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Here we propose an accurate approach to the description of the electron
liquid model in the electron and plasmon terms. Our ideas in the present
paper are close to the conception of the collective variables which was de-
veloped in the papers of Bohm and Pines. However we use another body
of mathematics in the transition to the expanded space of variable parti-
cles and plasmons realized by the transition operator. It is evident that in
the Random Phase Approximation (RPA), the model which consists of two
interactive subsystems of electrons and plasmons is equivalent to the elec-
tron liquid model with Coulomb interaction.
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1. Introduction

Co-existence of the collective and individual motions is the characteristic feature
of the systems with the collective electrons (the metals, the superconductors, degen-
erate semiconductors) which conditioned the long-range character of the Coulomb
potential. This circumstance is the main basis for the formulation of a simple ap-
proach in the metal theory. This approach is based on the conception of collective
description of interelectron interactions. One of the variants of this approach was
developed in the papers [1-6] (see also [7]; almost all the papers in this field are indi-
cated). Since the plasmons are the well-determined excitations only at small values
of the wave vector q, in these papers there were introduced the collective variables
for the region 0 < |q| < ke where k, has the order of magnitude kp = (372N)3V 3.
In order to conserve the number of degrees of freedom, subsidiary conditions are put
on the wave function of the system [5]. As a rule in the cited papers the ground state
system was examined. One of the main tasks was to investigate the spectrum of the
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plasmon oscillations. To this end, a series of canonical transformations was used.
As a result, the developed formalism has assumed an approximate character. In our
opinion, the approach of Bohm and Pines was displaced from the metal theory by
a more formal approach of the summation diagram series of the ordinary perturba-
tion theory which was started by the paper of Gell-Mann and Brueckner [8]. This
approach complemented by the local-field conception is considered to be general in
the modern metal theory. The results obtained by this approach are far better than
the results obtained within the framework of the collective description. For example,
let us examine the correlation energy being the characteristic of the electron liquid
model weakly sensitive to the standard approximations. The correlation energy that
was calculated in paper [6] differs from the results of Monte-Carlo method [9] (which
are considered to be standard) as well as from many analitical methods (see for ex-
ample [10-14]) developed within the framework of the ordinary perturbation theory.
Table 1 shows the dependence of correlation energy of the electron liquid model
(in the rydberg per electron) on the non-ideality parameter ry = a, 1(3V)%(47rN )’%
where qg is the Bohr radius.

Table 1. Correlation energy of the electron liquid model (—103¢(rs)).

Ts 1 2 3 4 ) 6 10
RPA | 157.6 | 123.6 | 105.5 | 93.6 | 84.95 | 78.2 | 61.3
NP 115 94 81 72 65 60
W 134 95 79 68 61
VS 112 89 75 65 o8 92
EZ |122.0| 904 | 73.8 | 63.4 | 56.0 | 50.5
STLS | 124 92 75 64 56 50 36
IU | 1174 86.9 | 71.1 | 61.0 | 53.8 | 48.3 | 35.0
CA | 121.1| 90.8 | 74.96 | 64.7 | 57.4 | 51.8 | 38

[NP] - [6]; [TW] — [11]; [VS] - [12]; [EZ] - [13];
[STLS] — [10]; [IU] — [14]; [CA] — [9].

Evidently, the collective description of interelectron interactions has preference
to the methods of the ordinary perturbation theory, especially in the strong non-
ideality region. It is caused by the fact that in the collective description, the system of
free electrons and non-interaction plasmons is used in the role of zero approximation
rather than the ideal electron system. The conception of collective description has a
further prospective development. The variant which was developed in papers [1-6]
is one of the possible variants. There exists another variant of collective description
which was developed in the papers [15-18]. In this variant, together with introduc-
ing the expanded space of individual and collective coordinates, transformation of
displacements in the statistical operator is used. Thus we take the infinite system
of non-linear integro-differential equations. This makes this method an approximate
one. In the method of displacements and collective variables, the transition to ex-
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panded space is realized strictly by means of the transition function as opposed to
Bohm-Pines approach. Both approaches have much in common. The characteristic
feature of both approaches is the absence of divergent diagrams as opposed to the
standard methods of the perturbation theory.

In the present paper we propose the variant of collective description of interac-
tions in the electron liquid model which differs from Bohm-Pines variant as well as
from the variant of displacements and collective variables. We start with the sec-
ondary quantization representation. Then we transit to expanded space by means of
the transition operator which was first introduced in the paper [19]. The collective
variables are an intermediate element. They are used for introduction of operators of
the creation and destruction of plasmons. Partition function of the model in the elec-
tron and plasmon terms does not have any approximations. The perturbation theory
relatively to the electron-plasmon interaction is built in terms of the n-particles dy-
namic correlation function. The short-range interelectron interactions are taken into
account in the local-field approximation.

2. General relations

Let us consider Hamiltonian of the electron liquid model in the secondary quan-
tization representation on the plane wave base

[/‘\[IﬁO—FV, ngaksaks>

: :V : : : :a’kl—i-qsl k2 qsgak2732ak17317 (1)

q#0 ki,k2 51,82

where e, = h?k?/2m, Vy = 4me?’q 2, V — volume system. The antisymmetric wave
function of the system ¥ depends not only on individual but also on collective
variables due to interaction between electrons. The wave functions of this type were
used in a number of papers (see [20-22]). In the secondary quantization the wave
function can be written as follows: U = W(ak|pq), where pg = > oy, o s i
Fourier representation of the operator of the electron density. Here ay s and py are
not independent.

Let us transit individual and collective variables to the expanded space by means
of transition operator [19]

:Hé(pq—ﬁ /dw 27T12wq ) (2)
Ca

qeCyq

where wq is a variable, which is conjugated to pq, (dw)=]]¢, (dwq). The range of
wave vectors Cg includes one-half of all the vectors from the sphere at radius gy, for
example

455



M.V.Vavrukh, S.B.Slobodyan

The transition operator is a quantum analogue of the transition function of the
classical statistics [23,24]. Any operator f(p) represented in pq term has the following
representation in the collective variables:

75) = / AT 0. D), (dp) = [[dpa (3)
Cq

Relationships
Tp.p) (0. 5) = J(p.D) H 5(ply —
sp{J(0.0)7(0.5)} = Ha ~ pa)SpJ (. D) (4)

allow to find the representation of f(ﬁ) in the collective variables, namely

~

Fio)={070.7)} 50 {73000} 9

Similarly to the papers [1-6] the energy operator of the interelectron interections
is divided into long-range and short-range terms and is written in the following form

2V Z Va (ﬁqﬁ*q ) Z Va Z Zak1+q51 Oy —q,s V2,52 Ak 51 5 (6)

qeCq q ¢Cq ki,ko 51,82

where N = > ks f i is the operator of the number particles. The second term
in the (6) describes the effective short-range interaction electrons with the potential

Z Vy exp(iqr) {1 - —sl(qor)} (7)

q¢C

(Si(x) is a sine integral [25]).
Correspondingly to formula (3) any wave function W(ax|p) the reprezentation in
the expanded space W(ay|p) can be compared,

Wanlp) = [ (@) (0.7 ¥(al). ®)

Let us calculate the operation exp(—ﬁﬁ ) to the wave function W (ay|p):

exp(—BH) U (ap|p) = /(dp)(dw) exp [ —2mi quﬁq

qeCq

X exp(—ﬁf[w) exp | 27i Z WaPq | V(aklp). 9)

qeCq
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Here 3 = (kgT)~! is the inverse temperature,

H, = exp | 2ni Z WqPq Hexp | —27i Z WqPq

qeCyq q€Cq
~ _ ~ (27?1 ~
= oY g [Hopa] > wasas | [Hofa| 2P| (10)
q€Cyq B " a1,92€Cq a -

Here is the explicit form of the commutators:

. R .
[H07 pq} T EaPq + Efq? Ja = Z(k, Q)ai.i_q,sak,s ;
k,s

1o < N h?

5 |:H07PQ1:|7 » Paa = N€q15Q1+Q20 + 5= m (q17q2>pr11+qz : (11)
Let us apply the identity
0
2miwg — = ¢ exp(27i Z WqPq) =0 (12)
dpqg
qeCq

and integrating in parts over the variables pq let us bring the equality (9) to the
following form:

expl -6 ¥alp) = [ (@) T(p >exp(—ﬁﬁ1<ak|p>) W(a o)

Hi(aklp) = H+ ) (eqpq+ f) -N ) eqz—F—
ot qrq q apq qech Qapqap_q
h? 0?
o= > (A9 g - (13)
2m q1,92€Cq apql 8Pq2

Here H was defined by formula (1). According to (3), the substitution pgy — pq in

the operator H 1(ag|p) can be realized. Therefore the partition function of the model
in the grand canonical ensemble has the following form

~

z=Spexp {~3(H - uf)} =5p [(49) 707 exp {5 (Rlalp) ~u8)} . (10

where the p is the chemical potential variable, N is the operator of the complete
number of particles. The operator

_ . Ra 8 « & -
Alalp) = Bt 3 {Capat T e — Koo+ (2V) Vilpap—q ~ N1
q;q qrq m q apq Qapqapiq qlrq q
h? 0?
+ — Z (qlan)p(thQQ (15)
2m quqgecq apcllapq2
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is Hamiltonian of the system in the expanded space of individual and collective
variables, a; and pq are independent. The transition operator regulates the correla-
tion between variables and provides the conservation of the number of the degree of
freedom. The operator

H HO + 2V Z V Z Z akﬁ-q SlakQ q,s2 Tka,52 0k 51 <16>
¢Cq ki,ko s1,82

is the Hamiltonian of the electron system with the short-range interaction.
Let us further consider the improved variant of calculation of the partition func-
tion using its cyclic transformation by virtue of the operator

W) =5 3 wlaher-a. a7)

qeCq

where w(q) is the unknown function which will be found later. Since /W(ﬁ) commu-
tates with the OPERATORS N and V/, then in the renormalized partition function

Z =Sp {e_W(ﬁ) exp (—ﬁ [ﬁ — uﬁ]) ew(ﬁ)} =Sp {exp [—5(ﬁw — ,u]v)} } (18)
there appears renormalized Hamiltonian
Hy = Ho+V+K+L;

~

. L ,
K = [HO,W}i =Y w(q) {eq[ﬁqﬁq ~ N+ %ﬁqfq} ;

qeCyq
~ 1 —~ -
L = 3 HHO,W}, } =_N Z eqW?(Q)PaP—q
qeCyq
2
+% Z (qlaq2)w(ql)w(q2)pQ1PQ2p—Q1—QQ' (19>
Q17q2€cq

The operation of exp(—ﬁﬁ]w) on function W(ay|p) is calculated similarly to the
operation exp(—GH) (see expressions (9)—(14)). The analogue of the formula (14) is
the following expression:

~

2=5p [ (@p)J(p.)exp {~5(Funlalp) - u)}

b @t 5ol L= 2F (s - |

0 0
R > (a1, %) Pgitas {% + quw(%)} {% + quw((h)} - (20)

qa1,926€Cq
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In order to eliminate the collective term in the Hy (a|p) we introduce one more
collective variable N which corresponds to _the operator of the complete number of
particles N by the delta-function 6(N — N). The simplest choice of the function
w(q) from the condition

1-2Nw(q) =0 (21)
leads to the following representation of the partition function:

~

2 = Sp, [(dp)s (N = R) T (p. 9y exp {5 [A(a) + Fe) + Hunlalp)]

~ 1 Vy &g o
== — e s —q 2 a9 9
H(p) 5 HVJrQN}pqpq Ngqapqap,q
qe€Cq
h? 9, P 9, P
+ = (a1, 42) Py 2{ + ql}{ + qz}?
2m qthQ;Cq bRPata ] 5, " N Opqy 2N
hz P—q
utol) = 123 (G584 50) o
qE
[/’j(&) = ﬁo + ‘//\:9; 7/_20 == Z 6kaisak,s ; (22)
k,s
where

Ek—éfk—%z

qeCq

v (4]

is renormalized one-particle energy. The symbol Sp, denominates the calculation of
the operation of the trace over the individual variables.

Let us introduce, instead of variables pq, the Bose operators of creation and
destruction of plasmons bg, bq using the rule:

SN UV I USRS UF SRR B IS
1T 5 QqPq a0 0pq ]’ —a = 5 XqPq g 0pq)

1 1
- 1 hwg ) 2 V. p)
pg =N 5pq; g = {—q} ; hwq = {QVquq—ireZ} . (23)

2eq

The transition from the variables pq to the operators bf{, bq is realized by means of
the transition operator

T p H 5", p), P = (2N)"2ag! {bg + b1} (24)

According to formula (5)
exp { = [ (@) + H(p) + Hui(alp)] |
= Sp, j( ,p) exp [ g (ﬁ(a) +H, + ﬁ[ep)] } {Spbj(ﬁ(b), p) }_1 . (25)
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The operators ﬁp and f[ep can be taken from the operators H(p) and Hiy(alp)
due to the transition from pg, 0/0pq to b and by correspondingly to the expressi-
ons (23):

~ ~ ~ 1
H, = H,+ Hpy; Hp—qu—(b;bq+§>;

qeCyq

~ B . o
pr = 16m /— Z ClegOz a aq1+q2 (bql+q2+bfq17qz) Banqg’

Cl q2€Cq

~ h?
H,, = oz_l ,
P 2W1V/___ ji: fﬁ q

qeCyq
B, = [%H] bq—{%—l] bty (26)
q

Let us insert the expression (25) into formula (22) and integrate over the variables
Pq using the rule

/ (dp)T (7, 0) T (3 = p) {Spbf@“%p)}‘l: J(.a) = [T 6 (3 - 24"). (27)

qeCq
where ﬁqa) = pDq = stai{:q’sak,‘s. As a result of this procedure we obtain the
partition function in the following form:

Z:Sp{/d./\/'(S (N—N) J(b,a)exp [—ﬁ <ﬁ(a)+ﬁp+ﬁep>}}. (28)

Formally, ( )—i—Hp—i—Hep describes two different subsystems of the objects: electrons

and plasmons. The operator J (b, a) represents the subsidiary conditions which are
necessary for this description.

The following calculation of the partition function is done within the framework
of the perturbation theory. To this end, let us use the interaction representation in
the statistical operator

exp [—5 (ﬁ](a) + ﬁp + ]Tfepﬂ = exp {—ﬁ (7/—\{0 + Efp> } TS, (29)

where 7' is the chronological ordering symbol and S-matrix is determined by the
operators of interactions:

B
S =expd [ a8 [T(9) + Byl 9) + Bl )] - (30)

0

Moving the operator exp {—ﬁ [ﬁo + ﬁp} } through the transition operator I (b, a)

we can translate the latter in the interaction representation:

Z = Sp,,, /d./\/6 <N— ]/\\7> exp [—ﬁ (7—70 —|—I/:7p)} T H5 (ﬁﬁ’)(ﬁ) —/7((1&)(5)) S
Cq
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P90B) =Y at g Das(B); P (B) = 27 N2 ag ba(B) +bE4(8)].  (31)

k,s

Let us transit to the so-called “frequency” representation [26,27] in the following
calculation of the perturbation theory diagrams introducing the combinations of the
operators ax s(3") and bqy(5'):

B B
(s (V") = /ak,s(ﬂ’)\lfy*(ﬁ’)dﬁ’, bq(v) = /bq(ﬁ’)%(ﬁ’)dﬁ’, (32)
0 0
where U, (') = ﬁ_% exp(iv@), v* = 2n+ 1)aB~ Y, v =2mB !, n=0;+1;+2;....

In the new representation

~

§ = s<v> —exp { ~Th(v) = Hpp(v) = Hop(v) }
Vi) = mv 22 Va2 D iian Vi HY)
qeCyq v k1,ko s1,82 v ,v3

x altzfq,SQ (V; - V)ak2782 (VS)akl,&(Vr);

~

ﬁep(’/) = Zm\/W_ZZa_lqu avs

qeCq v

- ()
€q €q

far = D3 (kq)ap o, (V" + v)ars(v);

k,s v*
= h?
pr(l/> = 4m\/W_ Z q17 q2 Z aq1+q2 SC1+],‘2 + bi—dfl .1’2)

a1,926Cq V1,v2
1 +
X H {Oéqj (bxj —xj) + g(b,ggJ + bxj)} s (33)
7=1,2
where b, = bq,. Since

ﬁf{’)(ﬁ) = Zﬁq,w Pay = Pz = Z Zai_—&—q,s(y* + v)ak,s(V"),

k,s v*
ﬁqb)(ﬁ) _ N —IZ avr F bt ) (34)

then using the integral representation of J-function in the expression (31) we can
obtain such a working formula to calculate the partition function:

“+o00

/dNZO/dwO exp(2miweN )€ (wp)

—0o0

461



M.V.Vavrukh, S.B.Slobodyan

(dy) exp 17TZ Z Pq [\/7 _l(bm +bt,) — %ﬁx]

v qeCq

X<T

x exp[—Vi(v) — Hyp(v) — Hep()] > D (de) =[] deq- (35)
Cq

\

The statistical averaging is done over the states of free electrons and free plasmons,

Zy = Sp {exp [—ﬁ (ﬁo + flpﬂ } = exp(—/Q) (36)

is partition function of free electrons and free plasmons and €2y is the grand ther-
modynamic potential

:——Zln{l—i—e 5k“}+ Zln{l—e_ﬂh”q}—l— > hwg.  (37)
qECq qecq

The factor (wp) is determined by the following correlation:

E(wo) = {Spa exp [—ﬂ (ﬁo — ,u]/\\f)] }_1 Sp, exp {—6 [ﬁo — ,u]\ﬂ — 27Tiw0]\7}

= H {1 — ny s + ni s exp(—2miwy) }, (38)
k,s

where ny s = {1 + exp[B(ex — p)]} " is the distribution Fermi in the ideal system of
electrons. From the formula (38) we can see that in the limit of low temperatures at
the full degeneration (5 — o0) the &(wy) — exp(—2miwyN) where N is the number
of electrons in the system. In the general case

£(wp) = exp {—2mw0N + ;(—m)"%é:ﬁl"ug(())} , (39)

where p2(0) is the statical long-wave limit of the n-particle dynamic correlation
functions of the ideal system [26]

.o . ~
M?L(xlw'wxn) = B <prlp$2"'p:vn>0' (4())

For p2(0) we have the following expression:

dr— 1 V 2 —n 3 2
=3 e = ("5 <h—m>a{Rn—%wu)-z(zn—:s)!wm},

7T2 n— 1
(41)
where Ry = 1, Ry =1 also at n > 4 we have R,, = —(2n — 7)!l.
The 1dent1ty
0
{2771(.00 + 8—]\7} exp(—2miwgN) =0 (42)
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makes it possible to integrate over variables wy and N and brings the calculation of
partition function to the following form:

z = Rz <T J@pes (730 [\/7 1<bx+bim>—%ﬁx]

v qeCq
X exp [—‘/}S(V) — ﬁpp(y) — ]T.Tep(y)} > . (43)

Hence, in the Z; as well as in the brackets (- - -), it is necessary to supply everywhere
the number of particles N in place of variables A/. The operator /A\(N ) appears at
the expense of the terms n > 2 in the formula (39) and takes into account the
temperature corrections:

A(N) = exp {Z( )7 0) afv} (4)

n>2

It is advisable to write the formula (43) to the equivalent form extracting the par-
tition function Z., of the model system which consists of interaction subsystems of
electrons and plasmons, but without taking into account the subsidiary conditions,
namely

7 = K(N)Zep<f(b,a)>ep; Zep:Z0<T§(y)>0;
<f(b,a)>ep — </ dp) exp mq;qz;wq{ N%(28)"Zag (bx+bf$)—%ﬁx] >;

<21>ep _ <T{2§(y)}>O<T§(y)>Ol. (45)

3. Equivalence of the electron liquid and electron-plasmon
models in the random phase approximation

In order to determine the correspondence of our approach to the traditional
approach of the perturbation theory over the powers of Coulomb potential let us

consider the simplest variant where gy, — 00, the short-range interaction f/ee(y) is
absent as well as the system is found in the ground state (7" = 0 K).

First, let us calculate Z,, in the RPA. It allows us to neglect the operator ﬁpp(y)
and S-matrix can be transformed into the form exp(—f[ep(y)). Unlike the zero ones,
contributions arise only in the pair orders of the perturbation theory since the opera-
tor Hep(v) is linear relatively to the plasmon operators by ,, b;u The other important
specific characteristic is the absence of divergent diagrams in any order of the per-
turbation theory. It is caused by the structure of the operator He,(v). For example,
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let us consider the contribution in the thermodynamic potential single diagram of

the second order of the perturbation theory:
1 ~
O = —— <TH2 >
A 2 25 ep(V) 0

_ _Z(%)Q(zuvﬁ?ag)—l (T{LF.}) (T{B.B..}) . w6)

Here, the average values are determinated per spectrum representation of the Green’s
functions of the electrons and plasmons [27]

- <T {ak1781 (VT)GIQ,SQ(V;)}>O - lil,sl (VI>5817525R171<26V{,V§ ;
Gp (v = {W —ect+p}™";
—(T{bb}}), = Go(v)={iv—Thwq} " (47)

According to the expressions (47),

<T {Ezéfx}% = —2hwg { (h;”—:>2 - 1} (V2 + (hwg)?}

<T{ﬁﬁx}>0 = > (ka@)(k+qq)G (V)G (v +v).  (48)

k,s v*

Performing the elementary transformation and using the summation rule over the
frequencies

513 Go () = s (49)
we find :
() ({77}, = {Neam s 0 e e o ) 6o)
where
py(a,—z) = B <T{ﬁxﬁ,x}>0=—ﬁ*ZZ*Gi,M) krqs(V )
T R (51)

— is the spectrum representation of the two-particle correlation function of the elec-
tron system without interaction in the variables “wave vector — frequency Matsub-
ara”. Non-dimensional factor I5 (g, u) at absolute zero temperature can be repre-
sented by this well-known expression [8]:

_ 1 1 2 q2 q 2 2
Lo(q,u) = 5{1+2q <1+u — 4) Zaln {<1+02> +u

o==+1
—uZarct l(14—ag> :
o==+1 ¢ u 2 ’
qg = |q|k;1; u= V(Q»qu)_l; Ep = h2k§(2m)_1. (52)
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Let us show the ground state energy of the model in the traditional form
E= Eid + EHF + Ecorr ; (53)

where FEjq is the energy of the ideal electron system, Eyp is contribution in the
Hartree-Fock approximation, FE... is a contribution of the correlation caused by
interactions (the so-called, correlation energy).

In the zero approximation of operator ﬁep(y) we can have the following expres-
sion for the correlation energy

1 N
Eégzr =35 Z {hwq —Eq— Vvq

q

1
1— N kz nkjsnk_;,_q’S] } . (54)

Summing over the frequency in the terms of formula (46) which does not have
p(x, —x) in the second order of the perturbation theory over operator He,(v) for
correlation energy, we obtain

1 N_ ¢
2 - = E e — — a
ES. = 5 {hwq Eq v Vq Fe }

q

b
23V

S V(@ —2) {(hwg)? — €2} {1 + (hwg)*} . (55)

The summation of infinite series of non-divergent ring diagrams constructed on
the operator H.,(v) brings to the following representation of the ground state of the
energy of the model:

E=FEq+ % > {mq —Eq— %Vq} + % > ) I {1 - <Tﬁgp(y)>z’”}. (56)

vV

Here, <Tf]e2p(y)> is (q, v)-component of the average <TPA[3P(V)> :

0 0

<Tﬁe2p(u)>:y =2 {N6q - % (v +¢2) pa(z, —x)} % {1+ (hwq)2}_l :

Taking into account the expressions (48), (50) after elementary transformations the
logarithm from the formula (56) has the following representation:

In [1 _ <Tﬁ1§p(y)>z’y} —In {1 + %ug(:ﬂ, —x)] 4 L),

L(z) = In {1 — [(wq)? — 2] [(hwg)? + 7] ‘1} . (57)

Let us calculate the sum over the frequency v from L(x),

“+00

Y La) = 2m) [ L)y = (g - 24). (58)

—00
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Extracting the contribution Eyp from the (56) we can obtain a familiar standard
expression for correlation energy in the RPA

1 Ve Ve
prt = oS {80 - P o} 9
q,V

that adequately describes the model in the weak non-ideality range (rs < 1). This
expression is the sum of the most divergent ordinary perturbation theory diagrams
which are constructed on the Coulomb potential [8]. It proves the total equivalence

of the electron-plasmon model and the ordinary model with Coulomb interaction in
RPA.

il Ecorr(rs)
0.2 7

s -0.00
0.1 ] scorr(rs)
-0.02-

-0.047

-0.067

-0.087]

2
-0.107

Figure 1. (a): The ground state correlation energy of electron liquid model (in
Ry per electron) in different approximations: curve 1 corresponds to (60), curve
2 is the expression of (61), curve 3 is the random phase approximation, curve 4
the results of the calculation by means of the Monte-Carlo method [9].

(b): The ground state correlation energy of electron liquid model in intermediate
and strong non-ideality region. Notations are similar to figure la.

The dependence of the ground state correlation energy of electron liquid model
in the Ry per electron (gcor(rs) = [NRY] ! Eeorr) on the parameter non-ideality

B ( 3V )ém_e2
s = A7 N h?

(the Brueckner parameter) in different approximations is shown in figures la, 1b.
Curve 1 corresponds to approximation (54) where

AO BO
corr(rs) = 3/4 7 (60)
Ts

Ts
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2T

323 1 T 1 1 v 1
By=—ni(3n) i |- — | —=-F | -, — = 0.80306....
0 5w”4<”>4{ (2’¢§) 2 (2’v§>} 0-8050

(E(...), F(...) are the elliptic integrals [23]).
Approximation (55), where

1
3 3 [9r\?
Aoz—n=§(£> —0.91633.. .,

By 32

3 3
qrd T

ggglr (TS) -

T 167, !
dqq / duly (g, u) {q4+4q2u2 + %} ,  (61)

0 0

corresponds to the curve 2. Curve 3 represents the correlation energy in the RPA
(see formula (54)) and curve 4 represents the calculation results of the correlation
energy by means of the Monte-Carlo method [9], which is basic.

The summation infinite series (non-divergent) diagrams constructed on the pow-
ers of the operator ﬁep(l/) is necessary only in the weak and medium non-ideality
region (ry < 4), which is evident in the figures. Considering the second order of
the perturbation theory over the operator of the electron-plasmon interaction in the
strong non-ideality region we obtain the result which coincides with the result in
the RPA of the ordinary perturbation theory. Therefore, it is not necessary to do
the summation of a series of diagrams over the powers of operator He,(v). It is an
interesting and profitable characteristic of the electron-plasmon model.

Let us note that we use the approximation gy — oo only for a clearer account.
In fact the result (59) does not depend on the value go. At the finite value ¢q, in
place of the formula (56), we obtain

E = 1d+—z Z 1n{1—<Tﬁfp(V)>:’y}+% Z {ﬁwq—eq—%‘/q}

v qeCq q€Cq

Z > 1n{1+ VMQ(:C —x)} (62)

v q¢Cq

According to the expressions (57), (58) we obtain

E = E1d+—221n{1+ —99(x, —x)} (63)

From the expression (63) we can obtain the formula (59).
Let us consider the factor <j(a, b)> from the (45) and its contribution to the

ep
grand thermodynamic potential in the RPA. Expanding the exponent

e tin 3 vl

qeCq
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to the Taylor series of the powers ¢, one can take into account the items proporti-
onal to the ¢qpq that correspond to RPA:

<f(a,b)>ep /(dso eXp{ quw a
X [(26043)_12@(%+bfx)(b—x+b ))ep + N6 Z (P

1,03 g ~
—(2N)E5 2 NS (T [(bs + b5,)7-a)] >ep] } : (64)
The averages in the above expression are easy to calculate in the RPA. For example,

BT PPy = 67 (T {0} ) = BT (pup-u )

+ eNg) o (T{nfu}) (T{p2k}), (%)2{1 ) <T[?I3p(u)]>:y}l
=t =) {14V Vpip(ar, o)} = ™, ). (65)

It is taken into account that
o 1 )
BemB) (T {puf e ) = —5(ea+ (e, —o), (66)

averages (T {B;B_;}),, <T{ﬁﬁx}>0 are defined by (48). The symbol ((---));

denominates the semi-invariant average over the states of free electrons and non-
interaction plasmons.
The latter term in the exponent (64) is calculated in the same way

N8 Rag (T [+ 8 e o] ) = Sl w0 (60)

Similarly we calculate one term in the exponent of (64). In the ring diagrams
approximation

(T {a 452,00 + 20 P Y = (70, 4 b%,) (b + b))

() vy (RE), ({0 )
X <T {Ex (b_s + b;)}> {1 - <T [f[fp(y)} >Z’”}_1 , (68)

therefore, one term of the exponent in the (64) is equal to 371 Y pfPA(z, —z). Thus,
the factor above pq¢p_q is equal to zero in this approximation. So the two-electron

structural factor
SEPA Z,LLRPA x,—x) (69)

0
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was calculated over the operators p, or over the plasmon operators coinciding in the
RPA. The consideration of higher diagrams in calculating the averages from (64) can
give the factor above ¢q¢_q which is not equal to zero. Differently at the calculation
of the (J(b, a))ep We must take into account the terms which are proportional to the
Py P—q, PazP—q, OF the other terms. These terms provide the coincidence of the

integrals over the variables 4. However, the basic contribution of the (J(b, a))ep
into thermodynamic potential is proportional to the 371, At low temperatures the
contribution of the (J(b, a))ep in the energy of the system is equal to zero.

4. Conclusions

As it follows from the above stated matters, we can describe the electron liquid
using the electron-plasmon model with Hamiltonian

H = H, + He, + Hy + Hpyp,. (70)

This Hamiltonian describes two different subsystem objects: the electrons and plas-
mons which interact between each other (components of (70) are specified by the
expressions (16), (22), (26)). The description of the electron liquid model in the elec-
tron and plasmon terms is completely equivalent to the traditional description in the
particle terms with the Coulomb interaction, apparently the results from chapter 3.
At first glance a paradox situation arises since the model (70) describes the physical
system with a higher degree of freedom than the traditional one

H=> e as+2V)" D Vg {pqp a N}- (71)
k,s

q7#0

However, under the conditions of thermodynamic equilibrium at low temperatures
both models give equivalent results and thus the factor (J(b,a))e, (see (45)) is of
no importance here. We can explain this fact in the following way. In the conditions
of thermodynamic equilibrium at low temperatures when the mean values of the
occupation plasmon numbers are exponentially small quantities, we do not have to
do with the real plasmons but with virtual plasmons. These plasmons (virtual) make
the interaction between the electrons. Therefore, the real numbers of the degree of
freedom coincided in the both models.

The perturbation theory over the operator of the electron-plasmon interaction
does not have the divergent diagrams. To prove the exact equivalence of both models
the summation series (non-divergent) of the diagrams is necessary to be done only
for the weak non-ideality region. The series of the perturbation theory coincides
well especially in the strong non-ideality range, as it is apparent from the results
of the calculation of the ground state energy. In this connection, the summation of
the infinite series of diagrams becomes unnecessary. Similar is the situation at the
calculation of the structural factor of the model:

Zof? (be +05,) (b0 + 7)), - (72)
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The first term in (68) gives the zero approximation over the operator ﬁep(y),

SO — hiu—qa + 2ng). (73)
q

In the second order of the perturbation theory over the operator ]/'\Iep(l/) we obtain

SP =" [(hwe)” + %] {2eq ((wq)® — €2) + N7\ pd(z, —2)[? + €22} . (74)

0.0 T T ‘ T ‘ T ‘ 1

2
(@)

Figure 2. (a), (b): The structural factor of the electron liquid model in the
ground state. Curve 1 corresponds to the zero approximation over the operator
of electron-plasmon interaction. Curve 2 is the second order of the perturbation
theory. Curve 3 is relative deviation [SEF A SéQ)][S(f'P A1,

The coincidence of the series diagrams of the perturbation theory at the calcula-
tion of structural factor is illustrated in figures 2a, 2b. In these figures the structural
factor for r; = 5 and ry, = 10 at the absolute zero of temperature is depicted.
Curve 1 corresponds to approximation (73), curve 2 corresponds to (74), curve 3
is a relative deviation [SEPA — SéQ)][Sfl{P A=, The function S asymptotically (at
q — 0,q — o0) coincides with SCI}PA which is apparent from the mentioned figures.

The next terms of the formula (56) give only corrections. The relative deviation S.gf)
from SSPA is approximately 4% in the maximum (q ~ kp) at s = 5. At ry = 10 the
relative deviation is approximately 2%.

The absence of the divergent diagrams and good coincidence of the series of
perturbation theory over the operator of the electron-plasmon interaction make the
electron-plasmon model actual for calculations of the characteristics of the electron
liquid model in the strong non-ideality region.
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EnekTpoH-niasmMoHHa Mmoaenb y Teopii eJIeKTPOHHOI
piavHN

M.B.Baspyx, C.5.CnobogsH

JIbBiBCbKWUIA HaUjiOHaNbHUIA yHiIBEpCUTET iM. |.PpaHka,
Kapenpa actpodisnkn,
Byn. Kupuna i Medogaisa, 8, 79005 JibsiB

OtpumaHo 17 yepBHa 2004 p., B OCTAaTOYHOMY BUMMSAAOi —
16 notoro 2005 p.

3anponoHOBaHO CTPOrMiA Niaxig, 40 ONnUcy Mogeni eNekTPOHHOI piavHN B
TEepMiHax eNiekTPOHIB i Ma3MoHiB. KoHLenTyanbHO Hawa poboTa 61m13b-
kKa A0 Nigxody KONEeKTUBHUX 3MIHHUX, SIKMii po3pobnsscs B poboTtax
Bboma i MManHca. MNMpoTte MU BUKOPUCTOBYEMO [HLLINK MaTeMaTUYHUIA
anapart, B siKOMy nepexif, A0 PO3LWMPEHOro NpPOCTOpYy 3MiHHMX Yac-
TUHOK Ta NJIa3MOHIB BUKOHYETLCSA 3a AONOMOrOl0 oneparopa nepexoay.
JloBeneHo, Wo y HAbNMXEHHi XxaoTU4HMX has3 MoAeNb, 9Ka CKNaaaeTbCs
i3 4BOX B3aEMOLI0HYMX MK COOOI0 MiACUCTEM E€NEKTPOHIB i MIa3MOHIB,
LISIKOM ekBiBaJiIeHTHa MoAesli eNIeKTPOHHOI PiOWHU 3 KYJIOHIBCbKOO
B33aEMOLIEI0.

KnioyoBi cnoBa: esilekTpoHHa pianHa, rnjia3moBi KOJIMBaHHS,
KopensuiriHa eHepris, oneparop rnepexoay, CTRYKTYPHWN pakTtop

PACS: 05.30.Fk
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