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We compute the free energy for two rows of localized adsorption sites
embedded in a two dimensional one-component plasma with neutralizing
background density p. The interaction energy between the adsorption sites
is repulsive. We also compute the average occupation number of the ad-
sorption sites and compare it to the result for a single row of sites. The
exact result indicates that the discretization does not induce charge asym-
metry and no attractive forces occur.
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1. Introduction

The subtleties of electrostatics in condensed matter theory represent a formidable
and never ending challenge. One topic of much recent activity, has been the attrac-
tion between two macromolecules of the same charge [1]. One mechanism that has
been proposed invokes charge asymmetry related to the formation of lattices or
Wigner crystals [2,3]. One problem with this picture is that it will create a dipole
that is inconsistent with the perfect screening sum rules (Blum et al.[4]). While the
formation of Wigner crystals under special conditions is an experimental fact, the
question of the large asymmetry in the charge distribution needs clarification. As
has happened in the past the exact solution of the two dimensional Jancovici mod-
el [5] can provide an unambiguous answer to the puzzle. The interaction between
two equally charged lines ( which are charged surfaces in 2 dimensions!) has been
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discussed using the exact solution, and is always repulsive [6]. Here, we study a dis-
cretized version of this problem, namely two lines of discrete adsorption sites, where
the adsorption potential is given by the Baxter [7] sticky potential. To do this we
extend the localized adsorption model of a single line [8] to the case of two lines of
discrete adsorption sites. This extension is non-trivial, and as in a similar case dis-
cussed in the past, has a simple solution for what we would call a “commensurate”
lattice [9], namely the spacing of the adsorption sites is such that the background
charge of the enclosed area corresponds to an entire number of discrete charges.

2. Formalism

2.1. Modeling the adsorption

Following Rosinberg et al. [8], the adsorption potential for a sticky site located
at the origin, given by u,(r), is modeled as

exp [—fuq(r)] = 1+ Ad(r), (1)
where A is a positive constant that measures the strength of the adsorption poten-
tial [7].

The partition function for a system of adsorption sites with locations given by
the vectors R,, is given by

N M
1
— 716‘/ (1‘1,---,1‘ ) PR 2 .
Zn = N!/e g N ||1{ 1+)\m§:1: §(r; Rm)] d n}, (2)

where Vj is the potential energy of the one-component plasma in the absence of
adsorption sites. Expanding in powers of ), it has been shown [8] that the partition
function can be written in terms of the n-point correlation functions as

M
2\S
ZN:ZR[Z Z gp(Rmu"'Rms)’ (3)
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where Z% is the partition function of the unperturbed system.
The difference in free energy from the unperturbed system is the logarithm of
Zn/ZY, and is given by

AF = —kgT ) T (4)
s>1
where
M
Ts == Z pT(lea"' 7Rm2>7 (5)

mi,,ms=1

and where pr gives the truncated n-body correlation functions,
pr(r1) = p(ry),

pr(ri,r2) = p(ri,r2) — p(r1)p(ra),
pr(ri,To,r3) = p(r1,r2,13) — p(ri,T2)p(r3) — - (6)
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2.2. Correlation functions of the one-component plasma

The exact solution to the one-component plasma found by Jancovici [5] for cou-
pling parameter I' = Z2%¢%/(kgT) = 2, where Z is the ion valence and e is the
elementary charge of an electron. The n-point density correlation functions are giv-
en by

p(rla T rn) = Pn det |:ei7rp(|zf‘|2+‘z’v|2)/2+7fpzu2“/]

(7)
“77:17"' O

Here, p is the background charge density, z = x 4 iy where x and y describe coordi-
nates on the plane, and Z its complex conjugate. After some algebraic manipulation,
we can rewrite this expression as

pry, 1) =p* Y sen(o H J — o) Px (Tj: To(s)), (8)

JESn

where S, is the group of permutations on n letters,

T
po(r) = exp (—7r2> , 9)
and px(r, ') =exp[—imp (r x ') - 2]. (10)
The truncated correlation functions, pr(ry,--- ,r,) are computed by restricting the

sum over o in equation (8) to n-cycles.
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Figure 1. Two infinite lines of adsorption sites separated by a distance d and
having periodicity a.

We suppose that the two lines of sticky sites with periodicity a are separated
by a distance d (see figure 1). We describe the sticky site locations by introducing
integer variables n; and Ising variables ¢; that take on a value of either 0 or 1. Then
any R; can be written as

Since we are calculating the sums over all the positions of the particles, all n-
cycles are equivalent by a suitable relabeling of the summation indices. This leads
to the general expression

Ts = p s — 1 Z Zpo my,01 m2,52)p0(Rm2,52 - ng, 53) T

M1,

XpO(Rms,5s - le,él)pX(le,(Sl’ Rm2,52)pX(Rm2,52’ Rm3,53) o PX (Rm3765’ Rm1,51)'
(12)
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3. Free energy

We first consider px (R, Rs), and substitute in the adsorption site positions from
equation (11). This gives

px (R, Ry) = e~ mpad(md2=dima), (13)
For the particular choice of background charge density
p = 2m/(ad), (14)

where m is a positive integer, px = 1 when evaluated on the adsorption sites. We
therefore specialize to densities where this simplification occurs.
We also find that (R; — Ry)? = a®(ny — ng)* + d?(6; — 02)?, leading to

T, = (s — DI(=1)" 3 e lmm o nmm ) § o=t (018t =i (15)
My, 01,

where t = wpa®/2 and ¢ = 7pd? /2. Since the sum over the n; and the sum over the
0; decompose, we can evaluate the sum over J; using a transfer matrix. We define
the transfer matrix, 7', to have the components

1 e*ﬂ'pd2/2
T:(emm 1 ) (16)

T, = p*(s — DI(=1)%tr(77) Y e tlmmmttinem), (17)

nl?“'

Then

Diagonalizing 7 gives the eigenvalues Ay = 1temrd*/2, allowing us to take the trace

easily. Notice that the decoupling of the Ising variables, §; and integer variables, n;
only decouple at densities given by equation (14). At other densities, these additional
couplings between the n; and §; complicate the evaluation of the transfer matrix
trace.
The sum over the n; can be expressed in terms of Jacobi theta functions [8],
where the Jacobi theta function is defined as
o0

O5(C.t) = Y el (18)

n=—oo

First, notice that

Jacoscn= 3 oot (19)

ni, - Ns—1

for s > 1 and [ d¢ 65(¢,t) = 1. This leads to the expression

7= s = D=1 [(1 e 2 (1= ey [ acon (Cmpat/2)° (20)
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Substituting this into equation (4) leads to a sum of two series, both of which are
absolutely summable when [Ap(14e~™%/2)§(0,t)| < 1. By analytic continuation, we
extend this sum to the full range of parameters, leading to the free energy difference
between the OCP with and without adsorption sites given by

Af = ’fsf d¢ In [{1 + Ape~ (™ /2, (C,Wpaz/Q)}Z
- )\2,026_””‘129% (¢, Tpa’/2) } . (21)

In the limit that d — oo, we expect the free energy to be a sum of the free
energies of two independent lines of sticky sites. Indeed, this limit yields

kgT
Afimoe = =275 A [1+ Apbs(¢, mpa®/2)] . (22)
0
In the opposite limit, d — 0, we expect the free energy to agree with that of a single
line of adsorption sites with a potential given by 2\. It is easy to see that the free
energy in this limit is
kgT

Afao = ——5 dg In [1+ 2Xpf5(¢, mpa®/2)] . (23)
0

Written in terms of the dimensionless constants ¢ = mwpa?/2 = 7wa/d, t' =
npd?/2 = wd/a and A = A\p = 2)\/(ad), we find the change in free energy as the
adsorption sites approach each other, AF = Af — Af; ., to be given by

~ keT 1+ A(1+e)05(¢, 1)
AP = 3 dg " { 1+ Af3(¢, ) }
kT 1+ A(1—e")05(¢, 1)

@ Jy A ey 24

Recall that this free energy is only valid when pad/2 = m for any positive integer
m. Thus, we can compare the free energy of states with the same lattice constant
a and background charge density p, only for integer multiples of some specific valid
separation d. To be more specific, suppose we have the free energy at some density
such that pad/2 = 1 and separation d, then at separation md in the same background
density, we have pad/2 = m. Thus, the free energy formula equation (21) will be
valid only for integer multiples of d.

In figure 2, we plot AF' as a function of d for two values of the background density,
p, given by pady/2 = 1 and pady/2 = 5, where dy = 0.1a is the smallest value of
d. The lines of adsorption sites are always repulsive. For larger d, AF becomes zero
quickly. In figure 3, we plot AF as a function of d for different values of \a?. As
the depth of the potential increases, the repulsive strength of the interaction also
increases. This is indicative of the adsorption sites pinning charge on them, leading
to their repulsion.
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d

Figure 2. A typical set of free energies Af — Afj_o with background density
pady/2 = 1 (circles, solid lines) and pady/2 = 5 (stars, dotted lines). Here, d is
measured in units of a and is an integer multiple of 0.1a. We further set Aa? = 100.
The lines are guides to the eye.

AF/ (KB T)

0.002 0.004 0.006 0.008 0.01
d

Figure 3. A typical set of free energies Af — Af; .o with background density
pady/2 = 1 for values of A\a? = 0.001 (squares, dashed line), 0.1 (stars, dotted
line), 10 (circles, solid line). Here, d is measured in units of ¢ and is an integer
multiple of 0.1a. The lines are guides to the eye.

Finally, we compute the average occupation number of a site. This is given by [§]

2, 0 Af
(n) = —a )\ax\k‘BT. (25)
This is plotted as a function of Aa? for in figure 4 for two lines with separation
d =0.1a and pad/2 =1 (solid line) and for a single line of adsorption sites (dashed
line).

It is clear from figure 4 that the repulsion inhibits the adsorption of the ions.
However, the separation d = 0.1a is very small. At separations on the order of the
site spacing, there is no appreciable difference in the fraction of occupied sites as a
function of \.
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0.02 0.04 0.06 0.08 0.1
A a?

Figure 4. The fraction of occupied sites as a function of Aa? for two lines separated
by a distance d = 0.1a with pad/2 = 1 (solid). This is compared to the fraction of
occupied sites for a single line of adsorption sites at the same background density
(dashed line).

4. Average density

In this section, we will compute the average counterion density at an arbitrary
point Ry. We can find the density directly by fixing the position of one of the ions.
This will require the computation of the quantity

= Z >3 H po(Rj: =R () px (Rj, Rojy), (26)
Rs j=0
where the sum is over all s-cycles o. Then the average density is given by [8]
(p(z i ET (27)
p(To, Yo)) s o] o

where xy and gy are the components of Ry.
For mpad = 2mn, n an integer, and for R; = an;& + dé;y, equation (26) decom-
poses into the product

T, = p sl (1) TTS, (28)

where
T = Z o TPEE /2= (mpa® [2)[nT+(n1—n2)+- 4 (ns -1 =) 2 +nZ] y—mpazo (n1+ns)+Hmpayo (n1—mns)
o (29)

and
T® = Zefﬂpy?)/2e*(ﬂpd2/2)[5f+(51*52)2+---+5§}e*ﬂpdyo(51+55)eiﬂpd(51*55). (30)

6105
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Defining z = x( + iyp and Z its complex conjugate, we find that

Ts(l) — Z e—ﬂ'px%/Q —t[n2+-+n24(n1+-ns)? —ﬂpa(nlz—nsé).

ny- N

Using the transfer matrix 7 and defining a new diagonal matrix,

M = ( (1] eﬂpd2/2+79pdyo+i7rpdxo > )
and its complex conjugate M, we find
T = ™%/ 2t (T MT M)
for s > 1 and T(Q) e TPY/2, Evaluating T gives

T = NG () + X70_(2)].

where

4G4 (z) = exp (—mpyg/2) (A4|1+ AP + A1 — A]?)
and

AG_(2) = exp (—mpys/2) (A-11+ AP + A4 [1 = AP),
and

A = exp (—mpd*/2 + mpdyo + impdzy) .

Using the results of Rosinberg et al. [8], we can compute T

F(C%t):%{@s [C e t}ﬁg lg—f-—t t}+93 [C—ﬂ t}eg [Q—;Z—tt

This gives

in terms of

(32)

(33)

(34)

T, = (=1)°slp" ™ [NT'GL(2) + X TG_(2)] ¢/ /1 d¢ 057 1(¢, ) F(C, 2, ). (35)

0

Using equation (27), we find the average density

- J— F((,z,t)
(p(z)) —p = —AG(z / g + ApAs65(C,t)

2 —7rpa:0 C”Z t)
A / RS ES VWA

Finally, we note that
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-1

<p>-p

Figure 5. (p) — p as a function of yg for zp = 0 in units of a. Here pad = 2n and
Ap = 8. We show d = 0.25a (solid), d = 0.5a (dashed), and d = la (dotted).

and

+ A {ef’r’)yg + e PWo—d)® _ og=melygt(yo—d)®]/2 COS(WdeL'O)} . (38)

Notice that, for mpad = 27n, the periodicity of G4 (g, o) in zg is always com-
mensurate with the lattice spacing a. In figure 5, we plot (p) — p as a function of y,
for xp = 0, pad = 2n, and Ap = 8 and for a variety of different spacings. Notice that
the density has two peaks for large separations but a single peak as the separation
d becomes smaller than the periodicity a. As a function of xy, the density is always
periodic with period a.

5. Discussion

The main conclusion of our calculation is that for the geometry that we have
chosen no attractive forces are induced by the discrete structure of the charged line.

The derivation of AF is valid for d taking values that are integer multiples of
2/(ap). Further, equation (21) gives the correct free energy for d = 0 (as we have
already seen). It is conceivable, then, that equation (21) is correct for all values of
p and d.

One of the features of this model that makes an exact evaluation possible is that
a density p can be found such that the Ising variables §; and the integer variables
n; are uncoupled. When pad # 2m for an integer m, a coupling does indeed arise
that makes the computation of the free energy more difficult. Additionally, if the
adsorption sites are not aligned, an additional Z §; Aa component arises in R;, where
Aa measures the degree of misalignment. This component introduces a coupling
between the n; and §; that will be discussed in future work.
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B3aemogpaia Mk ABOMa psaaMm noKani3oBaHUX
aacopoOUiIiHMX LeHTPIB Y ABOBUMIPHIN
OAHOKOMIMOHEHTHIN nNnasmi.

K.O.Cantanoxeno?!, J1.Bniom?

1 YuisepcuTeT MeHcinbeanii, Pinagensdis 19104, CLUA
YHiBepcuteT lNyepTo Piko, MNMyepTo Piko

OtpumaHo 2 rpyaHa 2004 p.

Mwn po3paxoBYEMO BifIbHY €Heprilo N9 OBOX PAAIB JIOKani3aoBaHUX
aACcopOUIfHMX LUEHTPIB, BCTABNEHNX Y ABOBUMIPHY OOHOKOMMOHEHTHY
nnasmy 3 ryCTMHOIO HenTpanisyto4oro ¢oHy p. EHepria B3aemogiji mMix
aACOpPOUIMHMMM LLEHTPAMM € BiALITOBXYBa/IbHOWO. MU TakoX po3paxoB-
YEMO CEPEHE YNCNO 3aMNOBHEHHS aACOPOLINHNX LEHTPIB i MOPIBHIOEMO
MOoro 3 pesynstatoMm A9 OOHOro psay ueHTpiB. ToyHu pesynstar
nokasye, Lo AMCKPEeTU3alis He CNPUYNHSIE 3apsn0BOi acUMETPIi | He
BUHUKAIOTb CUN NPUTSraHHS.

Knio4oBi cnoBa: 0JHOKOMIMOHEHTHA r/1a3ma, J10kasizoBaHa afgcopouis

PACS: 61.20.Gy
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