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In this paper we consider the Lagrangian formulation of a system of second
order quasilinear partial differential equations. Specifically we construct a
Lagrangian vector field such that the flows of the vector field satisfy the
original system of partial differential equations.
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1. Introduction

Variational principle has played a fundamental role in the foundation of math-
ematics and physics. Minimization of an action integral by means of a Lagrange
function gives rise to the set of Euler-Lagrange equations (ELs). Invariance of the
action integral or ELs is intimately related to conservation laws [1]. It is well known
in Lagrangian mechanics that the flows of the Lagrangian vector field satisfy ELs
[2], where the set of ELs form a system of second order ordinary differential equa-
tions. In this paper we consider the Lagrangian formulation of a system of second
order quasilinear partial differential equations in terms of ELs. Our objective is to
construct a Lagrangian vector field X, such that the flows of X7, satisfy ELs. We
believe that this work is still lacking in the literature.

Let B, be an open set in E, with smooth boundary 9B, and let z = (2!, 22,

.., x™) be the coordinate cover of B,,. Consider the following system of second order
quasilinear PDEs:

Fi(, f€,0,f)0:0; f* + Galz, ¢, 0.f¢) = 0, (1)

where a,b,¢ € [1,2,..., N] and {F4, G,} are given functions. In (1) we have adopted
the conventional summation notation for repeated indices. The solution set of (1) for
the N functions f® can be viewed as a map ® from the base space B, to the graph
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space G = B, x Ry with coordinate cover (z,u*),1 < a < N. The map ® is said to be
aregular map if ®* 1 # 0, where ®* is the pull back map of @, 4 = dz'Adz?A. . .Adz"
is the volume element of B,,, and A is the exterior product of differential forms [3].
Next we imbed the graph space G in a larger space M = G x R, n with coordinate
cover (z,u® y®). We furnish M with N contact 1-forms w® = du® — y¢da?, where
A (dw®)® # 0, and (dw®)"*! = 0. Here (.)™ denotes the m'™ exterior power.
Then we extend the map ® from B, to M under the conditions ®*u # 0 and
P*w® = 0. Since P*w® = O*(du®) — O*(y?)®*(dz’) = df* — *(y?)dz' = 0, we
have ®*(y¢) = 0,f%, that is, the pull back of y¢ from M to G is 0;f* In the
following discussions we say that ® : B, — M is a regular map if ®*u # 0 and
®*w®* = 0. From geometric point of view, a regular map ® has the representation
O |2t = a2t u = fox),y" = 0;f*(x). It defines an n-dimensional section of M.
Based on the system of PDEs in (1), we define the system of n-forms {E,},

E, = Féi(xa u’, y1§>dyzb AV Ga(xa u’, y/i),ua (2)

where p; = 0;0p, 1 is the inner multiplication between the partial differential oper-
ator 9; and the n-form y, such that, d;.dz" = &;. Then

O E, = {F(x, f,00f)0:0;f* + Gal, f°,00f) 1.

Hence regular maps ® solve the system of PDEs (1) if and only if ®*E, = 0.
Therefore, instead of considering the system of PDEs (1), we concentrate on the set
of n-forms {E,} and consider regular maps ® such that ®*E, = 0.

2. Lagrangian formulation of PDES

The solution set {f“(z)} forms the states of the system of PDEs (1). Suppose
the system has a smooth Lagrangian function L(x, f*(x), 0;f*(z)). Define the action
integral A[f?] of the system by

Alf] = / Liz, f*(x), 8:f* (@) (3)

n

Lift the Lagrangian functionL from the graph space G to M so that L(z,u®, y¢)
is defined on M. Then ®*L(z,u® y¢) = L(z, f*(x),0;f*(x)). We also define the
Euler-Lagrange n-forms E,(L) by

Eo(L) = Lyapt — (dLys) A pi (4a)
which can be rewritten as

Eu(L) = Lyopi — {(Lyiaub)dub + (Ly?y;?)dy?} A i (4b)

Here Lya,» = L/ (0ubdy), Lye,p = 0L/ (0yb0y¢). Assume that L is independent of
x explicitly. Further assume that the values of { f%(x)} are specified on the boundary
0B,. It can be proved that a regular map ® : B, — M stationarizes the action
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integral A[f¢] if and only if ®*E,(L) = 0 at every interior point of B, [4]. Hence
®*F,(L) = 0 yields the Euler-Lagrange equations

oL oL

o =Pilaam) 1SN 8
where o b i o g 0

D; = (@f ) dfb + (ala]f ) 6(8jfb)

is the total derivative operator.

Now we consider the existence as well as the construction of the Lagrangian
function L on M. To this end, we let V, = G,,dV} = —F;{)dyj, and Q, = Vyu —
dVP A p;. The system {Q,} is said to admit a variational principle if and only if
there exists a Lagrangian function L(z,u® y¢) defined on M such that V, = Lya
and V; = Lya. Set Q = Vodu® + Vidyy. Then Q = dL and Q A = d(Lp) is a
closed (n 4 1)-form. On the other hand, if Q@ A u is a closed (n + 1)-form, it can
be proved that the system {Q,} admits a variational principle [5]. Thus we first
define @ = V,du® + V'dy® and determine whether or not Q A p is a closed (n + 1)-
form. Suppose the answer is affirmative. The Lagrange function L can be written as
L = Vou® + Viys. Then E,(L) = Q,.

On the other hand, suppose the system {Q,} does not admit a variational princi-
ple. We can extend the space M to a larger space M = M x En N with coordinate
cover (z,u® y# u g¢). Equip M with the contact 1-forms w® = du® yidat and

= du" —y; adz?. In addition to the n-forms Q,, we introduce N aux1hary n-forms
Qa =V,u— dVZ A p;, where V, and VZ are given by

Vo = 0. (i +V7h), (6a)
Vi o= 0 (Vi + Vi) (6D)

a

with 9, = 9/0u® and 8i d/0ys.
Let L = Vb + Vb] . Define the 1-form Q for the extended system {Qq, Q,} by

Q = V,da® + Vidg® + Vydu® + Vidy? . (7)

Then Q A = d(Lp). Hence the extended system {Q,, Qa} admits a variational pri-
nciple with the Lagrangian function L = V, 4%+ V,/j¢. The Euler-Lagrange equations
for the extended system can be written as

Q. = @7 {Lua - (Ly?ﬂb) ?Jf’ o < T ) ay]} =0, (8a)
o), = @ {L@a — (Lgew) v — <L@gy]@> aiyj?} =0 (8b)

3. Construction of the Lagrangian vector field
In the following discussions we assume that L is independent of x explicitly. In

Lagrangian Mechanics, the Lagrangian 1-form 6, the Lagrangian 2-form €2, and the
total energy of the system FE are defined as follows [6]:
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Q = Lqiqjdqi A dqj + Lgig d(ji A d(]ja (9b)

E = ¢'Ly—L. (9¢)

In a similar manner, we define the Lagrangian 1-form 6y, the Lagrangian 2-form €2y,
and the energy density Fy, for the extended system {Q,, Q,} by

b = > [Lysdu®+ Lyada®] (10a)

)

O = oy =3 {(Lyegp) 43 A du + (Lypr) i A dut

o (Lgeyp ) gy 7 0+ (Lgps) du® A i}, (10D)

By = yiLy + gLy — L. (10c)

vealy Ly are
nowhere vanishing on M. Since L, €, and FEy, are independent of z, we define the

Lagrangian vector field X, € TM! by
X1 = Y Dyue + Y Dyap + Ziy Diye + 25 Dge

We assume that the Lagrangian function L is nondegenerate, i.e., L

where ch,l}kb, 5, Zgl are functions defined on M , while Dyye, Dygo, Diye, Dyge are
partial differentiation operators with respect to u¢, %, y¢, g respectively. Notice that
we have adopted double subscripts for the D operators to emphasize that the flows
of Xi, are given by

. ou’ 0P . Oy . oy
Yy =o5 K= o M= 200 L= g (11)
where (t!,¢%,...,1") are n parameters.

In Lagrangian mechanics the Lagrangian vector field X is constructed by the
condition X 42 = —dF. It is well known that the flows of X satisfy the Euler-
Lagrange equations [6]. In a similar manner, we determine the Lagrangian vector
field X7, by the condition Xy = —dEy. (12)

By comparing the coefficients of dyy, d@?, du® and dab on both sides of (12) we can
obtain the following results:

_Yia(Lyggg) = _?J?(Lygg?) 5 (13a)

Y (Lypys) = =05 (L) (13b)
(Lygab)yib + (Lygg]b.)ij = Lyo (13c)
(Lgpua) Y5+ (Lgoye) Z5; = L (13d)

! Alternatively, we can write
Xy, = W,0; + YkCDkuc -+ kaDkﬁb -+ Zlekylc + ZngkyzC .

However, W; turns out to be zero identically.
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Since the Lagrangian function is nondegenerate, by (13a) and (13b) we obtain Y;* =
yf,f/jb = ¢2. On the other hand, ij and Z§; can be solved from (13c) and (13d)
respectively. In view of (11) we can identify t* = z*. Thus, Z5 = 0y, ij = (%@?,
and (13c), (13d) become

(L)t + (L) O5) = L, (14a)
(Lg?ua)yja + (L?)?yg)<a]yza) = Lﬁb . (14b)

Hence (14a) and (14b) in conjunction with (11) give rise to (8a) and (8b). Therefore
the flows of Xy, satisfy the Euler-Lagrange equations.

To conclude this section we consider an example in extended irreversible ther-
modynamics: T 1

O*T — —0*T — ~0,T = 0, (15)
X X
where T is the temperature, 7 and y are constants.

Let 2t = 2,22 = t. Then y; = 0T,y = T,y = do Adt = dat Ada?, puy =
O1ap = da?, g = 0y = —dat. The contact manifold M has the global coordinate
cover (z', 22, u,y1,y2), and is equipped with the contact 1-form w = du — y;dz?,
i=1,2.

(i) By (15) the 2-form F is given by
1 T
E=-d (—u—l——yg) A pg+dyp Apg .
X X

The regular map ® : By — M yields ®*F = 0, which is identical to (15). Let
Q1 = E = vypp — dvi A p;. We have v, = 0,0 = —y;,0? = i(u+7'y2). If we
set Q = vydu+vidy; +vidys, then Q A p is not a closed 3-form. Consequently
(15) does not admit a variational principle?. For this reason we enlarge M to
M, where M has the coordinate cover (x,u, y1,Y2, 0, U1,Y2), and is equipped
with the contact 1-forms w = du — y;da?, © = da — 9;da’.

(11) Let ~ 1A~ 2 A ~ 1 T ~
L =viu+ vy + 0192 = =141 + ;U + ;3/2 Y.

2Tt should be noted that there are many different formulations for a system of second order
quasi-linear PDEs to be transcribed into a system on n-forms. For the specific PDE in (15), we
could have constructed the 2-form
T 1
E'=dyi Apr — —dya A pz — —yap.
X X
In view of the of the contact 1-form w = du — y;dz?, we can easily show that
, 1
E=F ——wA us,
X
i.e., ' = F mod w. Hence both ®*F = 0 and ®*E’ = 0 give rise to (15). Similarly, if we set

vy = =X 'y, dvf = —dy1, dvf = Tx " 'dyg, then Q) = vip — dvi A pi = Q1 + x'w A pg. Hence
Q= E' and Qi Ap= Q) A p.
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(iii)

(iv)

Then 1
N PN A A T .
0y = 0L = ;3/27'0% =Ly, = —g, 07 = Ly, = —15.
Thus 1
A A i N N T 1~
Q1= 01p—doy Ay = ;Wﬂ"‘dyl Ay — ;dyz/\uz- (16)
Set

Q = vidu + ’U%d@l + degjg + 01du + @%dyl + @fdyg )

Then Q = dL. Hence Q A u = d(Lp) and, the extended system {Qy,Q;}
admits a variational principle with the Lagrange function L given by

T 1
L = —y191 + — Y202 + —ugs.
X X

Based on the Lagrange function L, we can construct the Euler-Lagrange 2-
forms as follows:

1. R T A
E(L) = Luu—dLyiAMZ:;yzu+dy1/\u1—;dyzAu2=Q1,
T 1
E(L) = LﬁM_sz)i/\Mz‘:dyl/\/il_;dyQAM2_;dU/\M2:Q1-

Hence the Euler-Lagrange equations for the extended system {Q1, Ql} become

CI)*E(L) = ¢ {Lu - (Lyiﬂ>gi - (Lyiﬁj)aigj} 2

1. . T .
= (I)* {—yg + 813/1 — —82y2} n = 0, (17&)
X X
CI)*E(L) = ¢ {Lﬁ - (LQZU>yZ - (Lﬁiyj)aiyj} ¥
1 T
= o {—yg - 81y1 + —82y2} w = 0. (17b)
X X

Equations (17a) and (17b) in turn yield

~ 1 ~ T ~
X + =0T — —2T = 0, (18a)
X X
2 1 T
T — —o,T ——0;T = 0. (18b)
X X

By the Lagrangian function
N 1 T\ .
L=—-yy+|-ut—y )
X X
we construct the Lagrangian 1-form

1
b, = > (Lydu+ Lydd) = —gidu + %QQdu —yda + (%yg + - wd

i
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Then the Lagrangian 2-form 2, becomes
1
Op = dfy, = —dij Adu+ Zdis Adu — dyy Adé+ dys A dét + —du A dit.
X X X

Define the Lagrangian vector field Xy, by
X1, = YDy, + YiDys + ZijDiy; + ZijD

ig; -
The flows of X7, can be written as

ot ot ot ’ ot !
On the other hand, the energy density of the extended system {Q1, Ql} is

iven by R . T .
& Y Ey, = yiLyi + yiLQi — L=—yy + ;ywz-

Now Xy, can be determined by the equation Xy, 1€}, = —dEy,. Hence
- 1 Y; =Yi, - }/Z = glla

— Ly + Yo =21y = —Owys+ —y2 — O1y1 =0, (19a)
X X X X

T A 1. A T 1. R

—Zyp— —Yo—Z1n = —Ohllp — —fp— 011 = 0. (19b)
X X X X

Applying ®* on (19a) and (19b) we can recover (18a) and (18b) respectively.
Hence the flows of X7, give rise to the Euler-Lagrange equations.

4. Conclusions

It is well known that many important theories in physical sciences can be de-
scribed by ordinary or partial differential equations. In general these equations can be
formulated via the variational principle in terms of a Lagrangian function. In this pa-
per we consider the Lagrangian formulation of a system of quasilinear PDEs, where
the underlying system of equations can be recast in terms of the Euler-Lagrange
equations. Then we construct a vector field such that the flows of the vector field
satisfy the Euler-Lagrange equations.

A similar approach to the problem considered in this paper has also been de-
veloped by Guo, Shang and Mei [7]. Based on the idea of adjoint symmetries, they
modified a nonconservative system by adding a set of adjoint equations to the system.
Thus the dimension of the configurational manifold is double of the dimension of
the original system. Consequently the modified system admits a regular Lagrangian.
From this point of view, there appears to be some similarity between our work and
the work of Guo, et al. However, the methodology is very different, especially in the
construction of the Lagrangian vector field. It would be interesting to extend this
work to a wider class of PDESs, or to consider the Hamiltonian formulation of PDEs
and the construction of the Hamiltonian vector field.

3We have abused the definition of the energy density Ei, for the extended system {Q1, Ql} If
Ey, is given by Er, = y191 + X ‘9292, then fB Erpp is a constant. But the determination of X,
by the condition X,.Q;, = —dEy, leads to contradiction.
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BekTopHe nosne JlarpaHxa Ta narpaHxose
dopmynioBaHHS napuianbHuUx andepeHuianbHUX
PiBHSIHb

M.YeH

Konepx Banbe, KBebek, KaHapa

OtpumanHo 4 nuctonaga 2004 p.

B po6oTi po3rnspgaetbca narpaHxose GOPMYyNOBaHHA CUCTEMU KBa3i-
NiHINHMX nNapuianbHUX audepeHuianbHNX PiBHAHb APYroro nopsaky.
3okpema, npeacraBneHa KOHCTPYKLiS BEKTOPHOro nong JlarpaHxa vy
dOopMi, KONM NOTIK BEKTOPHOrO MoOAs 3aAO0BiNIbHAE BUXiOHI CUCTEMU
napuiansHux andepeHuianbHNX PIBHSHb.

KniouoBi cnoBa: piBHsHHS Evinepa-JlarpaHxa, BEKTOPHI noJis,
KBa3iiHIViHI napuiasibHi AngepeHLiabHi PiIBHSIHHS
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