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Scaling in public transport networks
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We analyse the statistical properties of public transport networks. These
networks are defined by a set of public transport routes (bus lines) and the
stations serviced by these. For larger networks these appear to possess a
scale-free structure, as it is demonstrated e.g. by the Zipf law distribution
of the number of routes servicing a given station or for the distribution of
the number of stations which can be visited from a chosen one without
changing the means of transport. Moreover, a rather particular feature of
the public transport network is that many routes service common subsets of
stations. We discuss the possibility of new scaling laws that govern intrinsic
properties of such subsets.
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1. Introduction. What are complex networks for a physicist

Complex networks have only recently become a subject discussed on the pages
of physical journals [1]. However, currently the statistical mechanics of complex
networks is an important and quickly evolving field of physics [2], as one can check
e.g. by searching the WWW (the latter being another huge complex network and
hence by itself an important subject of study). As has been worked out in the
meantime, complex web-like structures are involved in such different systems as the
already mentioned WWW (with its documents as nodes and links as edges) [4], the
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metabolism of a biological cell (substrates connected by biochemical reactions) [5],
social communities (human beings connected by various relationships) [6], ecological
systems (food webs joining different species) [7], etc. Therefore, these and similar
systems can be formally described in terms of the same formalism and very often
they manifest similar statistical behaviour.

Of particular interest for our study is the question if the network displays scale-
free properties: a notion introduced to characterize a network which does not possess
a typical scale [3]. A network is called scale-free when its node degree distribution,
i.e. the probability that a randomly selected node has k edges, possesses a power-law
tail:

P (k) ∼ k−γ. (1)

Since its first observation by G.K. Zipf in quantitative linguistics [8], the power
law (1) is referred to as Zipfs law. For a physicist working in the field of statistical
physics, universal power laws – scaling laws – serve as a manifestation of collective
behaviour of a many-particle system at the critical point [9]. This explains, in par-
ticular, why physicists (often those, working in a field of critical phenomena) apply
their efforts and skills in the network theory and why these efforts may be fruitful.

The last decades of the past century offered theoretical descriptions of critical
phenomena which show why universal scaling laws like (1) emerge and give reliable
numerical estimates for the exponents γ governing the scaling of different physical
observables [10]. This description was made possible by the application of field theo-
retical methods in many particle physics [11] and serves as a background to explain
and to predict scaling in various systems. However, the modern theory of networks
differs from the modern theory of critical phenomena in a way that although it op-
erates with models describing different types of networks and looks for the Zipf laws
governing the scaling of the properties of these networks, the prediction or explanati-
on of certain scaling properties is done mainly via computer simulations, or a simple
(mean-field like) analysis. A theoretical description of complex networks, involving
e.g. a theory beyond the tree graph approximation similar to the field-theoretical
description of critical phenomena with non-trivial interactions [9–11] is still missing.

At this level of network analysis it is important both to search for new types of
networks that exist in complex structures as well as to collect “empirical data”: to
look for observables describing these networks and to analyse their properties. In our
paper, we want to attract attention to a feature frequently encountered in complex
networks: looking at the paths of connections on the “motherboard” of a computer,
the wiring in a car, or even the neural connections along the spine of vertebrates one
observes as a common feature that the physical paths used by the lines connecting
different nodes are often shared by many other lines connecting other nodes. We are
interested in the distribution of the load along these paths. We study this property
for more easily accessible examples of networks of public transport (PT networks).
We will show that a PT network may demonstrate a scale-free behaviour. Moreover,
a rather particular feature of the PT network is that many routes possess common
subsets of stations. We will demonstrate that new scaling laws may govern intrinsic
features of distributions defined on these subsets.
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The rest of the paper is organized as follows: in the next section 2 we explain what
we mean by a PT network, introduce the observables used to describe it and give
the sources of our further analysis. In section 3 we will show that the node degree
distribution of large PT networks obeys the Zipf law (1) and hence a PT network
may constitute an example of a scale-free network [3]. In section 4 we will consider in
particular the traffic load distribution of paths of different length studying situations
where many routes possess common subsets of nodes. We check these properties for
scale-free behaviour and speculate on a generalization. Conclusions and an outlook
are given in section 5.

2. A PT network

In our study we consider networks of public transport (buses, trams, and sub-
ways), called hereafter PT networks. In a PT network, the nodes are the stations of
public transport and the edges are the links connecting them along the route (see fi-
gure 1). We will be interested in various characteristics of PT networks that describe
statistical properties of node-link distributions. The examples are given below. We
will perform our study according to the following scheme:

a) choose a PT network;

b) make an ordered list of stations visited by each line;

c) check the network statistics.

Let us comment on each of the above items before giving results about the network
structure.

Figure 1. A part of the public transport scheme for Paris and a PT network,
which corresponds to it.

a) As usual, to allow general properties of a network structure to manifest them-
selves, the network analysed should be large enough in terms of numbers of
nodes and edges. Therefore, we choose the PT networks of big cities having
large numbers of routes and stops. The results presented below are based on an
analysis of PT networks of Berlin (198 routes and 2952 stations), Düsseldorf
(124 and 1615) and Paris (232 and 4003). In an extension of our present study
which is under way we analyse the PT networks of more and larger cities.
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b) The schedules of public transport for the above cities were downloaded from
the internet [12] and brought into appropriate format to construct the ordered
lists of stations serviced by each line (hereafter we do not make any difference
between bus/tram/subway PT lines). These serve as a background for the
network structure analysis.

c) The ordered lists of stations allow us to perform some statistics checking typical
quantities describing the network. The most simple one concerns the number
of lines that service a given station [13] and the number of other stations one
may reach without changing the bus/tram from a given station. The distri-
bution of the first quantity gives the familiar node degree distribution P (k)
introduced in the previous section. The choice of the second quantity comes
about as a node degree distribution of a conjugated network where each station
(node) is connected with all other stations for which there is a route servicing
both. This has quite practical consequences: it describes the neighbourhood
of given station and hence its “utility”. Below, we will denote the size of this
neighbourhood by Z1.

A lot of different characteristics of the network can be introduced depending on
the particular problem one is interested in. Here, we want to attract attention to a
particular feature of a PT network: often, a sequence of nodes is joined by more than
one line. This is the familiar situation when one can go from one station to another
by different train or bus lines without making a change. To study the distribution
of such sequences of stations, let us introduce the quantity P (L, N): the number of
node segments of length L connected by N lines.

Results of numerical analysis of the above introduced quantities P (k), Z1 and
P (L, N) will be presented in the next two sections.

3. Scale-free behaviour

First, we examine the node degree distribution P (k) of the PT networks. Results
are shown in figure 2, where we plot the number of stations for the PT networks
of Berlin, Düsseldorf, and Paris as a function of the routes going through them
(a node degree k [13]). Being normalized by the overall number of stations, this
function gives the node degree distribution P (k), hence both quantities obey the
same scaling. One observes a power-law behaviour (1) in figure 2 which leads to the
conclusion that the PT networks may be scale-free. The least squares fit for all data
points of each city gives: Berlin: 2.90; Düsseldorf: 2.45; Paris: 2.94. The values of the
two larger networks are close to γ = 3 corresponding to the preferential attachment
scenario [2].

Another network property analysed here is the size Z1 of the direct neighbour-
hood of a given station introduced in the section 2: the number of stations one may
reach without changing from that station. By definition, for a given station this
quantity is obtained by counting all stations Z1 which belong to the routes crossing
it. We show the number N(Z1 > M) of stations with a neighbourhood larger than

228



Public transport networks

Figure 2. Number of stations as a function of the node degree k for the PT net-
works of Berlin (squares), Düsseldorf (crosses), Paris (circles). Being normalized,
this function gives the node degree distribution P (k) (1).

M as function of M in figure 3. This function corresponding to an integrated distri-
bution is by definition monotonous and thus smoother than the distribution of Z1

itself. As is seen from the double logarithmic and log-linear plots, only the largest
(Paris) network develops a clear power law tail with an exponent for the integrated
distribution of about γ−1 = 2.7. The Düsseldorf network may also be approximated
by two exponentials.
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Figure 3. Integrated distribution of the direct neighbourhood Z1 of a given stati-
on. Number N of stations with Z1 > M for PT networks of Berlin (squares),
Düsseldorf (crosses), Paris (circles). Left: double-logarithmic, right: log-linear
plot.

Recently, another PT network property was reported to possess a universal sca-
ling behaviour: it was shown that the mean distance between nodes of different
degrees is governed by a scaling law [14].
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4. Segment distributions

As we have already seen in the previous section, large PT networks may have
scale-free properties as shown by the power-law behaviour of their node-degree di-
stribution. Our next step will be to study some other characteristics of the PT
networks and to check them for a power-law behaviour. Another example was given
in the previous section by the neighbourhood size Z1. Here, we will continue the
analysis for the values P (L, N), as introduced in section 2: a number of node seg-
ments of length L connected by N lines. Our interest in these values is caused by the
fact, that for a real “physical” network, different numbers of links between nodes
correspond to different loads on the connection between these nodes. Besides the
PT network an example may be given by the network of wires connecting a complex
electric circuit, or a network of tubes transmitting a fluid etc. In these cases, the
information about the loads on the links and their distribution is important not only
for understanding the entire network features but also for optimizing its structure.

First, we analyse P (1, N): the number of segments of length 1 consisting of N

lines. From now on we will calculate the integral characteristics, that is calculating
P (1, N) we take into account all sequences of stations of length 1 consisting of N

lines. The result is shown in figure 4a. Again, a power law holds:

P (1, N) ∼ N−γ1 , (2)

with the exponent γ1 ranging from 3 to 4 for the networks considered. The least
squares fit gives the values given in table 1.

Table 1. Scaling exponent γL obtained by the least-square fit for the number
of sequences of length L connected by N lines P (L,N) for the PT networks of
Berlin, Düsseldorf and Paris.

L Berlin Düss. Paris
1 3,47 3,09 3,97
2 3,58 3,58 4,59
3 3,77 4,08 4,95
4 4,55 3,82 6,06
5 4,75 3,9 5,9

Obviously, the power-law behaviour found for P (1, N) should not hold for all values
of L and N . Indeed, the other limiting case P (L, 1) describes distribution of lengths
of different routes. Function P (L, 1) will have a maximum corresponding to the
mean length of routes, provided the network has enough routes for good statistics.
The behaviour of the function P (L, N) with increasing L is shown by figures 4. It
is tempting to describe the plots given in the figures by power-laws with exponents
γL, depending on the line length L:

P (L, N) ∼ N−γL . (3)
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Number of sequences P (L,N) of length L connected by N lines. (a):
L = 1, (b): L = 2, (c): L = 3, (d): L = 4 (e): L = 5, (f): L = 6. Symbols as in
figure 2.
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Numerical values of the corresponding exponents γL are given in table 1 for L = 1...5.
The columns of the table give results obtained by the least-squares fit for each city
separately. The data of figures 4a-f seem to obey power laws but obviously it is
too early to state this as a definite conclusion at least for two reasons. The first
obvious reason is that the statistics considered so far concern three different networks
only (PT networks of three different cities). Although the networks themselves were
chosen to be large enough (see section 2), still it is desirable to support the data
obtained by the analysis of a larger number of networks. The second reason is more
subtle: it is obvious, that P (L, N) decreases with N for the (real) PT networks
considered here. Indeed, the larger is the N , the smaller is P (N) (1) and the smaller
is the probability that several (L) subsequent nodes have the same node degree.
Therefore, the number of data points for P (L, N) will always decrease with L and
N leading to poor statistics for any real network: c.f. number of data points in
figures 4a and 4f. Thus, the data for γL presented in table 1 for each separate
network are to be considered rather as an attempt for a power law fit but not as
a definite conclusion about the universal power-law distribution. Nevertheless, we
consider this observation to be interesting for further study.

5. Conclusions, outlook, and . . . best wishes!

This paper is written for a special issue of CMP in honour of Reinhard Folk 60th
birthday. The majority of the contributions to the Festschrift reflect the honorees
field of activity: phase transitions in condensed matter physics. In our introduction
we tried to show a possible link between complex network behaviour and criticality
in condensed matter provided by the scaling phenomenon, as we, being new to
the fascinating field of complex networks understand it. By this paper we want to
congratulate Reinhard Folk on the occasion of his birthday and to acknowledge his
vivid interest and active participation in the numerous discussions about complex
networks during the great time two of us (CvF and YuH) were enjoying his wonderful
hospitality in Wintersemester 2004 in Linz.

The PT networks discussed in this paper provide one more example of the scale-
free networks, as demonstrated by the power law behaviour (1) of their node degree
distribution (figure 2). Besides, some other properties of these networks may obey
scaling laws. An example was given by the integrated distribution of the neighbour-
hood size Z1 describing the number of stations which can be serviced from the chosen
one without making a change. We found evidence that the functions P (L, N) – the
number of node segments of length L connected by N lines – may be described by
power-law fits (3) at least for low L. Our interest in these values is caused by the
fact that they are important in understanding specific properties of PT networks,
where many routes possess common subsets of nodes and other examples of similar
structure that were also briefly mentioned in the paper.

A natural continuation of this study is to improve the network statistics con-
sidered here by taking a larger number of PT networks as well as to continue the
analysis of different network characteristics.
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Отримано 11 січня 2004 р.

Ми аналізуємо статистичні властивості мереж громадського транс-
порту. Такі мережі означаються як сукупність маршрутів громадсь-
кого транспорту (автобусних ліній) та станцій, через які вони
проходять. Виявляється, що великі мережі володіють вільною від
масштабу (scale-free) структурою, що демонструється, наприклад,
законом Ціпфа для розподілу кількості маршрутів, що проходять
через дану станцію, чи для розподілу кількості станцій, яких можна
досягти з даної, не змінюючи транспортного засобу. Крім того,
досить специфічною властивістю мереж громадського транспорту є
те, що багато маршрутів проходять через спільну підмножину стан-
цій. Ми обговорюємо можливість нових законів скейлінгу, які кер-
ують характерними властивостями цих підмножин.

Ключові слова: вільні від масштабу мережі, скейлінг, закон Ціпфа

PACS: 89.75.-k, 89.75.Da, 05.65.+b
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