Expanding the exponent

exp




iπ
∑

q∈Cq

ϕq

∑

ν

[· · ·]
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to the Taylor series of the powers ϕq, one can take into account the items proporti-
onal to the ϕqϕq that correspond to RPA:

〈
Ĵ(a, b)

〉

ep
=

∫
(dϕ) exp

{
−π2N

2

∑

q

ϕqϕ−q

×
[
(
2βα2

q

)−1
∑

ν

〈
T (bx + b+

−x)(b−x + bx)
〉

ep
+ N−1β−2

∑

ν

〈T (ρ̂xρ̂−x)〉ep

−(2N)
1
2 β− 3

2 α−1
q N−1

∑

ν

〈
T

[
(bx + b+

−x)ρ̂−x

]〉
ep

]}
. (64)

The averages in the above expression are easy to calculate in the RPA. For example,

β−1 〈T {ρ̂xρ̂−x}〉ep = β−1
〈
T

{
ρ̂xρ̂−xe

−Ĥep(ν)
}〉c

0
= β−1 〈T {ρ̂xρ̂−x}〉0

+
(
2Nβ2

)−1
α−2

q

〈
T

{
ρ̂xf̂−x

}〉

0

〈
T

{
ρ̂−xf̂x

}〉

0

(
~

2

2m

)2{
1 −

〈
T [Ĥ2

ep(ν)]
〉q,ν

0

}−1

= µ0
2(x,−x)

{
1 + V −1Vqµ

0
2(x,−x)

}−1 ≡ µRPA
2 (x,−x). (65)

It is taken into account that

~
2(2mβ)−1

〈
T

{
ρ̂xf̂−x

}〉

0
= −1

2
(εq + iν)µ0

2(x,−x), (66)

averages 〈T {BxB−x}〉0,
〈
T

{
f̂xf̂−x

}〉

0
are defined by (48). The symbol 〈(· · ·)〉c0

denominates the semi-invariant average over the states of free electrons and non-
interaction plasmons.

The latter term in the exponent (64) is calculated in the same way

(2N)
1
2 β− 3

2 α−1
q

〈
T

[
(bx + b+

−x)ρ̂xe
−Ĥep(ν)

]〉c

0
=

2

β
µRPA

2 (x,−x). (67)

Similarly we calculate one term in the exponent of (64). In the ring diagrams
approximation

〈
T

{
(bx + b+

−x)(b−x + b+
x )e−Ĥep(ν)

}〉c

0
=

〈
T (bx + b+

−x)(b−x + b+
x )e−Ĥep(ν)

〉

0

+

(
~

2

2m

)2 (
2Nβα2

q

)−1
〈
T

{
f̂xf̂−x

}〉

0

〈
T

{(
bx + b+

−x

)
B̂−x

}〉

0

×
〈
T

{
B̂x

(
b−x + b+

x

)}〉

0

{
1 −

〈
T

[
Ĥ2

ep(ν)
]〉q,ν

0

}−1

, (68)

therefore, one term of the exponent in the (64) is equal to β−1
∑

ν µRPA
2 (x,−x). Thus,

the factor above ϕqϕ−q is equal to zero in this approximation. So the two-electron
structural factor

SRPA
q = (Nβ)−1

∑

ν

µRPA
2 (x,−x), (69)
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was calculated over the operators ρ̂x or over the plasmon operators coinciding in the
RPA. The consideration of higher diagrams in calculating the averages from (64) can
give the factor above ϕqϕ−q which is not equal to zero. Differently at the calculation

of the 〈Ĵ(b, a)〉ep we must take into account the terms which are proportional to the
ϕq1

ϕ−q1
ϕq2

ϕ−q2
or the other terms. These terms provide the coincidence of the

integrals over the variables ϕq. However, the basic contribution of the 〈Ĵ(b, a)〉ep
into thermodynamic potential is proportional to the β−1. At low temperatures the
contribution of the 〈Ĵ(b, a)〉ep in the energy of the system is equal to zero.

4. Conclusions

As it follows from the above stated matters, we can describe the electron liquid
using the electron-plasmon model with Hamiltonian

Ĥ = Ĥa + Ĥep + Ĥp + Ĥpp. (70)

This Hamiltonian describes two different subsystem objects: the electrons and plas-
mons which interact between each other (components of (70) are specified by the
expressions (16), (22), (26)). The description of the electron liquid model in the elec-
tron and plasmon terms is completely equivalent to the traditional description in the
particle terms with the Coulomb interaction, apparently the results from chapter 3.
At first glance a paradox situation arises since the model (70) describes the physical
system with a higher degree of freedom than the traditional one

Ĥ =
∑

k,s

εka
+
k,sak,s + (2V )−1

∑

q 6=0

Vq

{
ρ̂qρ̂−q − N̂

}
. (71)

However, under the conditions of thermodynamic equilibrium at low temperatures
both models give equivalent results and thus the factor 〈Ĵ(b, a)〉ep (see (45)) is of
no importance here. We can explain this fact in the following way. In the conditions
of thermodynamic equilibrium at low temperatures when the mean values of the
occupation plasmon numbers are exponentially small quantities, we do not have to
do with the real plasmons but with virtual plasmons. These plasmons (virtual) make
the interaction between the electrons. Therefore, the real numbers of the degree of
freedom coincided in the both models.

The perturbation theory over the operator of the electron-plasmon interaction
does not have the divergent diagrams. To prove the exact equivalence of both models
the summation series (non-divergent) of the diagrams is necessary to be done only
for the weak non-ideality region. The series of the perturbation theory coincides
well especially in the strong non-ideality range, as it is apparent from the results
of the calculation of the ground state energy. In this connection, the summation of
the infinite series of diagrams becomes unnecessary. Similar is the situation at the
calculation of the structural factor of the model:

Sq = (2β)−1
∑

ν

α−2
q

〈
T (bx + b+

−x)(b−x + b+
x )

〉
ep

. (72)
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The first term in (68) gives the zero approximation over the operator Ĥep(ν),

S(0)
q =

εq

~ωq

(1 + 2nq). (73)

In the second order of the perturbation theory over the operator Ĥep(ν) we obtain

S(2)
q =β−1

∑

ν

[
(~ωq)

2 + ν2
]−2 {

2εq

(
(~ωq)

2 − ε2
q

)
+ N−1µ0

2(x,−x)[ν2 + ε2
q]

2
}

. (74)
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Figure 2. (a), (b): The structural factor of the electron liquid model in the
ground state. Curve 1 corresponds to the zero approximation over the operator
of electron-plasmon interaction. Curve 2 is the second order of the perturbation

theory. Curve 3 is relative deviation [SRPA
q − S

(2)
q ][SRPA

q ]−1.

The coincidence of the series diagrams of the perturbation theory at the calcula-
tion of structural factor is illustrated in figures 2a, 2b. In these figures the structural
factor for rs = 5 and rs = 10 at the absolute zero of temperature is depicted.
Curve 1 corresponds to approximation (73), curve 2 corresponds to (74), curve 3

is a relative deviation [SRPA
q − S

(2)
q ][SRPA

q ]−1. The function S
(0)
q asymptotically (at

q → 0,q → ∞) coincides with SRPA
q which is apparent from the mentioned figures.

The next terms of the formula (56) give only corrections. The relative deviation S
(2)
q

from SRPA
q is approximately 4% in the maximum (q ∼ kF) at rs = 5. At rs = 10 the

relative deviation is approximately 2%.
The absence of the divergent diagrams and good coincidence of the series of

perturbation theory over the operator of the electron-plasmon interaction make the
electron-plasmon model actual for calculations of the characteristics of the electron
liquid model in the strong non-ideality region.
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Отримано 17 червня 2004 р., в остаточному вигляді –
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Запропоновано строгий підхід до опису моделі електронної рідини в

термінах електронів і плазмонів. Концептуально наша робота близь-
ка до підходу колективних змінних, який розроблявся в роботах

Бома і Пайнса. Проте ми використовуємо інший математичний

апарат, в якому перехід до розширеного простору змінних час-
тинок та плазмонів виконується за допомогою оператора переходу.
Доведено, що у наближенні хаотичних фаз модель, яка складається

із двох взаємодіючих між собою підсистем електронів і плазмонів,
цілком еквівалентна моделі електронної рідини з кулонівською

взаємодією.

Ключові слова: електронна рідина, плазмові коливання,
кореляційна енергія, оператор переходу, структурний фактор

PACS: 05.30.Fk
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