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Within the framework of proton model with taking into account the piezoelectric interaction with the shear
strain ¢, a dynamic dielectric response of KD2PO4 type ferroelectrics is considered. Experimentally observed
phenomena of crystal clamping by high frequency electric field, piezoelectric resonance and microwave dis-
persion are described. Ultrasound velocity and attenuation are calculated, peculiarities of their temperature
dependence at the Curie points are described. Existence of a cut-off frequency in the frequency dependence
of attenuation is predicted.
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1. Introduction

Ferroelectric compounds of the KHoPO4 family have been studied for nearly 70 years. Extensive
experimental data have been accumulated; several models of the phase transitions in these crystals
have been proposed and explored (see [1-14]). At the end of 1960-s, attention of theoretical and
experimental studies of the ferroelectric compounds has shifted to the problem of the dynamic
phenomena. Investigation of the low-frequency dispersion of their dielectric permittivity provides
an important information about mechanisms of the phase transitions or dielectric response of the
crystals. Despite the success in constructing a microscopic theory of the KHoPOy4 family crystals
mostly phenomenological models were used in interpreting the experimental data as regards the
dynamic characteristics. Such models provide no information about the microscopic nature of the
dielectric dispersion and do not allow one to adequately describe the effect of different factors
on its temperature and frequency dependencies. This problem has not been solved by the Green
functions method or Bloch kinetic equation method [8,9,11,12] either.

Most theoretical works on the relaxation phenomena in KHoPOy family ferroelectrics is based
on stochastic Glauber model [16]. For the first time this approach was used to describe relaxational
phenomena in KD3POy in [17], where the main features of longitudinal relaxation were explored
within the four-particle cluster approximation in the paraelectric phase in KD2POy. In that work
the long-range interactions between deuterons was not taken into account, and the theoretical re-
sults were not compared with experiment. Later [18-22] a more sophisticated model of the KD2POy
type ferroelectrics and ND4DsPQOy type antiferroelectrics was proposed, in which longitudinal dy-
namic properties of these crystals were calculated within the four-particle cluster approximation
for short-range interactions and mean field approximation for long-range interactions. It was shown
[12,15,23-25] that the proposed [18-22] theory permits a satisfactory description of longitudinal
relaxation in the KHyPOy type ferroelectrics. An attempt to develop a more consistent theory of
the KHyPOy family ferroelectrics within the four-particle cluster approximation with taking into
account the tunneling (Q2) was made in [26-28]. The model was not sophisticated enough to com-
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pare its results with experimental data for the dynamic characteristics of the crystals. At the same
time, in these works the fact of suppression of the dynamic characteristics of KHPOy type crystals
by short-range correlations was established for the first time. Instead of the tunneling frequency, an
effective parameter (Q < ) renormalized by short-range interactions was obtained. It should
be noted that the established [26-28] suppression explains, most likely, the Debye character of
dispersion of the dielectric permittivity observed in these crystals.

It should be stressed that the ferroelectrics of the KHoPOy4 family are also piezoelectric. The
piezoelectric coupling is revealed particularly when the crystals are subjected to external electric
fields and mechanical stresses of certain symmetry. At the ferroelectric phase transition in the
KHyPOy type crystals, a spontaneous strain arises which changes their tetragonal symmetry.

Studies of the piezoelectric coupling effect on the phase transition and on physical properties
of the KHoPOy type ferroelectrics were initiated in [29], where the Slater model [30] was modified
by taking into account the splitting of the lowest ferroelectric level by the strain eg.

Fundamental are the results obtained in [31,32], where the proton ordering model was modified
for the first time by taking into account the deformational molecular field related to the strain eg4
as well as the splitting of “lateral” deuteron configurations. In [33,34], with taking into account all
possible splittings of configurational energies (“upper/lower”, “lateral”, and single-ionized config-
urations) due to the strain &g, the phase transition and the effect of the stress og [33] and field Ej5
[34] on the physical characteristics of K(Hg 12D 83)2POu4 crystals were explored. Tunneling was
not taken into account. A satisfactory agreement of theoretical results and experimental data was
obtained.

Physical characteristics of the KHyPO,4 family crystals with taking into account piezoelectric
coupling and tunneling are explored theoretically in [35].

So far the model consideration of longitudinal dielectric characteristics of the KDyPOy4 type fer-
roelectrics has been restricted to the static limit and to the microwave region [15,18-25]. Attempts
to explore the piezoelectric resonance phenomenon within a model that does not take into account
the piezoelectric coupling are pointless. Conventional proton ordering model of the KD2POy type
ferroelectrics does not permit one to describe the effects related to the difference between the free
and clamped regimes or the phenomenon of crystal clamping by high-frequency electric field.

It seems natural to calculate, within the proposed in [33] proton ordering model with piezoelec-
tric coupling, the dynamic characteristics of the KD3PO, type ferroelectrics in a wide frequency
range from 10% Hz to 10'? Hz, including the piezoelectric resonance region. In [36] within the
framework of the four-particle cluster approximation for the proton ordering model, the thermo-
dynamic and longitudinal dielectric, piezoelectric, and elastic characteristics of the KDyPO4 have
been calculated. It was shown that at the proper choice of the model parameters a good quantitative
description of available experimental data by the proposed theory is obtained.

In this work, following the approach developed in [37], we shall calculate the longitudinal
dynamic dielectric characteristics of the KD2POy, type ferroelectrics and study their temperature
and frequency dependences. We shall investigate the effect of crystal clamping by longitudinal
high-frequency external electric field. Expressions for the sound velocity and attenuation for a
certain propagation direction will be obtained; their temperature and frequency dependences will
be explored.

2. System of equations for time-dependent distribution functions
of deuterons

We shall consider a system of deuterons moving on O-D. .. O bonds in deuterated ferroelectric of
the KD2POy type. A primitive Bravais cell of these crystals consists of two PO, groups (tetrahedra)
with four hydrogen bonds attached to one of them (“A” type tetrahedra), while the hydrogen
bond attached to the other tetrahedron (“B” type) belongs to the four nearest structure elements
surrounding it (figure 1).

The Hamiltonian of the deuteron subsystem with taking into account short-range and long-
range interactions in the presence of mechanical stress og = 0, and electric field E5 along the
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Figure 1. Primitive Bravais cell of the KD2POy4 type crystal. One of the possible ferroelectric
configurations is shown.

crystallographic axis ¢, which induce contributions to polarization P3 and strain ¢ of the crystal,
consists of the “seed” and pseudospin parts [33,35]:

H=NH9 +H,, (2.1)

where N is the number of primitive cells. The “seed” energy of the primitive cell corresponds to the
heavy ion subsystem and does not depend explicitly on hydrogen arrangement. It is expressed via
the strain €¢ and electric field F3 and includes the elastic, piezoelectric, and electric counterparts

1 1
HO — 5 (§cg;9€g ~ ByBseq - 5X§§E§) , (2.2)

where v = 7=, v is the primitive cell volume; ckY, €9, X5 are the so-called “seed” elastic constant,

coefficient of the piezoelectric stress, and dielectric susceptibility, respectively. These quantities
determine the temperature behavior of the corresponding observable characteristics far from the
transition point 7T-..

The pseudospin part of the Hamiltonian is

H=N [HO + 21/0(77(1))2] +> HY,
q

where
1 z6 O, e 4 g
(4 6 6
Héﬁ) = _ZE%+Z(_666+2616)Z%
f=1 f=1
Oqg1 O0g2 0g3 Ogl Og2 Og4 Oqg1 O0g3 Og4 O0g2 0g3 Og4
e (8105 (LLL Tq1 992 9g4 | Oq1 Tq3 Tq4 LLL)
6l t206) (5 5t 5 T 5 o T g
Og1 O¢g2 Oq3 Oqg4 0qg2 0g3 Og4 Og1
Vs (L_ LL) Vs (LL LL)
+(+a656)22+22+( a656)22+22
9q1 9¢3 %%) plat %a2 993 Tq4 9
+U<22 22Jr 2 2 2 27 (3)
and

1
26 = B(—A° + 2venY) — 266 + 3 Es), (ﬁ = ﬁ) :
B

The dynamic properties of the KDyPO, type ferroelectrics will be explored within the pro-
posed dynamic model [21], based on the stochastic Glauber model [16] ideas. When calculating the
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dynamic characteristics, we shall restrict our consideration to the four-particle cluster approxima-
tion, providing a successful description of thermodynamic characteristics of the crystals [8-10,15].
Using the approach, developed in [18-21], we obtain the following system of equations for the
time-dependent deuteron distribution functions:

() o))

fl
where €/ (t) is the local field acting on the f’th deuteron in the gth cell, which can be found from
the Hamiltonian (2.3).
(t)

The expressions tanh &2'; are presented in the following form

z

15
tanh a _ Pgdqg + lea(ﬂ + Q220q4 + Rgdq20q30'q4
+ Mg1042043 + Mg2043044 + N5 02094 + L,
Beg
tanh —Z = Psoga + Q1041 + Q62043 + R5041043044
+ M§10qa0q2 + MGy0430qa + NGoqog3 + Lg
Peg:
tanh —2 — Piog + Q1044 + Q620q2 + R0 1042044
+ M§10q10q4 + Mgy0q1042 + NGog20q4 + Lg
Peg
tanh 2<14 = Piog2 + Q51043 + Q62091 + RGoq1042043
+Mgla'q20'q3 —l—MgQO'qu'qg +Ngaqlaq2 —I—Lg (25)
Since o4 = £1, we find for the coefficients Fs, ..., Lg:
1
P = (i~ +ni—nj+mi—mj+ms—mj),
1
Qo = g —15—ni+ni+mi+m;—mz—mj),
Qi = U5~ —ni+n5 —mi —ms +mj +m)
1
Rg = (i — 5 +ni—nj—mi+mj—ms+mj),
1
Ne = g+ +ni+n;—mi—mj—mz—mj),
1
Mg = Ui+ —ni—nj+mi—mg—mz+mj),
1
Mg = Ui+l —ni—nj—mi+mj+mg—mj
1
L; = g(lf—l—lg—l—nif—l—ng—i—mif+m§+m§+mi), (2.6)
where we use the following notations
2¢ 2¢
Zéz = tanhg [iw + (656 + 616)56 + 56:| R nz = tanhg [i(w — ’U)l) — 01666 + g6:| s
71 2E
mi = tanhg {1(6 — 6a6E6 — W) — 01686 + ﬁﬁ] , omi = tanhg {:F(s + 0a666 — W) — d166 + %] .

Taking into account the symmetry of distribution functions
1)z

n (0q1) = (0g2) = (0g3) = (044),
77(3)Z = (041042043) = (0q1043044) = (0410420q4) = (042043044),
77§2)Z = (042043) =(0q10q4), U§2)Z:<0q10q2>:<0q30q4>7 n§2)22<0q10q3>:<0q2aq4>’ (2.7)
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from (2.4) with taking into account (2.5) and (2.7), we can obtain a closed system of equations for
the time-dependent single-particle, pair, and three-particle deuteron distribution functions in the
KDsPOy4 type crystals

1)z _ _ _ _ _ ()= _

n Ci1 €C12 €13 Ci4 Ci5 n C1

(3)= _ _ _ _ _ (3)z _
d n C21 C22 C23 C24 C25 n C2

(2)z _ _ _ _ _ (2)z _
a— | m =] €31 C32 C33 C34 C35 m +1| ¢ (2.8)
dt | (= a1 Cur Cus Cas C (2)2 c

Mo C41 C42 C43 Ca4 Ca5 Mo C4

n§2>2 C51 Cs52 C53 Cs4 Css n§2>2 Cs

Here we use the following notations

en = —(1- P — Q& —Q), 2= Rg, ¢i3= MG, ¢1a = Mg, ¢15 = N§, &1 = Lg,

e = (2F§ +2Q5 +2Qf, +3Rs), Ca2=—(3— P — Qg1 — Qga), C23 = (Ng + Mg + Lg),

Coa = (NG + Mg +Lg), cos = (Mg + Mg+ Lg), 2= (NG + Mg + M),

Cs1 = 2(NG+ Mgy + LE), 2 =2M§,, ¢33 = —2(1 — RE), C34 = 2P§, €35 = 2Q¢;, C3 = 2Q¢,,

i1 = 2(N§+ MG + LE), o =2ME, Ca3 =2PF, €40 = —2(1 — RE), Ca5 = 2Q¢,, ¢4 = 2Q%; ,

Cs1 = 2(M§ + Mg + L), 52 =2N§, Css = 2Q¢,, Csa = 2Q¢,, Cs5 = —2(1 — RE), &5 = 2F§ .
(2.9)

In the single-particle approximation from (2.4) we obtain the following equation for distribution
functions

d z z 1 P~
a&n(l) = —nM% 4 tanh 3% - (2.10)

3. Dynamic characteristics of a mechanically free K(H;_.D..)-PO, crystal.
Piezoelectric resonance

In this section we shall consider vibrations of a thin [ x [ square plate of a KD2POy crystal, cut
in the [001] plane, induced by time-dependent electric field E3; = Ezel“!. This field, in addition
to the shear strain eg, also induces diagonal components of the strain tensor ¢;. For the sake of
simplicity, we shall neglect the diagonal strains.

Dynamics of deformational processes in KDoPO,4 will be described using classical Newtonian
equations of motion of an elementary volume

0%u; 0ok
= E 1
P or - Oxy (3.1)

where p is the cell volume, u; are the displacements of an elementary volume along the axis x;,
o is the mechanical stress. The shear strain g is determined by the displacements u, = u; and
Uy = U, that is

8u1 8u2
€6 :5zy = a—y + E

In our case a shear strain o,, = o¢ is different from zero and [36]

4w6 m? 20, 6 26’6 2616
EO0 0 a s
— B0 el 2O Mg— 201, Mg | 3.2
06 =Cgg €6 — €363+ ” Dg+17D§ a6 Dg 6+ng 16 (3.2)
where

Mas = aag — —, My =sinh(22 + B0sc), Mg = dbsinh(zE — B1626)-

ae
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Thus,
82114 EO (986 4w6 677(1) 26@6 0 Maﬁ 2(556 0 Msﬁ 2616 0 M16
POt = o 4 2 - R O (M) ()
ot? oy v Oy v Oy v Oy v Oy

OPuy E08€6+%077(1) 2006 O (Mag\ 2056 O (Mg 2016 0 (Mis
P o €66 py v Oz v Oz \ Dg v Ox \ Dsg v O0x \ Dg )~

At small deviations from the equilibrium we can separate in the systems (2.6) and (2.8) the
static and time-dependent parts, presenting the distribution functions, effective displacement fields
u1, Uz, and the strain g as sums of equilibrium values and of fluctuational deviations

N 1 3 2 2 .
n =it g ® =@ g P =g g® (i=1,2,3),
€6 = £6 + €6t U2 = U1,2 + U1,2¢, (3.4)
28 = F6+ 26t = —BA + 260 — 2Byses — BA: + 20ven”) — 20scer + Bz st
We substitute the expressions (3.4) into the system of equations (2.8), (2.10), expand into a
series over the time dependent terms the coefficients ¢;;, ¢;, limit oneself to linear approximation.

We exclude parameter A; and obtain the system of equations for fluctuating parts of distribution
functions:

777%3) €11 Ci12 C13 Cia Ci5 723) C1
d ﬂt@) C21 C22 C23 C24 C25 ﬂt@) C2
| mi | =] e s sz s css me |~ §ﬁM3E3t cs
7753) C41 C42 €43 Ca4  C45 7753) cq
(2) C51 €52 €53 Cp4 Csp (2) Cs
N3¢ N3t
c1 C1s Cla c11
2 C3s C3a Co1
+0Yscer | c3 | — Bdsecer | c21s | + Bdascor | c21a | — Boisger | 31 | - (3.5)
Cyq Co2s C22q C41
Cs Co3s C23a Cs1

The expressions for coefficients of the system (3.5) are given in [36].
Taking into account (3.4), equations for the displacements (3.3) can be rewritten as follows:

Puy | O ot 0%uss Dzor ot
Y 8+268y’ P o = 16a+26a (3.6)
where we use the following notations
4 2
cl6 = cil+ %Z)Gf — U—B[ 2, cosh(2Z2 + (64666) + 0254b cosh(Zs — (61666)
6
2 ~ 20 2
+9z562a cosh Bd46€6 | + W(—(SssMs@ + 616 M6 + da6Mas)”,
6
_ 4 4
s = <TZ)6 D6f6 ;
We shall look for solutions of the system (3.5) and (3.6) in the form of harmonic waves
i 3 iw
=D 6,2,9)e, 9P =nE(6,2,)e,
2 iw 2 iw
n§t)—771)(6xy) Loy = (6w y)e,
né?) =t )(6,1’ y)e 1wt ot = e6(z,y)e 1wt
uyy = uy (y)e't, ugs = ug(z)elr. (3.7)
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Finally, solving the system (3.5) with taking into account (3.7), we find that
62y = P2EO 0w) By + [0 D (aw)

+6656FS J(aw) — Blas PV (aw) + 816} (ow) |6, ), (3.8)

where we use the notations

) = P00 )+ 0?45 ) + 1
 (iaw)® + paliaw)* + ps(iaw)? + pa(iaw)? + pi(iaw) + po
FO (o) = i (i0w)* + pt? (i0w)?® + pt? (law)? + piV (iaw) + p”
(i0w)® + py(iaw)? + p3(iow)? + pa(iaw)? + p1(iaw) + po
FO (0w) p& (iaw)* + pi¥ (law)? + pi (iaw)* + pM (iaw) + pi”
@  (iaw)d 4 paiow)? + p3(iow)3 + pa(iow)? + p1 (iaw) + po
F(l)(aw) p(14) (iaw)* —l—p( )(1aw) +p(1 )(1aw) +p(1 )(1aw) —HU(O) (3.9)
(i0)® + paliow) + paliow)® + paiaw)? + pr(iow) + po '
Expressions for py,...,po, p™®,...,p, p§4), - ,p§°>, p,(;l), - ,p((l ), p§4), . ,pgo) in (3.9) are

given in [36].
Taking into account the relations (3.6) and (3.7), we obtain the following wave equations for
Uy, U2

8211, 2

cé%(aw)ﬁ; + pw?uy =0, c{?ﬁ(aw)ﬁuj + pw?uy = 0, (3.10)
where
chi(aw) iy + 465/}6 fe+ 21532( 86 Mg + 616 M16 + S Mas)?
461% [ Vg FO (aw) + 686Fs(1)(aw) + 616F1(1)(aw) — 6a6Fél)(aw)}
- tsa—gfﬁ[—ng(l)(aw) + 0.6 F Y (aw) + 616F1(1)(aw) - 6a6Fél)(aw)}

2
_ % (62 cosh(22 + A6.66) + 4033 cosh(Z — Fbras) + 632a cosh Biuscd].
6

Equation (3.10) can be written as

RIE + kgup =0, e + kZug = (3.11)
where kg is the wavenumber
ke = %ﬁ . (3.12)
Cg6(aw)
We shall look for the solutions of (3.11) in the form
uy = Aj cos kgy + Bi sin kgy, Uy = Ag coskex + Bosin kgx.
As a result
ee(x,y) = ke | — (A7 coskey + Ag coskgx) + (B1 sinkgy + Basinkgx)|. (3.13)
The boundary conditions are set as follows:
£6(0,0) = e6(1,1) = £6(0,1) = e6(1,0) = &o. (3.14)
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The values of €g are determined from (3.2), using the relation (3.10)

ese(aw)
Eo = E3 . (315)
cs(aw)
where
eas(aw) = el + % [—¢6F<1>(aw) +6,6F D (aw) + 16F DV (aw) — 5a6F;1>(aw)} . (3.16)

Taking into account the boundary conditions (3.14), we find from (3.13)

56(x7y) -5

&N 7COS kﬁl -1
2

sin kol (sin kgy + sin kex) + (cos key + cos ka)} . (3.17)
6

Using the expression, relating polarization P3 to the order parameter (1) and strain e, as well
as relation (3.8), we find that

P3(33,y7t) = P?z(x7y)eiwt7 (318)
where
P3(z,y) = ess(aw)es(w, y) + x33(aw) B3,
and
ﬁ 2
xas(aw) = x5+ 2 F O (aw).

Now we can calculate the dynamic dielectric susceptibility of a free crystal x;(aw)

11

" 1 0
X33 (aw) = l_ga—ES//P3(:Cay)dxdy' (3.19)
00
Taking into account (3.17), we find that
1 [ 2 kel
€0 6 €0
— dxd = —tan — = 3.20
B // xdyes(z, y) S T R (3.20)
00
where
1 2 kel
= — tan —

R(w) k’@l 2 ’
With (3.18) and (3.20) from (3.19) we obtain that
1 eds(aw)

Xg3(0éu)) = ng(aw) + mc%(a(J) .

(3.21)

4. Attenuation and velocity of ultrasound in KD,PO, crystals

Pulsed ultrasonics provide a useful method for the investigation of crystal behavior. The ultra-
sound wavelength is usually much smaller than the sample dimensions. Therefore, the dynamical
variables, such as elementary displacements and order parameter, depend only on the spatial co-
ordinate which is the direction of sound propagation.

If thin bars of the crystal are cut along [001], then we shall consider a transverse sound wave

propagating along the bar and polarized along [010]. Among gZ? the only nonzero derivative is
J
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%; therefore, instead of the systems (3.5) and (3.6), we can write

77(1) (1)

t(3) €11 Ci12 €13 Ci4 Cip nt(3)
d ﬂt@) C21 C22 C23 C24 C25 ﬂt@)
| M = €31 €32 €33 €34 C35 My
775? €41 C42 €43 C44  C45 ng)
(2) C51 Cs52 C53 Cpa  Cs5 (2)
M3t M3t
c1 Cls Cla C11
) C3s C3q Ca1
+ Bgest | cs | —00secet | c21s | + B0ascsr | 210 | — B16€6t | €31 | s
C4 €225 €224 C41
cs C23s €234 C51
62U2t Oeet 57715 Y
p o2 = Clﬁ% + Cog o (41)

Solving the system (4.1), we obtain the same wavenumber as found above

LY/ (4.2)

Vs (aw) '

Using (4.2), we can find the sound wave velocity

w ek (aw)
= = ]‘:{6766 4.3
Re|kg| VP (4.3)

vee(w)

and the contribution of the pseudospin subsystem to the sound attenuation

wy/p
Vel (aw)

where agg is a constant frequency and temperature independent contribution of the other mecha-
nisms to the experimentally observable attenuation.

ag(w) = Qg0 — Im|k6| = Q0 — Im s (44)

5. Discussion

Let us evaluate the above found dynamic characteristics of mechanically free K(H;—,D,)2POy4
crystals, cut as [ x [ square plates (I = 1 mm) in the [0,0,1] plane. It should be noted that the
developed theory is valid, strictly speaking, for highly deuterated KDoPOy crystals, only. However,
the tunneling in undeuterated crystals is weakened due to short-range interactions [26], which is
indicated by the experimentally established relaxational character of e55(v, T') dispersion see [15,23—
25] in KHoPOy. Therefore, proton tunneling can be neglected as well as the obtained expressions
used for undeuterated KH5POy4. In numerical calculations we shall use the values of the model
parameters determined in describing the static and dynamic permittivity of a mechanical free
crystal [36] and given in table 1.

Unfortunately, no experimental data are available to perform a quantitative comparison of the
theoretically obtained temperature and frequency dependences of the dynamic characteristics of
mechanically free crystals in the piezoelectric resonance region.

In figures 2 and 3 we plot the frequency dependences of the real and imaginary parts of the
dynamic dielectric permittivity of mechanically free KHoPOy4, KD3POy crystals in the paraelectric
phase at different temperatures AT. For the MH>XO4 crystals, a resonance dispersion takes place
in the frequency range, 3-105-3-10% Hz, and for KDoPOy in the 5-10°-5- 108 Hz range. At w — 0
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Table 1. The optimal set of the model parameters for the K(Hi—;D;)2PO4 crystals.

x T To Tl s ”2—530) pa—, 10718 | sy 10718 | X35
(K) | (K) | (K) | (K) | (K) | (esu-cm) | (esu-cm)
0.00|122.5|122.5|56.00 | 422.0 { 17.91 1.46 1.71 0.73
0.81]205.6|204.8|85.82|781.5 |33.44 1.76 2.02 0.42
1.00 | 220.1 [ 219.0 [ 93.05 | 868.6 | 35.76 1.84 2.10 0.34
x ;f—g ‘,}—'g %6 %6 Jg - 10710 eJs P_. | R_ [P.] R:t
@ | & | @ | B | dynsem®) | (esujem?) || ) | (2 | )] (2)
0.00 |{-150.00 | 82.00 | -500.00 |-400.00 7.10 1000.00 |{|0.35{0.0100]0.43]0.0160
0.81{-200.00 | 52.73 | -957.39 |-400.00 6.45 1914.77 || 1.95]0.0082 | 4.19]0.0001
1.00 |-138.64 | 45.64 | -1068.18 |-400.00 6.30 2136.36 || 2.84|0.0077 | 4.54|0.0349

we obtain a static dielectric permittivity of a free crystal. Taking into account the dispersion (3.12),
we find the equation for the resonance frequencies

Wp =

~ m(2n+1)
! p

E
C66

Y

where taking into account the fact that in the 5-105-5-108 Hz frequency range cf;(w) is practically
frequency independent. The resonance frequencies are inversely proportional to sample dimensions.

800
sooj
400 1
200
0 6 8 10 1
10 10 10 10'%, Hz
€
600
500
400 J
300 | 5
200F — "‘[iw Wl
100
0 6 8 10 12
10 10 10 10'%v, Hz
€y
100
80
J 3
60 L/ o
40
20
O 6 8 10 12,
10 10 10 10'%v, Hz

33
10°
1
10°
1073 6 8 10 1
10 10 10 10", Hz
€y
2
10°
107°} /
/
10° 10° 10" 10'?v, Hz
€y
10° 3
107
10° 10° 10" 10'%v, Hz

Figure 2. Frequency dependences of the real and imaginary parts of the dynamic dielectric
permittivity of a mechanically free and clamped KH2POu4 crystal at different AT, K: 1 -5, o
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Figure 3. Frequency dependences of the real and imaginary parts of the dynamic dielectric
permittivity of a mechanically free and clamped KD2PO4 crystal at different AT, K: 1 -5, 2 —
10,3-50. o , o , ® [40].

The dashed lines in figures 2-3 describe the low-frequency permittivity of a clamped crystal.
With increasing frequency and temperature AT, the amplitudes of the resonance peaks decrease.
With increasing temperature AT the last resonance peak shifts to higher frequencies. Analogous
multi-peak resonance dispersion is also observed in the ferroelectric phase. Above the resonance
frequency, the crystal is clamped by the high-frequency field; above 10° Hz the clamped permittivity
has a relaxational dispersion. The theoretical frequency curves e55(w) and €45 (w) well accord with
experimental data. The resonance dispersion in KHyPOy is schematically presented in [43] for the
ferroelectric phase at 10* — 10° Hz.

In figure 4 we show the temperature curves of the real part e44(w,T) of the free dielectric
permittivity of KHyPOy at different frequencies. Below the frequency of the first resonance peak,
the temperature variation of e35(w,T) essentially coincides with that of the static permittivity of
a free crystal. Near the resonance frequencies, the sharp peaks in the temperature curve of permit-
tivity appear, the number of which increases with an increase of frequency, whereas the magnitudes
decrease. Upon further increase of frequency, numerous resonance peaks of small amplitude arise
around the curve of clamped permittivity. At even higher frequencies the peaks disappear. The
resonance peaks for the real and imaginary parts of the permittivity for a given frequency are
observed at the same temperature AT. The character of piezoelectric resonance curves is different
for different crystals considered here.

In figure 5 we plot the calculated temperature dependences of the sound attenuation ag for
KH2PO4, K(Ho,195D0,805)2PO4 at different frequencies along with the experimental points c(7T)
taken from [41,42]. A good quantitative description of experimental data is obtained, especially
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Figure 4. Temperature dependences of the real and imaginary parts of the dynamic dielectric
permittivity of a mechanically free KH2POy4 crystal at different frequencies v, MHz: 1 — 3, 2 —
10, 3 — 30.

for K(Ho.195D0.805)2PO4.

Near the transition temperature T¢, a sharp increase of attenuation is obtained. In the ferro-
electric phase, the attenuation decreases much faster when moving away from the transition than
in the paraelectric phase.

The dependence of attenuation «ag on the square of frequency w? for KHyPOy,
K(Ho,195D0,805)2PO4 crystals at different temperatures AT is shown in figure 6. As one can see,
attenuation varies proportionally to the square of frequency. The closer the temperature is to the
Curie point, the larger is the rate of this variation.

With increasing frequency, starting from ~ 107 Hz, the theoretical attenuation sharply increases
and then reaches a saturation at about 10'° Hz (figure 7). In the paraelectric phase, the cut-off
frequency decreases with approaching the transition temperature T.. The cut-off frequency also
decreases with increasing deuteration x. Such high values of attenuation at saturation, in fact,
mean the absence of sound propagation.

In figure 8 we depicted the calculated temperature dependence of sound velocity vgg for KHo POy,
K(Ho,195D0,805)2PO4.
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Figure 5. Temperature dependences of sound attenuation for KHoPOu (a), at different frequen-
cies v,10® Hz: 1 — 10,0 [41], 2 — 30,4 [41]. 3 — 50, [41], 4 — 70,v [41l. 5 — 90,+[41] and
K(H0_195D0,805)2PO4 (b) at v, 106 Hz:1-5,0 [42], 2-15,o [42], 3-254 [42], 4 —-45,0 [42].
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Figure 6. Frequency dependences of attenuation for KHoPO4 (a), K(Ho.195Do.805)2PO04 (b) at
different temperatures AT\ K: 1 -2,2-5,3-10,4-50. o , o , A —[42].

Figure 7. Frequency dependences of attenuation for KHoPO4 (a), K(Ho.195Do.805)2PO04 (b) at
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Figure 8. Temperature dependences of sound velocity for KH2PO4 (a), K(Ho.195Do.805)2PO04
(b).

It has a minimum at 7' = T,. Below 10'° Hz, the magnitude of cf;(w) is frequency independent;
therefore, we calculated the velocity using (8.3) and experimental data for ¢ ([44] for KHoPOy
and [42] for K(Hg 195D0.805)2P04) and crystal density p. The results are shown in figure 8 by
symbols o.

At the frequency of microwave dispersion of permittivity, a sharp increase of sound velocity vgg
should be observed, after which the frequency curve of velocity saturates at about ~ 10! Hz. The
saturation values of sound velocity are temperature independent.

6. Conclusions

Within the proton ordering model with taking into account the shear strain g we explored a
dynamic response of the KD,PO, type crystals to an external harmonic electric field E5. Dynamics
of the pseudospin subsystem is described within the stochastic Glauber approach. Dynamics of the
strain e¢ is obtained from the Newtonian equations of motion of an elementary volume, with
taking into account the relations between the order parameter of the pseudospin subsystem and
the strain in the static limit. Expressions for the longitudinal dynamic dielectric permittivity of
KDyPOy crystals are obtained. Evolution of dynamic permittivity with increasing frequency via
the piezoelectric resonances (10510 Hz) to the clamped crystal with the microwave (109-1012 Hz)
relaxational dispersion is obtained. Temperature and frequency dependences of sound attenuation
ag and velocity vgs in K(Hy_;D;)2POy are obtained. An anomalous increase of attenuation in
the phase transition region and the temperature curve of sound velocity are described. A presence
of cut-off frequency for sound propagation (an anomalous increase of attenuation at frequencies
corresponding to the microwave dispersion of the dielectric permittivity) is predicted.
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Mo3/0BXHSA penakcauis MexaHi4HO BiJIbHUX Kpuctanis Tuny
KH,PO,. M’e30enekTpnyHnii pe3oHaHC Ta NOrMIMHaAHHSA 3BYKY

PPNeBuupkuin!, 1.P3avek?, A.C.Moina', A.C.Boosny'

1 IHCTUTYT di3nku koHaeHcoBaHUx cuctem HAH Ykpainu, 79011 JibsiB, Byn. CBEHUiLbKOrO 1
2 HauioHanbHuin yHiBepcuteT “JibBiBCbka nonitexHika”, 79013 Jbeis, Byn. C. BaHoepn 12

OTpumaHo 5 yepsHs 2008 p., B ocTaTo4HOMY BUMsai — 9 nunHsa 2008 p.

B pamkax NnpoToHHOI MoAeni 3 BpaxyBaHHAM M'€30eNeKTPUYHOI B3aEMOS;i 3i 3CyBHOIO AedopMaLiieio ¢
PO3MNSHYTO AMHAMIYHUIA AienekTpuydHnin Biaryk cerHetoenektpukis tuny KDoPO4. BpaxoBaHo guHamiky
n’e30eneKkTpuYHOI edopmalii. 1BHO onNMcaHo SBMLLA 3aTUCKaHHS KPUCTasly BUCOKOYACTOTHUM eNekTpu-
YHMM NofieM, ME30eNeKTPUYHOro pe3oHaHcy i HBY gucnepcii, wo cnoctepiraloTbCa Ha €KCNEPUMEHTI.
Po3paxoBaHo koediuieHT nornnmHaHHs 3ByKy. OnvcaHo 0cobnamBoCTi koedilieHTa NornHaHHA B OKONi TO-
4ok nepexony. MNependayeHo HasiBHICTb 06PI3aloy0i YACTOTM Y HACTOTHIN 3anexXHOCTi koediljieHTa nornu-
HaHHS 3BYKY.

Knio4oBi cnoBa: cerHeroenekTpuku, rn'e30eAeKTpu4H1Gi pe3oHaHc

PACS: 77.22.Ch, 77.22.Gm, 77.65.-j, 77.84.Fa, 77.65.Fs
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