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In the case of minor mergers analytical solutions of kinetic Smoluchowski equation with a source that corre-
sponds to separation of galaxies from the general expansion of the universe have been found. The solutions describe
the explosive evolution of galaxy mass function in the presence of the dark matter. The evolution of power-law
asymptote at large redshifts is discussed.
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introduction

The �sudden� appearance of massive galaxies at
z = 6 discovered in ultra deep Hubble and Subaru
�elds [1, 7] (see also [4]) and observations of the sec-
ondary ionization �nal stage at the same time period
[6] (see review [5]) as well as the quasars appearance
epoch [13] can evidence for the explosive galaxy evo-
lution while merging [3, 12], see also references in the
review [8] and in our previous paper [9]. The new
results on the role of mergers for galaxy evolution
were presented at JENAM-20111. The observed fast
evolution of a number of massive galaxies can be ex-
plained by the explosive evolution of galaxies in the
process of mergers in the presence of dark matter in
galaxies.

In the case of predominance of the merging of
massive galaxies with the galaxies of small masses,
the integral kinetic equation is transformed to a dif-
ferential form. This �rst-order equation in partial
derivatives is solved by characteristics method. In
some cases of physical interest it is possible to ob-
tain the analytical solutions describing the explosive
evolution in a closed form. Comparison of the explo-
sive solutions with observational data will allow to
make certain conclusions about the presence of the
dark matter, and also about interaction of galaxies,
taking into account the dark matter contribution.

the method of calculations

Below we study the explosive galaxy evolution re-
sulting from the merger process with a low mass in-
crease (minor mergers) assuming that along with the

low-mass background, there exists a source Φ(M, t)
of relatively high-mass galaxies, separating from the
general expansion. In this case we may consider the
Smoluchowski kinetic equation (KE) for the mass
function (MF), f (M, t), in the di�erential form sup-
posing that the main contribution is due to mergers
of the low-mass galaxies with the massive ones with
the merging probability for the process M1,M2 ⇒
M = M1 + M2 such that 2U (M1,M2) ' CMu

1 for
M2 � M1,

∂

∂t
f (M, t) + CΠ

∂

∂M
[Muf (M, t)] = ϕ (M, t) ,

Π = Π(t) =

∫
dM2M2f (M2, t) . (1)

Using the method of characteristics we �nd the
KE solution f (M, t) = fs (M, t) + fin (M, t):

fs (M, t) = M−uK

(
τ (t) +

1

(u− 1)Mu−1
, t

)
, (2)

fin (M, t) =
[
(u− 1) τMu−1 + 1

]− u

u−1 ×

× f0

{
M

[
(u− 1) τMu−1 + 1

]− 1

u−1

}
, (3)

where it is assumed that the source is localized,
Φ(M, t) = Muϕ (M, t) = δ

(
M − M̄ (t)

)
Φ(t), τ =

τ (t) ≡ C
t∫
0

dtΠ(t), the function K (a, t) is de�ned
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by the following integral relation:

K (a, t) =

t∫
0

dtδ
[
µ (a, t)− M̄ (t)

]
Φ(t) =

=
∑
n

Φ (tn) θ (t− tn)

∣∣∣∣ ddt [µ (a, t)− M̄ (t)
]∣∣∣∣−1

t=tn

,

µ (a, t) = [(u− 1) (a− τ (t))]−
1

u−1 , (4)

where, tn denotes roots of the equation µ (a, t) −
M̄ (t) = 0, and f0 (M) = f (M, 0) is the initial distri-
bution. The main problem for obtaining the solution
consists in solving the equation for µ (a, t), which
gives us zeros of the corresponding delta-function
in (4). For a simple case (u = 2, M̄ (t) = t/A,
Π(t) = Π = const) the solution was considered in
[10]. Here we discuss much more general case with
u > 1, M̄ (t) = ts/A, A > 0, Π(t) = Π = const.
Respectively,

τ (t) = CΠt,

µ (a, t) = [(u− 1) (a− CΠt)]−
1

u−1 , (5)

and the principal equation, µ (a, t) − M̄ (t) = 0, be-

comes [(u− 1) (a− CΠt)]−
1

u−1 − tsA−1 = 0, or

1

a− CΠt
=

u− 1

Au−1
· t(u−1) s. (6)

For a > 0 the left-hand side is a hyperbole with
a vertical asymptote, t = tas (a) = a (CΠ)−1, and
only this case is of interest. If s > 0 the r.h.s. is a
growing power function. Then the lines de�ned by
the left and right-hand sides do not intersect, inter-
sect at two points, or possess a single contact point,
i. e., Eq. (6) can possess none, two, or one double
root. Let us �nd �rst the double root condition. At
the contact point along with equation (6) its time
derivative holds true also. This additional condition
in terms of the logarithmic derivative is

CΠ

a− CΠt
= (u− 1) st−1. (7)

Therefore, for the tangency point, t = ttan, we obtain
from equations (6)-(7):

t
(u−1) s+1
tan =

s

CΠ
Au−1. (8)

This time value speci�es the corresponding (critical)
value of a = acr:

CΠ = acr (u− 1) st−1
tan − (u− 1) sCΠ,

or

acr = CΠ

[
1 +

1

(u− 1) s

]
ttan =

= CΠ

[
1 +

1

(u− 1) s

] [ s

CΠ
Au−1

] 1

(u−1) s+1

. (9)

Noteworthy,

tas (acr) = acr (CΠ)−1 =
s (u− 1) + 1

s (u− 1)
ttan.

Speci�cally, for s = 1 and u = 2 we get (cf. [10]):

ttan =
√

A/ (CΠ), acr = 2
√
ACΠ,

tas (acr) = 2ttan, (s = 1, u = 2). (10)

Thus, for a > acr we obtain two roots, t− < ttan,
t+ > ttan, and for a = acr we get one double root,
t = ttan. It is convenient to introduce the normal-
ized variables, ã = a/acr, T̃ = t/ttan. Then the basic
equation (6) becomes

1

ã− (u− 1) s

(u− 1) s+ 1
T̃

= [(u− 1) s+ 1] T̃ (u−1) s. (11)

As it was shown in the above speci�c case (u = 2,
s = 1) the explosive evolution corresponds to the

vicinity of the point ã = 1, T̃ = T̃tan = 1, where
the delta-function argument possesses double root.
Therefore, let us seek the solution of Eq. (11) for
ã = 1 + δã, 0 < δã � 1. Then we arrive at two

real roots, T̃± = 1 + δT̃±,
∣∣∣δT̃±

∣∣∣ � 1, which in the

lowest in δã order are as follows:

δT̃± ' ±

√
2

ã− 1

s (u− 1)
. (12)

Now we can proceed with the Smoluchowski
KE asymptotic solution in the region 0 < τ (t) +

1

(u− 1)Mu−1
− acr � acr. For this aim we have to

simplify expressionK (a, t) for a = acr+0. Following

(4) we proceed for tn = t± = ttan

(
1 + δT̃±

)
:

K(a, t) =
∑
±

Φ(t±)θ(t− t±)×

×
∣∣∣∣ ddt [µ(a, t)− M̄(t)

]∣∣∣∣−1

t=t±

' Φ(ttan)
∑
±

θ(t− t±)×

×
∣∣∣∣ ddt [µ (a, t)− M̄ (t)

]∣∣∣∣−1

t=t±

,

|a− acr| � acr, (13)
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where it is supposed that Φ(t) is rather smooth. To
calculate the derivative entering Eq. (13) it is neces-
sary to take into account that[

µ (acr + δa, t±)− M̄ (t±)
]
= 0,

d

dt

[
µ (acr + δa, t)− M̄ (t)

]∣∣∣∣
t=ttan+δt±

'

'
[
d

dt
µ (acr, t)−

d

dt
M̄ (t)

]∣∣∣∣
t=ttan+δt±

' ±q
√
δa,

(14)

where the term linear in δa is omitted as compared
with that linear in δt±. The coe�cient q is rather
complicated, but it depends only on the parameters
of the problem, u, s, A, C and Π, and thus it does
not in�uence the mass and time dependencies. Pro-
ceeding with K (a, t) we obtain

K (a, t) ' Φ(ttan)

|q|
√
a− acr

×

×θ (a− acr)
∑
±

θ (t− ttan − δt±) , |a− acr| � acr,

δt± = δt± (a) = ±ttan

√
2

a− acr
s (u− 1) acr

. (15)

Substituting now a = CΠt +
1

(u− 1)Mu−1
into

the source governed part of FM (and changing, re-

spectively, δt± (a) by δt± = ±ttan

√
2

δa (M, t)

s (u− 1) acr
,

δa (M, t) ≡ CΠt+
1

(u− 1)Mu−1
− acr) we get

fs (M, t) ' M−uΦ (ttan)

|q|
√

δa (M, t)
θ (δa (M, t))×

×
∑
±

θ (t− ttan − δt±) , 0 < δa (M, t) � acr,

δt± = ±ttan

√
2

δa (M, t)

s (u− 1) acr
. (16)

In the large mass region, M∗ << M <

Mmax (t) = [(u− 1) (CΠ t− acr)]
− 1

u−1 , Mmax (t) →
∞ at t → tas (acr) = acr/(CΠ) ≡ tcr, the applicabil-
ity condition, 0 < δa (M, t) � acr, holds true for

0 < CΠt− acr � acr , or t ' tcr − 0. (17)

In this asymptotic region the source governed
term of the mass function is of power-law type

f (M, t → tcr) ∝ M−α with the universal exponent,
α = (u+ 1) /2,

fs (M, t) ' 2
√
u− 1Φ (ttan)

|q|
×

× θ

(
CΠ t+

1

(u− 1)Mu−1
− acr

)
M−u+1

2 ,

acr �
1

(u− 1)Mu−1
� CΠ t− acr > 0,

t → tcr =
s (u− 1) + 1

s (u− 1)
ttan. (18)

In the general case we have the explosive evolu-
tion with power-law asymptotic behaviour at high
masses �M → ∞�: fs (M, t → tcr) ∝ M−(u+1)/2.
The MF spectral index α depends only on the merg-
ing probability index u contrary to tcr and Mmax (t),
which depend on all parameters. For small masses
u = 2 and within the asymptotic region we obtain
fs (M, t) ∝ M−3/2. For gravitational focusing and
Tally-Fisher or Faber-Jackson laws u = 3/2, and for
the MF we obtain α = 1.25, which agrees with the
well-known from observations value for z = 0.

The observed growth of the MF power index with
z increase (up to α ≈ 2 at z > 6 [2]) may result from
the evolutionary change of the merger mechanisms.
The steepest MF may arise due to the evolution of
the initial distribution fin, Eq. (2-3), with α = u = 2
for large z values and relatively small masses. At
lower z and larger masses the gravitational focusing
results in α = u = 1.5. The source-governed term
of MF, Eq. (4), results in α = 1.5 for u = 2 (small
masses), and α = 1.25 for u = 1.5 (large masses,
gravitational focusing). The latter corresponds to
z = 0.

conclusions

The galaxy merger process possesses the �explo-
sive character� due to the coalescence probability de-
pendence on the galaxy masses such, that the prob-
ability grows with mass faster than its �rst power.
As a result, there arise critical time moments corre-
sponding to di�erent epochs of the massive galaxies
formation. The power-law MF asymptotic behaviour
corresponds to the observational data [2].

If the assumption about the discovery of explosive
evolution of galaxies through mergers is con�rmed,
it will give not only new opportunities for studies of
galaxy evolution, but also the new data on the hid-
den mass and the dark matter in galaxies, which has
signi�cant in�uence on these processes.

More detailed description and evaluation of max-
imal masses see in [11].
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