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The influence of the external field (electrostatic) of an arbitrary spatial configuration
on the common dynamic properties of the free quasiparticle of type of injecting in the
semiconductor or dielectric electron is examined. In the quasi-linear approximation with
respect to the external field and in the generalized approximation of flat wave in the phase
of wave function the completely agreement of simultaneous quantum description (basic)
and a description of the classical type (for the dynamics of quasiparticle) is possible.
Correlations, which save determinations of basic dynamic characteristics of quasiparticle
the same as they are in the absence of an external field established also.
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PaccmarpuBaercsa BIAMSHNWE BHEIIHEro II0JgA (9JEKTPOCTATHYECKOr0) IIPOM3BOJBLHON IIPO-
CTPAHCTBEHHOM KOH(MUIYpallMU HA CBOIiCTBA CBOOOLHON KBAa3WYACTUIBI TUIIA MHIKEKTHUPOBAH-
HOrO B MOJIYIPOBOSHUK MM AUIJIEKTPUK DJIeKTPOHA. B KBasUIMHEHHOM IPUOJMMKEHUU IO
BHEIIIHEMY MOJII0 U B 0000IeHHOM IPUOIMIKEeHN IIJIOCKON BOJHBI B (ha3e MOKHO IIOJHOCTHIO
COrJIACOBATH OJHOBPEMEHHOE KBaHTOBOe onmcanue (6a30B0€) 1 ONMcaHne KJIACCHUYECKOrO THUIIA
(o HepaBHOMEPHON NUHAMHUKH KBAaSUYACTHUIIBI). ¥ CTAHOBJEHBI TAKIKE COOTHOIIEHUS, KOTO-
pbI€ COXPAHSIOT OIPENeJEeHHSA OCHOBHBIX IMHAMUYECKHX XaPAKTEPUCTHUK KBASWUUYACTHUIBI Ta-
KAMU, KAaKUMH OHU SIBJAIOTCA B OTCYTCTBHE BHEIIHEro IIOJIH.

IIpo ocob6auBocTi y3araapHeHOI AMHAMIKM KBA3iUaCTHHKHU IIPU HAABHOCTI 30BHILIHBOTO
norenniiinoro moas. Yacruna 1. 3araasuuii ananiz npo6aemu. JI.B.Illmenvosa, AJ].Cynpyn

Posrasagaerscss BIIMB B30BHIMIHBOrO HOJIS (€IEKTPOCTATUYHOIO) MOBiJIBHOI IIPOCTOPOBOIL
rkoudirypamnii ma BaacrumBocTti BiabHOI KBalivacTMHKHM THUOY  iH)KEKTOBAHOI'O B
HAMNIBIIPOBiZHUK ab0 HielleKTPUK eJleKTpPoHAa. ¥ KBasinimilinomy HaOIMKEHHI II0 30BHIIIHBO-
My IIOJIO 1 B ysarajipHeHOMY HAOJMMiKeHHI IJIOCKOI XBMJi y (pasi MOMKHA HOBHICTIO y3roguTu
OJHOYACHUI KBaHTOBUU ommc (0asoBuii) Ta ommc KJIacUYHOTO THUIY (AJad HepiBHOMIipHOIL
IuHaMikM KBasivacTuHKu). BeraHoBIeHO TaKoM CIiBBigHOIIeHH:A, aKi 30epirarTs BusHAUEH-
HS OCHOBHMX [IUWHAMIYHMX XapakTePHUCTHK KBa3ivyaCTMHKH TAKUMH, AKHMH BOHH € ¥
BifcyTHICTDL SOBHIIIIHBOTO IIOJIA.

1. Introduction

The features of dynamic properties of free quasiparticle of type of injected into semiconductor or
dielectric electron were analyzed in the article [1]. There were shown, that these features based on one
of the main characteristics of the excited states of condensed matter — on the dispersive dependence of
energy or frequency on the wave vector [2 = 5]. An electron is here considered, which is injected into
the semiconductor (dielectric), in the external (electric) field of arbitrary, but weakly variable, spatial
configuration. It is shown that under certain conditions the quantum description and the description of

524 Functional materials, 22, 4, 2015



A.D.Suprun, LV.Shmeleva / Features of generalized ...

the classical type may be in full agreement. Thus, the description of the classic type is an element of
the wave functions as a phase summand. This summand has a sense of physical action for the point
of conditional localization of quasiparticle. The correlations that keep the determinations of the basic
dynamic characteristics of the quasiparticles the same as they are in the absence of an external field were
established.

2. Materials and methods (common remarks about dynamic properties of quasiparticles in
external potential field)

2.1. Basic relations: functional of quasiparticle in the external potential field. For further
analysis of influence of the external field on dynamic properties of a quasiparticle, we will use the standard
functional [6, 7]:

E({a}) = ZWn|an|2 +(1/2) Z/ (Mnm + WmM—n,n> (an@m + A @)

Here a,, — has a meaning of the unknown part of a wave function of the excited state of crystal, which
is to be determined by a conditions of the dynamical Hamiltonian minimization of the functional F ({a})
[8], simultaneously with its eigen-values. This condition is equivalent to the procedure of diagonaliza-
tion of the operator, which corresponds to the functional under investigation [9]. Other, known, parts of
the wave function of crystal determines matrix elementsW,, W M nn and My, . Particularly, Wy, and

wM nn — are energies, which determine interaction between excitation and the external field. For the

electron, which was injected into the conduction band in the case of a monoatomic semiconductor, they
are determined by the matrix elements:

Wa = (6 (r — ) [W(r)|gc (r —m)) = (¢¢ (r) [W (r+ n)|o (r)); (1)

Wl am = (¢ (r =n) [W(r)l¢c (r —m)) = (@7 (x) [W (r+n)|ge (r = (m —m))), (2)

where ¢ (r —n) — are the Wannier wave functions for the conduction band, which, in the case of a
monatomic crystal, may be identified approximately as wave functions of the appropriate one-electron
ion, which is centred by the spatial coordinate n. Matrix elements My, ,, determine energy of the resonant
exchange interaction, definition of which for various cases may be found in [6, 7]. Subscript “¢” within
definitions (1) and (2) symbolizes the quantum number, which corresponds to the conduction band, into
which electron was injected.

Further, we will analyze the functional F ({«}) in the approximation of the nearest neighbours, which
is typical for crystals: m = n+ b, where b,are vectors of the lattice constants (« = 1,2,3). Then:

E({a}) =Y Walan” +(1/2) > {(Mp, + Wi ) (a5anib, + anin, )} (3)
n n,o

2.2. Approximation of the homogeneous external potential field with respect to the vari-
able n. Until now, functional (3) is an accurate one with respect to the field addends W, and Wé\g o
because no assumptions were made with respect to these field addends. Energies W, and W,ﬁ\i _n are
regarded as weakly-varying within the approximation of the uniform external field with respect to the
variable n and they may be expanded in Taylor’s series near point n.. Summands, linear in relation to a
difference n — n,, are taken into account only. Vector n, is constant with respect to the variable n, but it
may depend on time ¢ because of a quasiparticle in the external field may have a non-uniform dynamics.
It is possible to assert in this sense, that n, has nature of variable of classic type (has the signs of material
point).

Thus, there are the representations:

Wﬂ ~ Wn* + {n - n*} : Jn*v Wé\g,n ~ Wé\g,n* + {n - n*} : ij\g,n*7 (4>
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where

Jn, =Va, Wha,); ij\f,n* = Vi, <Wli\i,n*> . (5)

From the point of view of the physical sense, variable n, (¢) may be interpreted as the point of condi-
tional localization of the source of field. It is obvious that in order to ensure fulfilment of approximations
(4) this point must have a certain dynamics, which is to be agreed with the dynamics of a quasiparticle.
An issue of such consistency is one of the problems solved in this article.

<< |Ja, |, which follows from the definitions (1), (2), makes it possible to simplify

Inequalities ‘J o

functional (3) and reduce it to the approximate form:

2 "~ % %
E({a}) = Z(Wn* +{n—n.} Ju,)|an] +(1/2)Z{Mba,n* (anan+ba +a’n+baa’n>}7 (6)
where the following designation is used: Mbmn* =M, + Wé\i -, - Further on, it is possible to neglect by

the field addend W} n, in the weak fields, which are characterized by the inequality My, | >> ‘Wé‘i n

Then, only My, _will be present in functional (6) instead of Mba’n*. Taking this fact into consideration
while minimizing functional (6) by means of the method of dynamic Hamiltonian minimization [1, 8], the
Hamiltonian equation of classical mechanics may be written:

dan 1 oF

da; OF

st ihen

at ik day’ BT dan’ (7)
while analyzing purely quantum factors (functional ¥ ({a}) and functions a,) as classic ones. If we sub-
stitute functional (6) into (7), we will obtain:

da,,

) 1
ih ot {Wa, +{n—n.} - Jy, }an — izo;Mba (antb, + @n-b,) = 0. (8)

Equation (8) is a complex one, therefore most general representation of its solution determined by a
record:

an (t) = én (t) - expli- I'n (t)]. (9)
Taking representation of potential energies (4) into consideration, we will also construct solution (9)
in linear approximation with respect to phase, while considering that this phase is equal to:

T t) = n-k(t) =y (1), (10)

Substantially, representation of phase in the form of (10) is the generalized approximation of the plane
wave in phase. Generality of this approximation is connected with the dependence of the wave vector
k on time ¢ and more general time dependence (if compared with w ¢ dependence) of the energy phase
addend v. Representation (10) also may be called Lagrange-Hamilton approximation in phase.

Substitution of (10) into (9), the further substitution of (9) into (8) and separation of real part from
imaginary one, leads to the system of two equations. Further on, these two equations will be analyzed
in the following approximations: cubic lattice approximation: b, = bpe,, continuous approximation of
the second order (taking into account the typical situation: M, = —|M,,|, which immediately follows
from the expression for matrix element M, ), and accounting of the transformation to the dimensionless
variables. As a result these two equations will take the following form:

o9 . o6

5, T sin(pa) s =0; (11)
1 82¢ N L
5 cos (pa) pr) + |7+ zg:cos(pg) top, =1, I, —1 - {p - Hr*}l ¢ =0. (12)
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M, boJ Wi
Here, the following designations are used: 7 = | b°|t; I, = - 0 R*; vy, = —i; Do = kabo;
h |Mbo | |Mbo |
o dp s dy . o .
P=—;v= d—; obvious overdeterminations of variables n and n, are made as well:
T T

HERnéR: (X,KZ) Ebo (:Z?l,zlig,xg) Ebol‘

n, =R, =R, = (X, Y., Z,) = by (21,22, 2%) = bor.. .

Here, x1, x5, 23 are dimensionless forms of variables X, Y, Z, and z!, 22, 22 are dimensionless forms of

variables X.,Y,, Z..

It is necessary to note that there exists the relation IT,, = V., (vy,) between dimensionless energy
vy, and dimensionless force (field intensity), which may be obtained by bringing of the first (left) relation
in (5) to dimensionless form.

Further it is convenient to use the designations, which are well-founded in [1], as the main dynamic
characteristics of a quasiparticle. Namely, to introduce such designations for the components of vector
of dimensionless velocity and for the components of dimensionless tensor of efficient mass (here — the
diagonal tensor), respectively:

Bo =sin(py), e =1/cos(ps). (13)

It should be noted that relations (13) are only designations, which yet have no any "Hamiltonian-
Lagrangian"sense, as in [1]. Therefore, purpose of the present research (at the least, one of the main
purposes) — to find the answer on the question — whether it is possible to reproduce the same sense
of these relations in the presence of an external field. Taking into consideration the designation (13)

and introducing an additional designation: y= €1, it is possible to write down equations (11) and (12),
eventually, in the following form:

d¢d .
1 0% . 1
%'@“'{“m—p}“(“@ u—ﬁ”r*‘“'“r*>¢0- 1)

Here, 3 is the vector having componentsf,,, which are determined in (13).

2.3. Solutions and their analysis. General solution of equation (14) is an arbitrary function of
variable p = r — rp. In this case, vector ro having components z§ (o = 1,2,3) will be determined by
dynamic equations of a classic type:

.
ro = 0. (16)

One of the purposes of the research consist in the consideration of the equation (16) as the equation,
which follow from Hamiltonian equations.

Equation (15), which remained, is used to find the amplitude ¢ (p). If to formulate (15) relatively a
new variable p, taking into account that rg is constant with respect to r, then this equation will take the
following form:

1 8% o 1 o

— s e =Dt (@4 > — b —r T bro- (L =B} =0 (17)
20 Op3, o Ha

Here, p, — are components of vector p = r — rg. Further it is necessary to take into attention the
dependence on time of the momentum p with components p,. Due to this fact, all addends to the equa-
tion (17) depend on time. In order to agree solutions of this equation with the solution of equation (14)
in the form of arbitrary function ¢ (p), it is necessary to make sure of fulfilment of stationary conditions
for this function provided that these conditions will ensure that no additional dependence on time 7 will
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exist (except for ro (7)) in a certain approximation, at the very least. For this it is necessary, foremost, to

define duly dimensionless energy € which, in accordance with equality ’.Y = 1, has the physical sense of
quantum eigenvalue of the examined system quasiparticle-field. This value here may, in general, depend
on time. By introducing “eigenvalue” ¢ for equation (17) with the help of following relation:

1 o
Q:E—Z—_Ur*‘f’r*'nr*_rO'{Hr*_p}7 (18)
c Ho

it is possible to reduce equation (17) to the form:

2 .
m%~g—p;j+p~{nm—p}¢+g¢o. (19)
Taking into account the stationary conditions, it is necessary that new "eigenvalue"ec must be consta
not only with respect to the variable p, but also with respect to the time. However, we do not make now
any assumptions about the dependence of this energy from time.
Equation (19) allows the separation of variables, if the energy ¢ represented as a sum, and the ampli-
tude of the wave function ¢ (p) — in the form of a product:

o]
o+

e L 3(0) = b1 (p1) ba(p2) da (p3). (20)

(o7
If to substitute (20) into equation (19) and divide the obtained result on , then for each component ¢,
in accordance with the method of separation of variables, it is possible, ultimately, to obtain a separate
equation:

1 8%, . o
’ ¢ + pa (H? _pa) o+ - ¢ =0. a=1,23. (21)
2pa 0P, ' Fhor

In this case (18) will take the form:
1

Q:__(I_Ea)_”r*‘f’r*'nr*_rO'{Hr*—I‘)}~ (22)
Mo

Now, let us consider the choice of derivatives p‘a. According to physical sense, values p, are the com-
ponents of the dimensionless wave momentum p. Therefore, in the language of classical mechanics it
comes to the formulation of the dynamic equations of motion, that will complement the equation (16),
for spot quasiparticle localized in point rq. If one will introduce some force (i, which is unknown yet and
which has components G, then such motion equation will formally take the form:

P—aG. (23)

In this case, the system of equations (21) and equation (22) takes the form:

1 8% €
= TP (1® — Q) bt 2 b, =0, a=1,2,3. (24)
o I A CE IR #y
1
O=——0—-¢e4)—vp, +r, Iy, —1p - {II,, — G}. (25)
P

In equations (24) multipliers (Hﬁ* — Ga) have sense of the components of force. At first it seems that
is necessary to suppose the difference 117 — G, equal to G, because it is the same forces. However,
actually it is not so. That is, the force is really one and the same, but it is considered in different frames
of reference. Namely, equation (23) is formulated in a global (laboratory) coordinate system, which is re-
lated to the crystal lattice. Consequently, the force (desired) has components G, in this system. Equation
(24), on the contrary, is formulated in the local frame of reference, which is connected with point ro. The
dynamics of this point determined by motion equations (16) and (23). Consequently, in the equations

(24), the components of this unknown force, which is denoted by F,,, would be possible to determine by
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the relation: 1I? — G, = F,. However, this is as well not the best choice, because, in addition, it is also
necessary to take care on fulfilment of the stationary conditions (at least approximately). It may be seen
at once that in the course of selection of components F,, with the help of the following relation:

Fo

Iy —Go = —, (26)

o
we may, firstly, cancel out multipliers 1/, in all equations (24), because these multipliers essentially de-
pend on time, and, secondly, we will get practically a transformation for the components of the desirable
force, while we do not know its value yet. In the end, equation (24) will take the form:

1 ag(boz
2 92

These equations coincide with the dimensionless stationary equations of Schrodinger for the unit mass
object in the external uniform field of arbitrary orientation (with respect to variables p,,) provided that
components of forces F,, and energies £, are constants. It is obvious, that in the cases when F, and
€4 are really constants, then stationary conditions will be complied with fully, and energies £, have an
immediate status of eigenvalue in equations (27).

Consequently, it is possible to draw some conclusions. Firstly, taking into account (26), we have for
energies (25):

+ palota teata =0; a=1,23. (27>

Q= —i(1—ga)—vr* tr, I, —ro-a 'F. (28)
/’[/OL

Here, we have taken into account that 1, are components of the diagonal tensor of the efficient mass,
which may be designate as . Then, it is possible to consider all components of factors M%Fa as com-
ponents of the vector, formed as a product of matrix ! on vector F. Secondly, we have three of the
Schrodinger equation (27) that are, at the time being, considered as stationary. It is worth to note that
even if these equations are not stationary ones, i.e. when F,, and ¢, will depend on time, solutions will
be the same, as in the stationary situation, because time is included to the equation (27) in parametric

representation. Solutions of equations (27) are known and they are of the form of [10]:

¢a(pa)vq;%{Ai<— %ﬁﬁiﬂ{pa+%§}>7 (29)

1 3
where Ai (z) = — / €Os (xy + %) dy. These solutions take such a form only in the case F,, # 0. In other
T
G

case, it is the plane wave: ¢q (pa) ~ exp (i pay/2€q).
And, at last, we have a classical motion equations (16), (23):

=8 P-G, (30)

which describe classical dynamics of some object, which is localized in point rg, if value of force G as a
function of ry is already set, as well as, if the correlation between momentum p and velocity 3 is known.
Here, such correlation determined with the help of the relations (13): 8, = sin(p,), therefore we may
raise a question about the Lagrangian-Hamiltonian nature of classical dynamics of this object.

As it was already mentioned above (after the expression (25)) forces F' and G are one and the same
force, but in different frames of reference. They remain unknown as yet, but are related by the conditions
(26), vector form of which is as follows:

M, —G=7'F. (31)

This equation is possible to interpret as the law of transformation of forces in the course of transition
from one frame of reference to another one.
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In the general case, components F,, of force F and energies £, will depend on time (particularly,
through the dynamic variables rp and p (or $8)). This will leads, in its turn, to infringement of the
stationary conditions (occurrence of additional (except for ro (7)) dependence of solution ¢ (p) on the
dimensionless time 7). It is possible to make attempt to decrease an influence of such dependence by
means of choice of "eigenvalues"e,,, for example, in the form:

o = &L F,, (32)

requiring that parameters &, would be constants. In order to clarify physico-mathematical nature of pa-
rameters &, we will substitute the value (32) into the energy &, which is determined in (20). As the result
of this, it is possible to provide this value to the form of scalar product: £ = & - i~ 'F, that is, product
of a force vector i 'F and vector of some coordinate €. In the future, it will be important that vector
&, (more exactly, its components £,) will undertake status of the eigenvalues (which are unknown yet)
instead of the value £, and that they will be subject to further determination.

As it may be seen from the explicit form of the solutions ¢, (p.), which are presented in (29), such
replacement (32) does not provide us with possibility to avoid this additional dependence on 7 completely,
if even components &, are constants. This is conditioned by the fact that dependence of the amplitude
factor and growth rate from time may be irremovable if force F is not constant in time. In this case,
there is no necessity for the time being to be anxious about constancy of vector &, which has components
&, also. But then it is necessary to investigate the conditions of quasi-stationarity, and for this is first
necessary to consider the representation (32) in (27) - (29).

Taking into account the representation (32), energy (28) will take the form:

1 ~
Q:—ZE—Y&*‘FI'*'HI'*_{ro_é}'ﬂ 1F7 <33>

equations of Schrodinger (27) and their solutions (29) will reduce to such expressions:

1 ¢
5 o o) Foga = 0; = 1,49,
3 g Tt e Faga =0 a =123 (34)
ba (pa) = AcAi(=Aaf{pa +&a}), (35)
4
where the designations are obvious: A, = ¢ AR Ao = /2|F,]- Tt may be seen that the following

correlations A, = \/2/X, or A, = 2/ A2 are fulfilled between parameters A, and A,.
Having now solutions of equations of Schrodinger (34) in the form of a (35), we will transform them (in
accordance with definition p =r —ro) into “global” frame of reference (which is connected with crystal):

b (T,70) = AgAi (= Ao{Ta — 20 +&a)) .

Now, in order to find conditions of quasi-stationarity of the entire solution:

3
¢ = [ Ao Ai(—Aa{za — 28 + &), (36)
a=1

it is necessary to return to the equation (14), taking into account that coefficients A, and A, in the gen-
eral case are functions of time 7. That is, conditions, under which signification of ¢ was obtained, satisfy
the equation (14) accurately or approximately. That is, we seek conditions under which the signification
obtained for ¢ exactly or approximately satisfies the equation (14).

If we will substitute solution (36) into equation (14) and take into account the first (left) equation
from equations (30), then it is possible to obtain such condition:

¢ }M —0. (37)

Ay [
(bz A_a - {)\a (pa + ga) + )‘ozga AZ (_77&)
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In the condition (37), differentiation of function Ai(...} is performed with respect to the variable
Na, which, in accordance with definition (35), determined by the identity: 7, = A, (po + £»). Formally,
condition (37) results to the fact that solution (35) satisfies the equation (14) accurately. However, it is
clear that accurate fulfilment of such conditions is impossible, because imposes a correlation between four
independent variables: between the time 7 and components z,, of vector r. This means that it is possible
to speek about the condition of a quasistationarity only, for example, in the form:

A, (e o ) AP (=,
63 A—a—{xa(pﬁsa)maf&}ﬁ

Because of it is inessential now within which frame of reference it is necessary to analyze this condition,
then it is convenient (for it simplification) to return to the local frame of reference (which is connected
with the point of conditional localization of the excitation rq). Variables p, do not depend on time 7 in
this frame of reference. Then it is easy to make sure that the last condition transforms into the simpler
form:

<& <<,

¢Z A_a + Uam < 6, (38)

Value ¢ in this inequality determines degree of deviation from the stationary condition (37). In these
circumstances, variables 7, p still remain independent, but range of their values is limited by the inequality
(38). It is assumed that stationary conditions are fulfilled within this range of values.

2.4. Procedure of matching of quantum and classical descriptions. The last, what must
be done in accordance with [1, 11] in order to go to the analysis of the consistency between quantum
and classic descriptions — is the performance of the necessary transformation in the phase of the wave
function ay (¢), which is determined in (9) and (10). If such transformations from "global-variable r to
a "local-variable p = r — ry were performed in [1] without any explicit reasons, then such reasons were
already obvious in [11]. There they were based on the fact that the amplitude of the wave function de-
pends on such a variable. Therefore in order to separate the quantum description from the classical we
had to go to the difference variable p = r — ry in the phase.

Thus, here we must reduce the phase part I'y (¢) of the wave function ay (¢) to variables p, + &,.
Within the continual approximation, which is used here, the phase (10) may be represented by means of
the following relation:

T

Iy (t) = paa —/QdT/7
0

where the definition ’.Y = () is taken in the account. Moving to the variables p, from variables z, in
accordance with the definition p, = zo — x§, and further to variables p, + £,, we will transform this
T

phase to the following form: I'y (¢) = pa (pa + &a) +pa (2§ — &) — [ Qdr'. As a result, the wave function
0

an (t) will be transformed to the form:

e

3
an (1) = H AaAi(=Aa{pa + €a}) exp{ipa (pa + &)}t | ~exp i |p - {ro— &} _/QdT/
a=1 0

As it visible now this function splits into two multipliers. One of it consists of three multipliers:
AaAi (= Xa{pa + &a}) exp {ipa (§a +£5 )}, which have a form of the investigated wave function of a quasi-
particle in the external field and in the local frame of reference, which is connected with point ... Conditions
of quasistationarity (38) are considered as fulfilled. It means quasi-constancy of multipliers A,, within the
limits of the accuracy, determined by parameter 6. In accordance with [1, 11], it is possible to consider
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-

the second multiplier exp {z {p Arg =&} — [Qdr’ } } as a purely classic, and go to the analysis of clas-
0

sical part of the problem. Taking into account the results, which were obtained in [1, 11], the expression

in the square brackets, must be a classic action, which determines dynamics of the point ro. That is:

2
S(t)=p-{ro—&}— [Qdr' In order to find a Lagrangian we will perform the identity transformation:
0

T

S(ry=/[ {I.) Arg—&}+p- {r.o - 5} - Q}dT/. It is obvious that with such definition of the action, the

0
Lagrangian has the form:

l:r'o~p+l3~{ro—£}—é~p—ﬂ. (39)

Derivatives ro and I.) are already determined by the motion equations (30), therefore further they are
considered as Hamiltonian variables. Because of velocity vector 8 and momentum vector p are inter-
connected by the relations (13), then it makes it possible to consider the pair of variables 3, ro as the
Lagrangian variables. Taking into consideration motion equation (30), we will reduce the wave Lagrangian
(39) to the form:

l=8-p+t{ro-&-G-p- & -0 (40)

In order to definition (40) really got a significance of Lagrangian, it is necessary to take into consid-

eration the following relation: p, = arcsin (8, ), which is inverse to the first (left) of the relations (13).
Then, taking into account the general relation between the Lagrangian [ and relevant Hamiltonian A:

[=B-p—h (41)

we will obtain, comparing (40) and (41), for the Hamiltonian of the system under consideration:

h=Q—{r—€ G+p &

This expression includes components of three arbitrary vectors: G, €, and r,. (the last of which is found
in Q only). Availability of such arbitrary vectors makes it possible to raise a question, first of all, about
coincidence of the Hamiltonian A and factor 2. Such coincidence is very important from the physical
point of view, because of the Hamiltonian of any closed system is kept in time. At the same time, factor
Q) practically plays the role of quantum eigenvalue of the same system and it must be constant in time
as well. In addition, availability of arbitrary vectors G, &, and r. makes it possible to raise a question
on the simultaneous compatibility of motion equations (30) both with the Hamiltonian s, and with the
eigenvalue €. The simplest way to ensure fulfillments of the condition:

h=Q, (42)

is to formulate the equation:

p-&={ro—¢&} G, (43)
which may be considered as one of equations for determination of vector £€. Equation (42) establish-
es that there is a possibility to study the question on providing to equations (30) the "Hamiltonian-
Lagrangian"significance on the basis of Hamiltonian equations [12]:

ro=B=Vy(Q); P=G=-V,(Q). (44)

By substituting energies € in the explicit form from expression (33) into (44), taking into account the
definition of components of the mass tensor 1/, = cos (p,) and velocity tensor 8, = sin (p, ), as well as
taking into consideration the relations II, = V, (v, ), we will obtain:

ro=B+0p; P=G +dG, (45)
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were for vectors o, and G, after performance of the not so complicated, but sufficiently cumbersome
transformations, we may obtain the following expressions in components:

[T S MR

rm (2 [(rr )1 (085) (-0 5 5))

In order to reduce cumbersome record, into these expressions were inserted the vector ®, having
OTl,
components: ¢, = (r* . - >
oz
It may be seen that dynamic equations (45) and equations (30) have different right-hand parts and
the first condition arise immediately as follows (here we may consider this condition as a main):

op = 0. (47)

This condition is considered as basic, because its unconditional implementation provides automatic
saving of all the definitions of the main dynamic characteristics of quasiparticles obtained in [1] (speed,
mass, etc.).

The second condition, which was already discussed above, is connected with the equation (43).
This condition will ensure fulfillment of the equation (42): h = €.

The third condition, in analogy to first condition, follows from the comparison of dynamic motion
equations (45), (30) and reduced to the requirement: §G = 0. It is possible to present this requirement
in the explicit form as follows:

i 'F -G =o0,,, (48)

where oy, similarly to the definition (46) for o, denotes the vector, which has the following components:

And, in the end, the fourth condition is the condition (31), which it would be better present here
in the following form: i~ !'F + G = II,., and which would add the condition (48) in order to transform
it into the system of linear algebraic equations with respect to the forces F and G:

p'F+G=11,,; (50)

pF -G =o,,, (51)

if only subsystem (51) itself would not create the system of differential equations with respect to the
vector F, as it may be seen from the expression (49).

3. Conclusions

Was fulfilled the analysis of the dynamic properties of quasiparticles of type of injected into the
semiconductor or insulator electrons in an external electrostatic field of general spatial configuration. To
separate the properties under consideration from other factors, was used the most simplified model of
the crystal (nearest neighbors, a cubic crystal lattice, the continuum approximation of the second order).
Analysis of these dynamic properties of quasiparticles carried out in a uniform external field approxi-
mation (with respect to the quantum description) and in the generalized approximation of plane wave
in the phase. The generality of approximation of plane wave in phase is expressed in that, the wave
vector and energy phase summand are functions of time and they must be determined. It was shown that
only in a generalized approximation of a plane wave in phase is implemented Lagrangian-Hamiltonian
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dynamics of quasiparticles in the usual forms (for example, in the relativistic form). In the presence of an
external field, just as in the case of free quasiparticles, can be fully harmonize both the existing methods
of describing the dynamics of quasiparticles (quantum and classical).
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