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Experimental data are reported for the temperature and polarization dependence of the one-magnon Raman 

light scattering in the rutile-structure antiferromagnet CoF2 (Néel temperature TN = 38 K). The low-lying 

excitons are also investigated at low temperatures and comparisons made with results from earlier Raman, infra-

red, and neutron scattering work. A detailed analysis of the one-magnon Stokes and anti-Stokes Raman spectra is 

presented resulting in comprehensive data for the temperature variation up to TN of the one-magnon frequency, 

line width, and integrated intensity. A theory of the one-magnon scattering and other magnetic transitions is con-

structed based mainly on a spin S = 3/2 exchange model, extending a simpler effective S = 1/2 approach. The ex-

citation energies and spectral intensities over a broad range of temperatures are obtained using a Green's function 

equation of motion method that allows for a careful treatment of the single-ion anisotropy. Overall the S = 3/2 

theory compares well with the experimental data. 

PACS: 75.30.Ds Spin waves; 

72.10.Вb Scattering by phonons, magnons, and other nonlocalized excitations; 

78.30.–j Infrared and Raman spectra; 

75.50.Ee Antiferromagnetics. 
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1. Introduction 

In an earlier paper [1] we presented a thorough compar-

ison between experiment and theory for two-magnon ine-

lastic light scattering in the rutile-structure antiferro-

magnets NiF2 and CoF2 thus complementing earlier work 

on isomorphic compounds such as FeF2 and MnF2 that are 

broadly similar magnetically [2]. The focus of the present 

paper is on the one-magnon light scattering, which pro-

vides further insight into the spin dynamics of these com-

pounds because it emphasizes the magnetic excitations 

near the center of the Brillouin zone. By contrast, in two-

magnon scattering, the excitations of magnon pairs at large 

wave vectors are dominant. By comparison with FeF2 and 

MnF2, neither NiF2 or CoF2 were well understood with 

regards to the temperature and polarization dependence of 

their one-magnon excitations, as studied through their fre-

quencies and Raman intensities. They present quite distinct 

cases to one another, because in NiF2 there is a spin cant-

ing from true antiferromagnetic alignment, leading to a 

major effect on the zone-center magnons and thereby on 

the one-magnon light scattering, as we reported 

recently [3]. On the other hand, the one-magnon light scat-

tering in CoF2 has other distinctive properties. There is no 

canting, but the effects arising due to a strong orbital angu-

lar momentum and a large single-ion anisotropy are domi-

nant. This has motivated our experimental and theoretical 

studies presented here. 

The crystallographic unit cell of CoF2 is depicted in 

Fig. 1 together with the relevant exchange parameters em-

ployed in this work. The antiferromagnetic ordering of the 

spins in CoF2 was first determined by Erickson [4] using 

neutron diffraction and also confirmed through studies of 
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the magnetic anisotropy of fluorides of the iron group ele-

ments [5]. Early theoretical studies of the static magnetic 

properties of CoF2 in the paramagnetic and antiferromag-

netic phases using an effective spin S = 3/2 Hamiltonian 

were performed by Nakamura and Taketa [6]. The magnet-

ic excitations in CoF2 were first studied by Lines [7] and 

the dominant exchange and anisotropy parameters were 

estimated by comparing theory with low-temperature anti-

ferromagnetic resonance frequencies [8] and infrared ab-

sorption data [9]. The electronic stucture of the Co
2+

 ions 

has been determined by Gladney [10], and the spin-wave 

dispersion relations have been measured by Cowley et al. 

[11,12] using inelastic neutron scattering. Raman light 

scattering measurements made by Macfarlane [13], Moch 

et al. [14], and Hoff et al. [15] have also characterized the 

low-lying zone center excitations, and the light scattering 

cross sections [13,14] are somewhat consistent with the 

calculations of Ishikawa and Moriya [16]. The splitting of 

the excitations by an applied magnetic field has been stud-

ied in the infrared [17,18] and with Raman scattering [14]. 

In this paper we report experimental Raman scattering 

data for the one-magnon and exciton excitations in CoF2, 

together with a theoretical analysis for the magnetic excita-

tions in a two-sublattice S = 3/2 antiferromagnet with sin-

gle-ion anisotropy. The theoretical technique used here 

employs the spin operators directly and allows us to inves-

tigate the magnetic excitations from the approximate 

ground state as well as the additional optical magnetic 

modes that are expected in this system. 

The justification for using an effective spin S = 3/2 

model to study the low-lying magnetic excitations in CoF2 

has been discussed by several authors [6,7,16] and here we 

highlight the main arguments. The free Co
2+

 ion has an 

electronic configuration 3d
7
 and application of Hund's 

rules yields a 28-fold degenerate 
4
F ground state (L = 3, 

S = 3/2). When the ion is inserted into a crystal and sur-

rounded by F
–
 ions it is subjected to a perturbing electric 

field which lifts the degeneracy of the free ion. As the 

symmetry is lowered there is an increase in the number of 

split levels produced by the crystal field. The degeneracy 

of the orbital state of the free Co
2+

 ion is seven (L = 3) and 

is split into two triplets and a singlet by a crystalline elec-

tric field of cubic symmetry, where the lowest level is a 

triplet which is described in terms of an effective L = 1 

operator. The lowest orbital triplet state is now of degener-

acy twelve because of the spin S = 3/2 of the free ion. The 

F
–
 ions surrounding the Co

2+
 ions do not have perfect cu-

bic symmetry. The distortion from cubic symmetry com-

bined with spin-orbit coupling splits the lowest energy 

manifold into six (Kramers) doublets. The degeneracy of 

each doublet is eventually removed by the exchange field, 

resulting in four lowest energy levels for the Co
2+

 ions 

[10,16]. The energies of these four levels (relative to the 

lowest) have been estimated [10,16] to correspond roughly 

to 0, 51, 190, and 200 cm
–1

, and they are well separated 

from the next level at about 800 cm
–1

. 

This paper is organized as follows. In Sec. 2 we de-

scribe the Raman experiments and present the results for 

the one-magnon and exciton scattering in the CoF2 sample. 

The theoretical analyses for the magnon excitations are 

described in Sec. 3, where we mainly use the spin S = 3/2 

model which is superior to the effective spin S = 1/2 ap-

proach in the context of the one-magnon and exciton Ra-

man scattering. This contrasts with the situation for one-

magnon light scattering in NiF2 mentioned earlier, where 

there the spin canting is important and the Ni
2+

 ions have 

spin S = 1. Comparisons of the one-magnon theory and 

experimental data are presented in Sec. 4, and the other 

magnetic excitations are then briefly discussed in Sec. 5. 

The conclusions of our work are given in Sec. 6. 

2. Experiment and results 

The purplish-red-colored sample of CoF2 was prepared 

from a single crystal grown at the Clarendon Laboratory, 

Oxford University, specially for these one-magnon studies 

and our earlier two-magnon studies [1]. The cuboid sample 

of dimensions 3.2 mm 2.0 mm 1.7 mm was cut to expose 

(001)  [Z], (110)  [X], and (110)  [Y] faces, respectively, 

and these faces were highly polished with 1 m diamond 

powder. The Raman spectrum was excited with 500–600 

mW of Ti: sapphire laser light at 800 nm, which avoided 

any optical absorption [19], analyzed with a Spex 14018 

double monochromator at a spectral resolution of 3.3 cm
–1

 

unless otherwise indicated, and detected by a cooled RCA 

31034A photomultiplier. The sample was mounted in the 

helium exchange-gas space of a Thor S500 continuous 

flow cryostat, where the temperature could be controlled to 

Fig. 1. The crystallographic unit cell of CoF2 (a = b  c) with the 

principal exchange interactions J1, J2 and J3. Crystal axes (x, y, z) 

and laboratory axes (X, Y, Z) are illustrated in relation to the unit 

cell. The X and Y directions are orthogonal to the c(Z) axis but are 

rotated by  45  from the crystallographic a and b axes. 
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within 0.1 K and was measured with a gold-iron/chromel 

thermocouple clamped to the sample. Spectra were record-

ed in the 90  scattering geometry. The one-magnon scatter-

ing was measured in different polarizations for tempera-

tures up to about TN, while the exciton features were 

investigated at low temperatures only. 

The polarization dependence of the low frequency 

Raman spectrum of antiferromagnetic CoF2 at low tem-

perature is shown in Fig. 2. These spectra exhibit a sharp 

peak at (37.0  0.1) cm
–1

 that is the lowest lying exciton 

(conventionally referred to as the magnon) of the ground 

state multiplet of the Co
2+

 ion in the exchange field. The 

one-magnon scattering is observed only in off-diagonal 

polarizations. The temperature dependences of the spectra 

for these same polarizations are given in Fig. 3, where it 

can be seen that the one-magnon peak decreases in fre-

quency and increases in width with increasing tempera-

ture up to TN  while its peak intensity decreases. It is evi-

dent that the anti-Stokes and Stokes intensities are also 

temperature dependent and vary with the polarization. 

The Raman spectrum at higher frequencies exhibits three 

more sharp peaks associated with the higher lying 

excitons of the lowest multiplet, as shown in Fig. 4. The-

se and other spectra were fitted with a Gaussian–

Lorentzian line shape model [20] to yield the band pa-

rameters of position, width (full width at half maximum), 

and integrated intensity. The results obtained at low tem-

perature are given for the four excitons and also some 

CoF2 phonons in Table 1. This table shows that the 

widths of the lowest frequency exciton and phonon are 

resolution (2.5 cm
–1

) limited at low temperature. The 

phonon scattering is much stronger, in general, than the 

exciton scattering and the measurements in X(YZ)Y and 

X(ZX)Y polarization give the expected similar intensities 

for the Eg phonon, indicating that the experimental condi-

tions are satisfactory, and this is also the case for exciton 

3, whereas for the magnon (exciton 1) they are different. 

The spectra shown in Fig. 4 indicate that the polarization 

leak through (e.g., of exciton 3 from X(YZ)Y polarization 

into X(ZZ)Y polarization) is about 3%. 

5000

4000

3000

2000

1000

0

R
am

an
 i

n
te

n
si

ty
, 

ar
b

. 
u

n
it

s

–40 –20 0 20 40 60 80 100 120 140

5.0 K

Frequency shift, cm–1

(a) X ZX Y( )

X YZ Y( )

X ZZ Y( )

5.0 K

5.0 K

Blg phonon

X YX Y( )

5.3 K
Two-magnon

One-magnon

CoF2

5000

4000

3000

2000

1000

0

R
am

an
 i

n
te

n
si

ty
, 

ar
b

. 
u

n
it

s

–40 –20 0 20 40 60 80 100 120 140

One-magnon

Two-magnon

CoF2

(b) Y ZX Z( )

Y ZY Z( )

Y XY Z( )

6.0 K

6.5 K

Blg phonon

Y XX Z( )
6.4 K

Frequency shift, cm–1

6.0 K

Fig. 2. (Color online) Polarization dependence of the low frequency Raman spectrum of antiferromagnetic CoF2 recorded at low tempera-

ture for X( )Y (a) and Y( )Z (b) 90  scattering geometries. 

Table 1. Band parameters of excitons and phonons obtained by curve fitting the polarized Stokes Raman spectra of CoF2 at 10 K, as 

shown for the excitons in Fig. 4. The standard errors from the fits are given in brackets; FWHM is the band full width at half maximum. 

Exciton/phonon number (symmetry)  Polarization  Frequency, cm
–1

 FWHM, cm
–1

  Area, arb. units 

1 3 4( )  X(YZ)Y   36.9 (0.1)  2.6 (0.1)  1211 (99) 

1 3 4( )   X(ZX)Y   37.1 (0.1)   2.8 (0.1)  1853 (163) 

2 1( )  X(ZZ)Y   168.0 (0.1)   3.2 (0.1)  5479 (157) 

3 3 4( )   X(YZ)Y   192.9 (0.1)   3.7 (0.2)  6118 (570) 

3 3 4( )  X(ZX)Y   193.0 (0.1)   3.6 (0.2)  7294 (557) 

4 2( )  X(YX)Y   209.1 (0.4)   4.0 (1.1)  142 (85) 

1 (B1g) X(YX)Y   65.2 (0.1)   2.3 (0.2)  224 (47) 

2 (Eg) X(YZ)Y   255.3 (0.1)   4.7 (0.1)  30837 (1884) 

2 (Eg) X(ZX)Y   255.3 (0.1)   4.7 (0.1)  29374 (1317) 

3 (A1g) X(ZZ)Y   371.2 (0.1)   3.8 (0.1)  20290 (76) 
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Our measurements for the frequencies of the four lowest-

lying excitons are compared with earlier results in Table 2, 

and there is good agreement between values obtained by 

Raman scattering and also the quite different techniques of 

inelastic neutron scattering and infrared spectroscopy. This 

is not the case, however, when it comes to the Raman cross-

sections of the excitons. As can be seen from Table 3, the 

integrated intensities of the excitons observed in the various 

polarizations when normalized to that found for exciton 3 in 

X(YZ)Y polarization can be quite different for the three ex-

perimental studies reported to date. In addition, there is a 

greater discrepancy between our values compared with pre-

vious theory than for the other two experimental studies. 

However, there is one point on which all experiments and 

theory agree and that is the relative integrated intensity of 

exciton 4 is much weaker than for the others. It is evident 
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Fig. 3. (Color online) Temperature dependence of the Stokes and anti-Stokes one-magnon Raman spectrum of antiferromagnetic CoF2 

for X(YZ)Y (a), X(ZX)Y (b), Y(ZY)Z (c), and Y(ZX)Z (d) polarization. 

Table 2. Comparison of results obtained in different experiments and from theory for the lower multiplet exciton frequencies (in cm
–1

) 

in CoF2 at low temperature (T « TN). 

Exciton number  Raman Raman Raman Infrared Neutron Scattering Theory  

(symmetry)  Present work Ref. 13 Ref. 14  Ref. 18  Ref. 12  Ref. 16  

 1 3 4( )   37.0  0.1 37.0  0.5  37   36.3   37   37 

2 1( )   168.0  0.1 169   168.3   168.5   170   173 

3 3 4( )   193.0  0.1 194  193.3   193.0   196   200 

4 2( )   209.0  0.1 –  210.2  210.9*  204   206 

Notes: *As deduced by Moch et al. [14] from the magnetic field results in the infrared study of Ref. 18. 
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from the theoretical data given in Table 3 that the excitation 

energy is a crucial factor in elaborating the Raman cross 

section, presumably because of possible Raman excitation 

energy resonances with higher-lying electronic energy levels 

of the Co
2+

 ion. The experimental and theoretical data indi-

cate that there is an increase in the overall intensities, rela-

tive to the fixed (reference) one, of the excitons in the other 

polarizations with Raman excitation energy increase over 

the range 12500 to 30000 cm
–1

. At the same time, theory 

shows that there is a large absolute intensity increase when 

the excitation energy is changed from 20000 to 30000 cm
–1

 

(see Table 3). 

Fig. 4. (Color online) Raman spectra of the lowest energy excitons in antiferromagnetic CoF2 at 10 K and their line shape fits with 

the Gaussian–Lorentzian model in X(YZ)Y (a), X(ZX)Y (b), X(YX)Y (c), and X(ZZ)Y (d) polarization. The spectral resolution for these 

spectra was 2.5 cm
–1
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Table 3. Comparison of results obtained in different experiments and from theory at different excitation energies (  in cm
–1

) for the 

lower multiplet exciton relative Raman intensities in CoF2 at low temperature (T « TN). 

Exciton number  

(symmetry)  

Polarization  Experiment  Experiment Experiment Theory  Theory   Theory  

Present Work Ref. 13 Ref. 14 Ref. 13* Ref. 16  Ref. 16  

 = 12500  = 16000  = 16000    = 20000  = 30000 

1 3 4( )  X(YZ)Y  20  4  28  29  6   36   50   86 

 X(ZX)Y 30  6  27  60  12   79   125   180 

2 1( )  Y(XX)Z  –  <1.3 22  4   200   225   225 

 X(ZZ)Y 90  11  65  220  44   340   375   380 

3 3 4( ) )  X(YZ)Y 100  100  100   100   100     100** 

 X(ZX)Y 120  20  110  130  26   180   200   250 

4 2( )   X(YX)Y 2.3  1.6  5  <22  4  20   25   68 

Notes: * Ref. 13 quotes unpublished theoretical work of A. Ishikawa and T. Moriya. 

       ** In absolute terms, the theoretical intensity for this band with  = 30000 is 5.5 times that of the  = 20000 case. 
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The one-magnon spectra as a function of temperature 

and polarization were all readily fitted with a Gaussian–

Lorentzian line shape model and the results obtained for 

the line parameters in Stokes and anti-Stokes scattering 

are given in Figs. 5 and 6, respectively. For comparison 

with theory, we also give in Fig. 7 the temperature de-

pendences of the ratio of the Stokes to anti-Stokes one-

magnon integrated intensities for several polarizations. 

The intensity ratios for all polarizations exhibit a similar 

steep rise with decreasing temperature below about 15 K. 

The results in X(YZ)Y polarization, although showing a 

different temperature dependence from the other polariza-

Fig. 5. (Color online) Temperature dependence of the CoF2 

Stokes one-magnon Raman scattering fitted line shape parameters 

of frequency (a), full width at half maximum (b), and integrated 

intensity (c) for the various polarizations indicated. 
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tions in Figs. 5(c) and 6(c), behave similarly to the others 

in the intensity ratio variation with temperature. 

3. One-magnon theoretical analysis 

For simplicity we start by briefly presenting an effec-

tive spin S = 1/2 Green's function theory for the one-

magnon excitations. This approach is useful when analyz-

ing two-magnon Raman scattering [1] because approxima-

tions appropriate to large wave vectors can be made, but it 

has its limitations for magnons near the Brillouin-zone 

center. Therefore it is followed by an effective S = 3/2 the-

ory, which is expected to provide a more realistic descrip-

tions of the magnons since it takes into account the lowest 

four levels (instead of just two). In particular, the latter 

approach is expected to account more accurately for ani-

sotropy effects and to be superior at elevated temperatures. 

3.1. Effective spin 1/2 theory 

This model [7] is based on taking account of only the 

lowest two energy levels for the Co
2+

 ions, which are sepa-

rated by about 50 cm
–1

 as already noted. The effective 

Hamiltonian can be expressed as 

 ex an= ,  (1) 

where ex  and an  refer to the exchange and anisotropy 

parts respectively, with 

 ex , , ,

, , ,

1 1
= ,

2 2
i j i j i i i i j j i j

i j i i j j

J J JS S S S S S   

  (2) 

 an = ( )( )z z
A i j

i j

H T S S . (3) 

The sites labelled i  are on the spin-up sublattice and those 

labelled j  are on the spin-down sublattice. The inter-

sublattice exchange interaction is represented by ,i jJ  whe-

reas ,i iJ  and ,j jJ  are the intrasublattice exchanges. The 

effective anisotropy field ( )AH T  is often assumed to vary 

with temperature like the sublattice magnetization. The 

parameters for the S = 1/2 models have been previously 

estimated by comparing theory with one-magnon inelastic 

neutron scattering measurements [11], yielding 1 = 2.0J  

cm
–1

, J2 = 12.3 cm
–1

, J3  0 cm
–1

 and HA(0) = 12.5 cm
–1

 

where the exchange parameters are defined in Fig. 1. 

The one-magnon excitation energies are obtained by 

forming the operator equations of motion for the S  oper-

ators for each sublattice using the above Hamiltonian. The 

equations are then linearized using the random phase ap-

proximation (RPA) and transformed to a wave vector rep-

resentation. The solutions for the excitation energies are 

obtained, assuming a time dependence exp( )iEt  for the 

S  operators, as [1] 

 
____________________________________________________ 

 2 2
2= ( ) (8 cos ( /2)cos ( /2)cos ( /2)) ,z

x y zE S J k a k a k ck k  (4) 

where 2 2 2
2 1 3( ) = ( ) 8 4 ( /2) 4 [ ( /2) ( /2)].sin sin sin

z z z
A z x yH T S J S J k c S J k a k ak  (5) 

_______________________________________________ 

The energies are degenerate in magnitude (in the zero ap-

plied field case considered here) and the negative sign in 

Eq. (4) refers to oppositely precessing spins. The spin av-

erage zS  related to the sublattice magnetization can be 

evaluated using mean-field theory [1]. 

3.2. Effective spin 3/2 theory 

Next we focus on the S = 3/2 theory obtained using the 

four lowest energy levels for the Co
2+

 ions [16]. This is 

expected to be superior here because of the more careful 

treatment of the anisotropy, which is particularly important 

for one-magnon Raman scattering. The two approaches 

will be compared later. In this case the total Hamiltonian 

can again be expressed as in Eq. (1) except that all spin 

operators now refer to S = 3/2 and the anisotropy part is 

replaced by 

 2 2 2
an = ( ( ) [( ) ( ) ])

yz x
i i i

i

D S F S S   

 2 2 2( ( ) [( ) ( ) ]).
yz x

j j j
j

D S F S S   (6) 
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polarization. 
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Here the parameters D and F describe the effects of the 

uniaxial and nonuniaxial contributions to the single-ion 

anisotropy, respectively. The average spin alignment for 

each sublattice is assumed to be along the crystallographic 

c axis as depicted schematically in Fig. 1. 

We now use the Green's function equation of motion 

method (rather than the operator equation of motion, which 

provides less information) to generate the set of equations 

satisfied by ;i ES Y  and the other Green's functions 

coupled to it. As before we use RPA decoupling for prod-

ucts of spins at different sites, but we do not approximate 

the anisotropy terms which involve products of operators 

at the same site. The formalism is analogous to that em-

ployed by Cottam and Latiff Awang [21] for S = 1 

antiferromagnets with single-ion anisotropy, but extended 

here to S = 3/2. To obtain a finite, closed set of equations, 

we use the identity for S = 3/2 spin operators that 
4 2( ) = (5/2)( ) (9/16).z zS S  Taking into account the dif-

ferent sublattice labeling, 16 coupled equations are re-

quired to obtained a closed set of equations. After a trans-

formation to wave vector representation the set of 

equations can be written in matrix form as 

 16( ) = ,E kI B G b  (7) 

where 16I  is the 16 16  unit matrix, kG  and b  are 16-

component column matrices whose elements are defined as 

nG k  and nb  (for n = 1, …, 16) with 

 
1

; = exp [ ( )] ,n E l m nX Y i G
N

k

k

k r r  

 
1

= < [ , ] >,n nb X Y
N

 (8) 

for any operator Y. We define the operators nX  as 

 1 2 3 4= , = , = , = ,i j i jX S X S X S X S   

 5 6= , = ,z z z z
i i i i j j j jX S S S S X S S S S   

 7 8= , = ,z z z z
i i i i j j j jX S S S S X S S S S   

 2 2
9 = ( ) 2 ( ) ,z z z z

i i i i i i iX S S S S S S S   

 
2 2

10 = ( ) 2 ( ) ,z z z z
j j j j j j jX S S S S S S S   

 2 2
11 = ( ) 2 ( ) ,z z z z

i i i i i i iX S S S S S S S   

 
2 2

12 = ( ) 2 ( ) ,z z z z
j j j j j j jX S S S S S S S   

 
3 3

13 14= ( ) , = ( ) ,i jX S X S   

 
3 3

15 16= ( ) , = ( ) .i jX S X S  (9) 

The above operators 1 12, ... ,X X  are all linear in the 

transverse spin components and are associated with transi-

tions for = 1zS  whereas the operators 13 16, ... ,X X  all 

involve transitions for = 3.zS  We note that these cou-

pled equations do not involve any operators in combina-

tions that are quadratic in the transverse spin components. 

The excitations associated with this combination of spin 

operators are different from the one-magnon excitations 

and so are considered in a later section. 

By comparison with the case of an anisotropic S = 1 

antiferromagnet considered earlier [21] using this opera-

tor method, the analogous equation to Eq. (7) involved 

only a 8  8 matrix, because the operator combinations 

9 16, ... ,X X  in that case can be shown either to be zero or 

to be expressible in terms of the remaining 1 8, ... , .X X  In 

general, as S is increased, it is found that more coupled 

equations of motion are needed to obtain a closed set. 

In our analysis the poles of the Green functions corre-

spond to the spin-wave (one-magnon) excitations, which 

are obtained by applying the determinantal condition that 

 16det ( ) = 0,EI B  (10) 

as follows from Eq. (7). From the formal results for 

Green's functions we can also deduce the spin correlation 

functions by means of the fluctuation-dissipation theorem 

and thus evaluate light scattering cross sections [21]. The 

nonzero elements of the matrix B are listed in the Appen-

dix. The expressions involve wave-vector Fourier trans-

forms of exchange terms defined by 

 1 1( ) = 2 cos ( ),zJ J k ck   

 2 2( ) = 8 cos( /2)cos( /2)cos( /2),x y zJ J k a k a k ck   

 3 3( ) = 2 (cos( ) cos( )),x yJ J k a k ak  (11) 

and single-site thermal averages (on the spin-up sublattice) 

corresponding to 

 2
1 2= , = 3 ( ) 15/4,z z

i im S m S   

 2 2
3 = ( ) 2 ( ) =z z z

i i i i i i im S S S S S S S   

 2 2( ) 2 ( ) ,z z z
i i i i i i iS S S S S S S   

   3 2 2
4 5= 8 ( ) 14 , = ( ) = ( ) .z z

i i i im S S m S S  (12) 

The above thermal averages can now be estimated using a 

modified mean-field theory. 

3.3. Thermal averages 

We use the standard quantum-mechanical representation 

for the spin S = 3/2 operators in terms of 4  4 matrices: 

 

3 / 2 0 0 0 0 3 0 0

0 1/ 2 0 0 0 0 2 0
= , = .

0 0 1/ 2 0 0 0 0 3

0 0 0 3 / 2 0 0 0 0

zS S   

  (13) 
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Following the general approach as used for S = 1 anti-

ferromagnets [21], the thermal averages are calculated us-

ing an effective Hamiltonian where we adopt a mean-field 

approximation to simplify the exchange terms but treat the 

single-ion anisotropy terms exactly. The effective Hamil-

tonian for any site on the i-sublattice may be written as the 

matrix 

0

0

eff

0

0

3 3
( ) 0 3 0

2 2

1 1
0 ( ) 0 3

2 2

1 1
3 0 ( ) 0

2 2

3 3
0 3 0 ( )

2 2

h D F

h D F

H

F h D

F h D

  

  (14) 

where 0 1 2 3= [ (0) (0) (0)]zh S J J J  is an effective 

exchange field. The eigenvalues of Eq. (14) are found to be 

 2 20
1,3 0

5
= ( ) 3 ,

4 2

hD
h D F   

 2 20
2,4 0

5
= ( ) 3 ,

4 2

hD
h D F  (15) 

and the eigenvectors are  

 
1

23

3 3
| , >

| > 11 2 2
= ,

| > 1 3 11 | , >
2 2

  

 
2

24

3 1
| , >

| > 11 2 2
= ,

| > 1 3 31 | , >
2 2

 (16) 

in a standard notation. Here we have defined the factors  

 2 2
0 0

1
= {( ) ( ) 3 },

3
h D h D F

F
  

 2 2
0 0

1
= {( ) ( ) 3 }.

3
h D h D F

F
 (17) 

As mentioned earlier, in the absence of exchange (i.e., if 

we set h0 = 0) we would obtain just two sets of degenerate 

energy eigenvalues which represent two low-lying doublets. 

The separation between these doublets has been previously 

estimated [7,10,16] to be within the range 152 to 175 cm
–1

. 

This, together with the data available from light scattering, 

allows an estimate to be made of the values of the anisotropy 

and exchange parameters of the spin Hamiltonian. Therefore 

in Fig. 8 we show a schematic of the energy level splitting 

produced by the exchange field. The operators 1 12, ... ,X X  

in Eq. (9) are all linear in a transverse spin component and 

thus correspond to the transitions labeled as ,  ,  and 

,  whereas the operators 13 16, ... ,X X  are cubic in a 

transverse spin component and correspond to the transition 

labeled as .  These mean-field transition energies are dif-

ferent, in general, from the energies of the spin waves, be-

cause the latter include spin-fluctuation effects absent in 

mean-field theory. The energy level spacings indicated in 

Fig. 8 are calculated using Eq. (15) with the parameters J2 = 

= 3.7 cm
–1

, D = –23.6 cm
–1

 and F = – 42.1 cm
–1

. The value 

of the dominant antiferromagnet exchange term J2 was cho-

sen such that the energy of the lowest-lying k = 0 spin wave 

is 37 cm
–1

, in accordance with the light scattering data. We 

note that the fitted exchange parameters are expected to be 

different in the S = 3/2 model because of the different role of 

the anisotropy terms and the different spin quantum number. 

In the low-temperature limit ( )NT T  the static ther-

mal average for any operator A  is defined as 

1 1| |A  where 1|  is the mean-field ground state 

eigenfunction. The corresponding spin thermal averages 

defined in Eq. (12) are then found to have the limiting 

= 0T  values 

 
2 2

1 2
2 2

1 3
= (3 1), = ( 1),

2 1 1

m m   

 3 5 42
= 2 = 4 3 , = 6.

1
m m m  (18) 

At elevated temperatures the higher energy states of the 

four-level system become thermally populated and the stat-

ic thermal averages must then be evaluated using 

 

4

=1

= < | | > exp( / ).i i i B

i

X X k T  (19) 

This result is employed in Fig. 9 to calculate the tempera-

ture dependence (up to TN) of the static thermal averages. 

Fig. 8. Schematic representation of the four lowest energy levels 

of the Co
2+

 ions showing the effects of the exchange field. The 

relative energies are calculated using Eq. (15) and the parameters 

J2 = 3.7 cm
–1

, D = –23.6 cm
–1

, and F = –42.1 cm
–1

, ignoring the 

small effects of J1 and J3. The transitions (marked as , , ,   

and ), between these energy levels are discussed in the text.  

J2 = 0.0 J2 = 3.7 cm–1

198.7 cm–1

184.5 cm
–1

51.7 cm
–1

0
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4. Comparison between experiment and theory 

Representative numerical results deduced from Eq. (10) 

for the low-temperature spin-wave energies versus wave 

vector are shown in Fig. 10, taking = (0,0, )zkk  with zk  

ranging across the Brillouin zone from 0 to / .c  The low-

est-lying spin-wave excitation is generalized from the tran-

sition  from the mean-field ground state to the first ex-

cited level (see the lower panel), and another spin-wave 

branch associated with the transition  from the ground 

state to the third excited level (see the top panel) also ex-

hibits dispersion. There are two additional spin-wave 

branches to the spectrum (which are effectively dispersion-

less and therefore not shown) that correspond to the transi-

tions  and  in Fig. 8; they correspond to energies of 

about 132.8 cm
–1

 and 14.2 cm
–1

, but are likely to be ob-

served only at elevated temperatures (see later discussion) 

when there is sufficient thermal population of the higher 

levels in Fig. 8. In Fig. 10 we show the effect of varying 

the small intrasublattice exchange 1J  on the two excita-

tions. We have also included in the lower panel, for com-

parison, the single spin-wave dispersion curve obtained 

using Eq. (4) in the effective spin S = 1/2 model. The nu-

merical results in this case are plotted using our optimal set 

of parameters for the S = 1/2 model, i.e., J1 = –1.2 cm
–1

, 

J2 = 12.9 cm
–1

, and (0) =12.0B Ag H  cm
–1

. 

For another comparison of the two theoretical ap-

proaches we show in Table 4 the spin-wave energies calcu-

lated using the S = 1/2 and S = 3/2 models at different 

points in the Brillouin zone. With these parameters the 

largest difference for the spin-wave energy E  predicted 

by the two models occurs at the zone edge. 

Table 4. Comparison of the low-temperature spin-wave ener-

gies (in cm
–1

) for different points in the Brillouin zone. Results 

for the spin S = 3/2 model are obtained with J1 = 0 cm
–1

 in this 

example. 

Spin S Spin-wave branch k = (0, 0, 0) k = (0, 0, /c) 

3/2 E  37.2  51.7  

 E  132.8 132.8  

 E  199.2 198.7  

 E  14.2 14.2  

1/2 E  37.2 66.0  

 

However, the inelastic neutron scattering measurements 

[11] for the zone-edge excitation indicate a spin-wave excita-

tion energy of  64.8 cm
–1

 which is comparable to the value 

obtained with the parameters of our effective spin S = 1/2 

model. With the small intrasublattice exchange J1 = 0 the 

spin S = 3/2 model underestimates the zone-edge spin-wave 

energy. The energy of the spin wave E  at the zone edge 

may be increased with the inclusion of a nonzero J1 term, as 

was done in Fig. 10. Thus, setting J1 = –2.0 cm
–1

, the spin-

wave energy of E  at = (0, 0, / )ck  becomes 64.3 cm
–1

. 

The effect of the J1 term on the dispersion of the excitation 

E  is seen in Fig. 10(a), where J1 produces a shift in the 

excitation energy as well as a change in sign of the slope of 

the curve. 

In Fig. 11 we plot the k = 0 spin-wave energy E  as a 

function of the reduced temperature for both the S = 1/2 

and S = 3/2 models. The theoretical predictions are com-

pared with new one-magnon Raman light scattering data. 
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Fig. 10. (Color online) Spin-wave energy versus wave-vector 

component kz. The excitation E  associated with the transition 

 (a) and low-lying spin-wave mode E  associated with the tran-

sition  (b) are shown. The solid lines are obtained using J1 = 0 
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 (labeled D). The dashed line cor-

responds to the results obtained using the effective spin S = 1/2 

model. 
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Both models are in good agreement with experimental data 

for temperatures up to / = 0.6.NT T  At higher temperatures 

the decoupling approximations used to linearize the equa-

tions of motion are no longer justified. 

In Figs. 12(a) and (b) we show the excitation energies, 

calculated using the spin S = 3/2 model, versus temperature 

for different fixed points in the Brillouin zone. As the tem-

perature is increased the energies E  and E  eventually 

tend to zero because the splitting within the upper and 

lower doublets (see Fig. 8), which is produced by the ex-

change interactions, decreases with the sublattice magneti-

zation. At the mean-field transition temperature the E  

and E  excitations at = 0k  still have a small splitting but 

they become degenerate at the zone boundary as expected. 

The formal results for the various spin-dependent 

Green's functions may straightforwardly be obtained by 

using 1
16= ( ) ,EkG I B b  which follows from Eq. (7). 

From standard relations between the spectral representa-

tion of the correlation functions and the Green's function 

we are able to extract information about the statistical 

weight associated with the various spin-wave excitations. 

As an illustrative example we consider the following 

transverse correlation function 

  1 1 1 1( ) ( ) = exp [ ( )] ES t S t dE iE t t S Sk k k k ,(20) 

here subscript 1 refers to the spin operators on the i-sub-

lattice. The spectral function in Eq. (20) may then be writ-

ten as 

   1 1 1 1< > = 2[ ( ) 1]Im ; ,E E iS S n E S Sk k k k  (21) 

where n(E) is the Bose–Einstein thermal factor,  denotes 

a positive infinitesimal and the Green's function may be 

obtained from the solution of the inhomogenous matrix 

equation. 

In Fig. 13 we show the spectral function, as defined in 

Eq. (21), for the various excitations predicted according to 

the S = 3/2 model. In the low-temperature limit there is no 

statistical weight attached to the excitations E  and E  

since these modes involve transition between the higher 

energy states. However, at elevated temperatures (see the 

dashed lines) we predict a nonvanishing contribution from 

these excitations. The contribution to the spectral functions 

from the excitation E  is found to be the smallest in this 

example. In the low-temperature limit the dominant spec-

tral features come from the excitations E  (Fig. 13(b)) and 

E  (Fig. 13(c)). These modes are associated with excita-

tions from the ground state, which can occur even as 

0.T  At elevated temperatures the excitation peaks shift 

to lower values due to their dependence on the static ther-

mal averages. 
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5. Excitations for S
z
 = 2 

In Sec. 3 we investigated the magnetic excitations asso-

ciated with the transitions = 1zS . They were just the 

one-magnon excitations deduced by studying spin opera-

tors that were linear in a transverse spin component. These 

operators were coupled through the equations of motion to 

other spin operators that were cubic in a transverse spin 

operator. However, the linearized equations of motion for 

these operators did not couple to any spin combinations 

that were quadratic (or any even power) in a transverse 

spin component. These latter operators are associated with 

the transitions having = 2.zS  In this section we briefly 

investigate the properties of the excitations from the mean-

field ground state to the second excited state, using the 

effective S = 3/2 model. We note that the S = 1/2 model is 

not capable of describing such excitations. 

To study these modes we start from the equation of mo-

tion for 2( ) ;i ES Y  and generate all of the other 

Green's functions coupled to it. As before we do not de-

couple the product of operators at the same site. Instead we 

form additional equations of motion in order to obtain a 

closed set. The equations of motion can be transformed to 

a wave vector representation and the set of equations may 

be written in a matrix form as 14( ) =E B kI G b  where 

14I  is a 14 14 unit matrix, kG  and b  are 14-component 

column matrices whose elements are defined as in Eq. (7) 

with 

 
2 2 2 2

1 2 3 4= ( ) , = ( ) , = ( ) , = ( ) ,i j i jX S X S X S X S   

 2 2
5 = ( ) 2 ( ) ,z z z

i i i i i i iX S S S S S S S   

 
2 2

6 = ( ) 2 ( ) ,z z z
j j j j j j jX S S S S S S S   

 2 2
7 = ( ) 2 ( ) ,z z z

i i i i i i iX S S S S S S S   

 
2 2

8 = ( ) 2 ( ) ,z z z
j j j j j j jX S S S S S S S   

 
3 3 2

9 10 11= ( ) , = ( ) , = 3( ) 15/4,z z z
i j iX S X S X S   

 
2 3

12 13= 3( ) 15/4, = 4( ) 13 ,z z z
j i iX S X S S   

 
3

14 = 4( ) 13 .z z
j jX S S  (22) 

The nonzero elements of the 14 14 matrix B  are defined 

in the Appendix. 

Here, for simplicity, we did not include the effects of 

the intrasublattice exchange interaction 1J . Note that the 

equations of motion also involve some of the static thermal 

averages which were defined in Eq. (12). The subset 

1 8( ,..., )X X  of the operators defined above in Eq. (22) are 

quadratic in the transverse spin component. They give rise 

to magnetic excitations (denoted by E  and E ) that are 

associated with the transitions labelled as  and  in 

Fig. 14. The equations of motion are also coupled to com-

binations of operators involving products of the longitudi-

nal spin component .zS  The equations of motion for these 

operators do not vanish because of the nonuniaxial anisot-

ropy term in the Hamiltonian. 

Fig. 13. Spectral function defined in Eq. (21) (excluding the 

thermal factor 2[n(E)+1]) for the excitations E  and E  (a), E  (b), 

and E  (c). Here we have set k = 0 and  = 0.1 cm
–1

. The solid 

and dashed lines correspond to results for T « TN and T/TN = 0.6, 

respectively. 
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Fig. 14. Schematic representation of the energy levels of the Co
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magnetic ions, following Fig. 8. The transitions now labelled as 
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In Fig. 15 we show the magnetic excitations obtained 

from the determinantal condition 14det ( ) = 0EI B  plot-

ted versus wave vector .zk  The magnetic excitation E  

(upper two curves) is split at the zone center due to the 

exchange interaction but becomes degenerate at the zone 

edge. The splitting of this mode has been observed expe-

rimentally [11] and the measured excitations energies at 

= 0k  are 170 and 206 cm
–1

, compared with 165 and 

203 cm
–1

 respectively from the theory. At = (0,0, / )ck  

the observed excitation energy is 190.1 cm
–1

, compared 

with 185 cm
–1

 from the theory. The dispersionless branch 

at 147 cm
–1

 corresponds to the excitation E  in Fig. 10. In 

the low-temperature region the statistical weight attached 

to this mode is small because it involves excitation be-

tween higher energy states. 

6. Conclusions 

In this paper we have investigated the magnetic excita-

tions in a spin S = 3/2 anisotropic antiferromagnet with 

strong spin-orbit coupling. Detailed experimental results 

are presented for the temperature and polarization depend-

ence of the one-magnon Raman scattering in the rutile 

structure antiferromagnet CoF2. Low temperature results 

are also presented and discussed for Raman scattering from 

higher-energy excitons in the ground term. The Green's 

function equation of motion method was employed to de-

rive the excitation energies and spectral intensities over a 

broad range of temperatures. Results were obtained using 

RPA for the product of operators at different sites while 

the single-ion anisotropy terms were treated exactly (with-

out using any decoupling scheme) by generating a closed 

set of coupled Green function equations. The theory was 

applied to CoF2 and the numerical results were compared 

with one-magnon Raman light scattering data reported 

here, as well as other published works. At elevated temper-

atures the theory predicts several optical magnetic excita-

tions associated with transitions between the higher energy 

magnetic states. The statistical weight attached to these 

optical modes vanishes in the = 0T  limit. The dispersion 

and temperature dependences of the lowest-lying excita-

tion using the spin S = 3/2 model were also compared to 

results obtained using a simpler effective spin S = 1/2 

model. 
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Appendix: Matrix elements in the S = 3/2 model 

The nonzero elements of the 16 16 matrix B appearing in Eq. (7) are given by 

 1,1 2,2 3,3 4,4= = = =B B B B 2 1 1 3 1 3 1(0) ( (0) (0) ( ) ( )) ,J m J J J J mk k  (A.1) 

 1,2 2,1 3,4 4,3 2 1= = = = ( ) ,B B B B J mk  (A.2) 

1,5 2,6 3,7 4,8 5,9 6,10 7,11 8,12= = = = = = = =B B B B B B B B 9,5 10,6 11,7 12,8
1 1 1 1

= = = = ,
4 4 4 4

B B B B D  (A.3) 

 1,7 2,8 3,5 4,6 5,11 6,12 7,9 8,10 5,13 6,14
2 2 2 2 1 1

= = = = = = = = = =
3 3 3 3 2 2

B B B B B B B B B B   

 7,15 8,16 13,5 14,6 15,7 16,8
1 1 1 1 1 1

= = = = = = ,
2 2 3 3 3 3

B B B B B B F  (A.4) 

 5,1 6,2 7,3 8,4 1 3 2= = = = ( ( ) ( )) ,B B B B J J mk k
 (A.5) 

 5,2 6,1 7,4 8,3 2 2= = = = ( ) ,B B B B J mk  (A.6) 

 5,3 6,4 7,1 8,2 1 3 5= = = = 6 ( ( ) ( )) ,B B B B F J J mk k  (A.7) 
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Fig. 15. Magnetic excitations E  (upper two branches) and E  

(lowest flat branch) involving the selection rules S
z
 = 2 versus 

wave vector kzc. The excitation energies are calculated using the 

same parameter values as in Fig. 8. 
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 5,4 6,3 7,2 8,1 2 5= = = = ( ) ,B B B B J mk  (A.8) 

 5,5 6,6 7,7 8,8 9,9 10,10 11,11 12,12= = = = = = =B B B B B B B B   

 13,13 14,14 15,15 16,16 2 1 1 3 1
1 1 1 1

= = = (0) ( (0) (0)) ,
3 3 3 3

B B B B J m J J m  (A.9) 

 9,1 10,2 11,3 12,4 1 3 4= = = = ( ( ) ( )) ,B B B B J J mk k  (A.10) 

 9,2 10,1 11,4 12,3 2 4= = = = ( ) ,B B B B J mk  (A.11) 

 9,3 10,4 11,1 12,2 13,2 14,1 15,4 16,3 1 3 3
4 4 4 4

= = = = = = = = ( ( ) ( )) ,
3 3 3 3

B B B B B B B B J J mk k  (A.12) 

 9,4 10,3 11,2 12,1 13,1 14,2 15,3 16,4 2 3
4 4 4 4

= = = = = = = = ( ) .
3 3 3 3

B B B B B B B B J mk  (A.13) 

The nonzero elements of the 14 14 matrix B  arising in the discussion of the = 2zS  magnetic excitations are 

 1,1 2,2 3,3 4,4 5,5= = = = =B B B B B 6,6 7,7 8,8 2 1= = = 2 (0) ,B B B J m  (A.14) 

 1,5 2,6 3,7 4,8 5,1 6,2 7,3 8,4

1 1 1 1
= = = = = = = = ,

4 4 4 4
B B B B B B B B D  (A.15) 

 1,10 2,9 3,10 4,9 2 5= = = = 2 ( ) ,B B B B J mk  (A.16) 

 1,13 2,14 3,13 4,14= = = =B B B B 5,11 6,12 7,11 8,12 9,1 9,3 10,2 10,4
1 1 1 1

= = = = = = = =
4 4 4 4

B B B B B B B B   

 11,5 11,7 12,6 12,8 13,1 13,3 14,2 14,4
2 2 2 2 1 1 1 1

= = = = = = = = ,
3 3 3 3 6 6 6 6

B B B B B B B B F  (A.17) 

 5,10 6,9 7,10 8,9 2 3= = = = 2 ( ) .B B B B J mk
 (A.18) 

_______________________________________________ 
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